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1. Introduction. In [13] the following result of André–Oort type is
proven. Here, for an algebraic curve C defined over a number field we denote
by h(C) the naive logarithmic height of C, so that h(C) is just the projective
logarithmic Weil height of a minimal defining polynomial of C. Furthermore,
a point of A2(C) is called a CM-point of discriminant (∆1, ∆2) if its first
(resp. second) coordinate is the singular modulus associated with a complex
elliptic curve whose endomorphism ring is of discriminant ∆1 (resp. ∆2).

Theorem 1. Let C ⊂ A2(C) be a geometrically irreducible algebraic
curve defined over a number field K. For i = 1, 2 denote the degree of Xi|C :
C → C by δi and assume δi > 0. Then for every ε > 0 there exists an
effectively computable constant C1 = C1(ε,max{δ1, δ2}, [K : Q]) > 0 such
that

(1.1) max{|∆1|, |∆2|} < C1 max{1, h(C)}8+ε

for every CM-point of discriminant (∆1, ∆2) that is on C but not on any
modular curve V(Φm), 1 ≤ m ≤ 4 max{δ1, δ2}5.

For brevity, we call geometrically irreducible algebraic curves C ⊂ A2(C)
that are neither modular curves nor horizontal or vertical lines non-special.
An immediate consequence of Theorem 1 is that a non-special curve C in
A2(C) contains only finitely many CM-points. In addition, their number
and height can be bounded effectively by an expression in h(C), max{δ1, δ2}
and [K : Q]. In our particular instance of the André–Oort conjecture for a
product of two modular curves, such a statement was obtained by Breuer [4]
under GRH. Furthermore, his non-effective height bound depends only on
max{δ1, δ2} and [K : Q] but not on the height h(C). Height bounds of this
sort, depending only on max{δ1, δ2} and [K : Q], are called uniform in what
follows. Pila’s more recent approach to the André–Oort conjecture in [15]
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also exhibits uniform bounds, which are unconditional but not effectively
computable. In Theorem 2 below we reprove the existence of such bounds
as a negligible interlude to our main results, Theorems 3 and 4.

Before we state Theorems 2 and 3, we dwell on the difficulties to be
overcome if one aims at inferring a uniform result from Theorem 1. For
this, we now examine a naive approach, which makes only use of a triv-
ial height bound for singular moduli. If Z + τZ ⊆ C is the lattice of a
complex elliptic curve having an endomorphism ring of discriminant ∆τ ,
then h(j(τ)) ≤ c1|∆τ |1/2 with an absolute constant c1 > 0. Indeed, j(τ)
is an algebraic integer and all its complex conjugates have absolute value
less than c2 exp(|∆τ |1/2) for some c2 > 0. Let x ∈ A2(C) be a CM-point
on a non-special curve C and not contained in any modular curve V(Φm),
1 ≤ m ≤ 4 max{δ1, δ2}5. Then, by Theorem 1, its affine logarithmic height
h(x) is bounded by

h(x) ≤ max{h(x1), h(x2)} < C2(ε,max{δ1, δ2}, [K : Q]) max{1, h(C)}4+ε,
(1.2)

where

C2(ε,max{δ1, δ2}, [K : Q]) = c1C1(2ε,max{δ1, δ2}, [K : Q])1/2 > 0

is an effectively computable constant. Additionally, for those CM-points
that are intersection points of C with a modular curve V(Φm), 1 ≤ m
≤ 4 max{δ1, δ2}5, a similar height bound can be deduced from an arith-
metic version of Bézout’s theorem (e.g. [14, Théorème 3]). More precisely,
the exponent 4 + ε can be even replaced by 1 in this case.

Unfortunately, the height bound in (1.2) is not uniform. Nevertheless,
an absolute version of Siegel’s lemma [18] is used in Lemma 2 below to show
the following: For each pair (δ1, δ2) ∈ N2 there exists a linear polynomial
l(δ1,δ2)(X) ∈ R[X] with positive leading coefficient such that the number of
points x on an affine curve C of bidegree (δ1, δ2) satisfying

(1.3) h(x) < l(δ1,δ2)(h(C))
is bounded uniformly, i.e. bounded solely in terms of δ1 and δ2. Lemma 2
parallels a result of Zhang ([24, Theorem 6.2]) stated for algebraic subvari-
eties of tori. We cannot apply it directly to obtain a uniform bound on the
number of CM-points on a non-special curve because the exponent of h(C)
in (1.2) above is considerably larger than the one in (1.3). Hence, a major
task is to render Lemma 2 applicable by lowering this exponent. For this
purpose, it is necessary to use more sophisticated height bounds for singular
moduli. A standard estimate, given as Lemma 3 below, indicates that for
any ε > 0 there exists an effectively computable constant c3(ε) > 0 such
that

h(j(τ)) ≤ c3(ε)|∆τ |1/2h−1+ε∆τ
,
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where h∆τ is the class number of the unique imaginary quadratic order
having discriminant ∆τ . A classical theorem of Siegel [21] states that there
exists some constant c′4(ε), depending only on ε, such that

(1.4) |∆|1/2−ε ≤ c′4(ε)h∆
for any negative discriminant ∆. Using it, we deduce the following theorem
and its corollary in Section 5.

Theorem 2. For any non-special planar algebraic curve C of bidegree
(δ1, δ2) defined over a number field K the number of CM-points on C is
bounded uniformly from above by some constant C ′3(max{δ1, δ2}, [K : Q]).

Corollary 1. Let C be a non-special planar algebraic curve over a
number field [K : Q] of bidegree (δ1, δ2). Then there exists a constant C ′4 =
C ′4(max{δ1, δ2}, [K : Q]) such that

max{|∆1|, |∆2|} < C ′4

for every CM-point of discriminant (∆1, ∆2) contained in C. In addition,
the height of CM-points on C is uniformly bounded by a certain constant
C ′5(max{δ1, δ2}, [K : Q]).

Qualitatively, Corollary 1 supersedes the results of Breuer obtained in [4]
under assumption of GRH for imaginary quadratic fields. In fact, Corollary 1
is a non-effective version of [4, Theorem 1.1] and can be made effective by
assuming GRH. Interestingly, the final sentence of [4, Section 4] vaguely
asserts that “André’s method”, namely his proof in [1], is intrinsically non-
uniform. The above results suggest otherwise.

With the bias of our previous work [13], however, we are more interested
in obtaining results that are both effective and uniform. It is clear from the
above that an effective version of Theorem 2 and its Corollary 1 needs an
effective lower bound for the class number of imaginary quadratic fields.
The best result in this direction is due to Goldfeld [8] and Gross–Zagier [9].
For every 0 < ε < 1, [9, Theorem (8.1)] states the existence of an effective
constant c5(ε) > 0 such that

(1.5) (log |∆|)1−ε ≤ c5(ε)h∆.
This bound is not enough for our purpose here but it is nevertheless essential
for Theorem 4 below. In contrast, the Siegel–Tatuzawa theorem [22] states
that there exists an effectively computable constant c6(ε) > 0 such that

|d|1/2−ε < c6(ε)hd

for all fundamental discriminants d with at most one exception d∗. We re-
call that fundamental discriminants are the discriminants of maximal orders
in imaginary quadratic fields. In spite of the exception d∗, it is possible to
deduce by Lemma 2 a version of Theorem 1 that, partially, gives uniform
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effective bounds. Throughout this article, we often write a general discrim-
inant ∆ as a product f2d, where we tacitly assume that f is a positive
integer and d < 0 is a fundamental discriminant. This decomposition of ∆
is obviously unique. Using the Siegel–Tatuzawa theorem instead of Siegel’s
above-mentioned result we obtain in Section 6 the following results.

Theorem 3. Let C ⊂ A2(C) be a non-special curve of bidegree (δ1, δ2)
that is defined over a number field K. Then the number of CM-points on C
of discriminant (∆1, ∆2) = (d1f

2
1 , d2f

2
2 ), (d1, d2) 6= (d∗, d∗), is bounded uni-

formly by C3(max{δ1, δ2}, [K : Q]).

Corollary 2.There is an effective constant C4=C4(max{δ1, δ2}, [K :Q])
such that

max{|∆1|, |∆2|} < C4

for every CM-point on C of discriminant (∆1, ∆2) = (d1f
2
1 , d2f

2
2 ), (d1, d2)

6= (d∗, d∗). Consequently, this bound is true for all CM-points on C that are
not contained in any modular curve. Hence, the height of these points is
uniformly bounded by an effective constant C5(max{δ1, δ2}, [K : Q]).

Our proof of Theorem 3 makes use of the following lemma. We remind
the reader that a CM-point of discriminant (d1f

2
1 , d2f

2
2 ) is contained in a

modular curve if and only if d1 = d2.

Lemma 1. The number of CM-points on C that are not intersection
points of C with a modular curve is bounded by an effective constant

C6(max{δ1, δ2}, [K : Q]) > 0.

For its proof, we follow closely the argument in [1, Section 2], which uses
class field theory and has no counterpart in the first part of this article [13].
Indeed, a slight variation of the argument gives a completely effective version
of [1]. This comes quite unanticipated, since André’s proof has been generally
considered ineffective (cf. [23]), which provided also a strong motivation
for [13]. However, Lemma 1 confutes these claims.

To deduce Corollary 2 from Theorem 3 we use the effective lower bounds
on class numbers due to Goldfeld [8] and Gross–Zagier [9]. It is not clear
whether Theorem 3 and its Corollary 2 can be also deduced by means of
Pila’s techniques from [15] in combination with the Siegel–Tatuzawa theo-
rem (the use of this theorem was actually suggested by a referee of Pila’s
article [16, Aside 11.3]). However, effective results depend on the effectivity
of the underlying Pila–Wilkie counting technique [17] for some o-minimal
structure, which is denoted by Rj in [16]. This is a widely open question,
for comments on which we refer the reader again to [16, Aside 11.3].

Using Lemma 1 we can also give a uniform version of André–Oort for
some curves.
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Theorem 4. For all positive integers δ and D there exists an effectively
computable constant C7(δ,D) > 0 such that the following assertion is true:
Let C ⊂ A2(C) be a non-special curve of bidegree (δ1, δ2), defined over a
number field K and with Zariski closure C∪{(∞,∞)} in (P1×P1)(C). Then
there exist at most C7(max{δ1, δ2}, [K : Q]) CM-points on C.

We remark that Theorem 4 can be used, in theory, to compute all pairs
of singular moduli that satisfy any non-trivial Q-linear relation. In prac-
tice, C7(δ,D) can be computable with a reasonable amount of computation.
However, in order to compute the corresponding list of CM-points one needs
the weak lower bounds on class numbers of Gross–Zagier (1.5), which makes
computations impractical. In contrast, Theorem 1 is more apt for computing
CM-points on any given non-special curve. Therefore, Theorems 1 and 4 are
complementary in some sense. Finally, as a demonstration of the techniques
used in [13, proof of Theorem 1] we conclude this article with an explicit
result, which seems to be new in the literature.

Theorem 5. There exist no singular moduli j(τ1), j(τ2) such that
j(τ1) + j(τ2) = 1.

This theorem was also proven by David Masser and Umberto Zannier in
an unpublished preprint [2] sent to the author. In fact, they proved the same
for j(τ1)j(τ2) = 1 and also obtained a result similar to our Theorem 1 with
help from Yuri Bilu (1). We refer to [13, footnote on p. 652] for a more precise
description of their achievements. We also know of a related (unpublished)
result obtained by Philipp Habegger: Only finitely many units in rings of
algebraic integers appear as singular moduli.

Notation. Throughout this article, we adopt the following conventions
on constants: By c1, c2, . . . we denote effectively computable constants that
might depend on some ε > 0, if indicated so, but are completely independent
of any other data. In addition, C1(. . .), C2(. . .), . . . are constants that depend
also effectively on some data of a given curve C ⊂ A2(C). In fact, they
always depend on its bidegree and the degree of its field of definition. Non-
effective constants carry an additional upper prime to distinguish them from
effective constants. When non-effective and effective statements parallel each
other, as do Theorems 2 and 3, we use the same indices for a non-effective
constant c′i (resp. C ′i) and its effective counterpart ci (resp. Ci). Elsewise, for
each index i we use either ci or c′i (resp. Ci or C ′i). In general, all constants
are positive and do not depend on any ε > 0 unless explicitly mentioned
otherwise.

(1) These results have meanwhile appeared as [3].
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2. Preliminaries. In this section, we give certain definitions and results
additional to those in [13, Section 2].

2.1. Heights. Let K denote an arbitrary number field. For any K-linear
subspace V ⊂ Kl of dimension r, its rth exterior product

∧
r V canonically

defines a line in
∧
r Kl. We may identify

∧
r Kl with Km, m = l!/(l − r)!,

by use of standard bases. With respect to this identification, the exterior
product

∧
r V defines a point [

∧
r V ] ∈ Pm(K) whose projective logarithmic

height is called the Schmidt height h(V ) of V (cf. [19]). In Lemma 2 below,
we use a variation h2(·) of the height h(·) from [13] given by

h2(p) =
∑
ν-∞

[Kν : Qν ]

[K : Q]
log max{|p0|ν , |p1|ν , . . . , |pn|ν}

+
1

2

∑
ν|∞

[Kν : Qν ]

[K : Q]
log(|p0|2ν + |p1|2ν + · · ·+ |pn|2ν)

for a point p = (p0 : p1 : · · · : pn) in Pn(K). This expression depends neither
on the choice of K nor on the representative (p0, p1, . . . , pn) of p. The height
h2(·) is a modification of h(·) that arises from replacing the ∞-norm with
the 2-norm at archimedean places. It is easy to see that

(2.1) h(p) ≤ h2(p) ≤ h(p) + 1
2 log(n+ 1).

This implies moreover that h2(p) = 0 if and only if p = (p0 : p1 : · · · : pn)
has a single non-zero entry. We also define a height h2(·) of affine points,
polynomials and vector spaces, substituting h2(·) for h(·) at all its occur-
rences in [13, Section 2] and in the above. We use h2(·) because it comports
well with Hadamard’s inequality (see [18, Lemma 4.7]).

2.2. Complex elliptic curves and class field theory. In order to
describe the arithmetic properties of singular moduli we have to recall first
some facts from elementary algebraic number theory. For every imaginary
quadratic field K there exists a unique square-free integer n < 0 such that
K = Q(

√
n). The discriminant d of the maximal order OK of K is n if n ≡ 1

(mod 4) and 4n if n ≡ 2, 3 (mod 4). The numbers arising as discriminants of
imaginary quadratic fields are called fundamental discriminants. For every
order O of K we define its conductor by

f = {n ∈ Z | nOK ⊆ O}.
Then, f = (f) is an ideal in Z such that O = Z+ fOK and the discriminant
of O equals f2d. This implies that there exists only one imaginary quadratic
order of a given discriminant.

For a CM-elliptic curve C/(Z+Zτ) with endomorphism ring O, the field
Q(
√
d)(j(τ)) coincides with the ring class field RCF(O) of O by Weber’s
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theorem (see [6, Chapter 11]). The extension RCF(OK)/K has degree hd,
where hd is the class number of K and is the largest unramified abelian
extension of K. The field RCF(OK) is called the Hilbert class field of K. In
general, the extension RCF(O)/K is of degree ([6, Theorem 7.24])

(2.2) hf2d =
hdf

[O×K : O×]

∏
p|f

(
1−

(
d

p

)
p−1
)
.

An important intermediate field of the extension RCF(O)/K is the genus
field GF(O). It is defined as the largest subfield of RCF(O) that is abelian
over Q. Via class field theory, GF(O) corresponds to the principal genus
in the class group of O. Therefore, the degree [RCF(O) : GF(O)] equals
the index gf2d of the principal genus in the class group of O. By analogy
with the ordinary class number hf2d the index gf2d is commonly called the
genus class number of O. The structure of the field GF(O) is well-known in
the classical case f = 1 (see [6, Theorem 6.1]) and for general f a similar
description is given by Halter-Koch in [10]. We briefly recall [10, Theorem 2].
Write

d = 2sp1 . . . pkq1 . . . ql and f = 2tpa11 . . . pakk r
b1
1 . . . rbmm ,

where pi (i ∈ {1, . . . , k}), qi (i ∈ {1, . . . , l}), ri (i ∈ {1, . . . ,m}) denote
k+l+m distinct primes 6= 2, s, t non-negative integers, and ai (i∈{1, . . . , k}),
bi (i ∈ {1, . . . ,m}) positive integers. For any prime p > 2 we set p∗ =

(−1)(p−1)/2p and define

L = Q(
√
p∗1, . . . ,

√
p∗k,
√
q∗1, . . . ,

√
q∗l ,
√
r∗1, . . . ,

√
r∗m).

With this notation we have

GF(O) =



L if s = 0 and t ≤ 1,

L(
√
−1) if (s = 0 and t = 2) or (s = 2 and t ≤ 1),

L(
√

2) if s = 3, t = 0 and d/23 ≡ 1 (mod 4),

L(
√
−2) if s = 3, t = 0 and d/23 ≡ 3 (mod 4),

L(
√

2,
√
−1) otherwise.

A simple consequence, well-known in the classical case f = 1, is the bound

(2.3) [GF(O) : K] ≤ 2ω(f
2d)+1,

where ω(f2d) is the number of distinct prime divisors of f2d.

Finally, we need a version of the estimate [13, (2.4)], which is valid for
all τ in the standard fundamental domain and not only for those satisfying
Im(τ) ≥ 1. If Im(τ) ≥

√
3/2, then we infer from [13, (2.4)] and

j(i
√

3/2) = (1417905000− 818626500
√

3) < 2310
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that |j(τ)| is bounded by

(2.4) max{j(i
√

3/2), 1193 + exp(2π Im(τ))} < 2310 + exp(2π Im(τ)).

3. Points of small height on affine curves. The lemma in this sec-
tion specifies the fact that for any ε > 0 and any algebraic curve C there exist
only few points satisfying (1.3). It does so by providing a uniform effective
bound on their number.

Lemma 2. Let C be a geometrically irreducible algebraic curve in A2(C)
of bidegree (δ1, δ2) and set δ∗ = 2δ1δ2 +1. Then there exist at most δ2∗ points
x on C such that

(3.1) h2(x) <
1

(δ1 + δ2)(δ∗ − 1)
h2(C).

In what follows, especially in the proof below, the points on C satisfying
(3.1) are called points of small height. We frequently leave out the reference
to a curve C (and hence to the degrees δ1 and δ2) since no confusion is
possible here.

Proof of Lemma 2. Choose a defining polynomial P ∈ Q[X1, X2] of C
such that h2(P ) = h2(C) and P has bidegree (δ1, δ2). In order to derive a
contradiction, we may assume given a set S = {x1, . . . , xδ2∗+1} of δ2∗+1 points

of small height on C. The Q-span of all monomials Xi
1X

j
2 , 0 ≤ i ≤ δ1, 0 ≤

j ≤ δ2, is isomorphic to Qδ∗
as a vector space. For what follows, we choose

the isomorphism that associates Xi
1X

j
2 with the kth column vector ek, k =

i(δ2+1)+j+1, of the standard basis in Qδ∗
. This isomorphism is compatible

with the polynomial height h2(·) and the projective height h2(·) on Qδ∗
.

The subspace V of Qδ∗
corresponding to polynomials vanishing at S has

Q-dimension 1 by Bézout’s theorem for P1×P1 (cf. [20, Example IV.2.1.2]).

It is the kernel of multiplication by a matrix A ∈ Q(δ2∗+1)·δ∗
such that the

entry of A in the kth column and lth row is the evaluation of Xi
1X

j
2 , where

k = i(δ2 + 1) + j + 1, 0 ≤ i ≤ δ1, and 0 ≤ j ≤ δ2, at x l. By elementary
linear algebra, there exists a (δ∗ − 1)× δ∗-minor A′ of A such that V is the
kernel of multiplication by A′ and A′ has maximal rank δ∗−1. Relabeling if
necessary, we assume that the lth row a l of A′ is associated with x l, i.e. its

entries are the evaluations of monomials Xi
1X

j
2 , 0 ≤ i ≤ δ1, 0 ≤ j ≤ δ2,

at x l. Now, the transposed rows atl, 1 ≤ l ≤ δ∗− 1, of A′ form a basis of the

orthogonal complement V ⊥ ⊆ Qδ∗
of V with respect to the standard scalar

product on Qδ∗
. A rough estimation shows that h2(a

t
l) ≤ (δ1 + δ2)h2(xl).

Thus, by [18, Lemma 4.7] we have

h2(V
⊥) ≤ h2(at1)+· · ·+h2(atδ∗−1) ≤ (δ1+δ2)(δ∗−1) max

1≤i≤δ∗−1
h2(x i) < h2(C).
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Now, formula (4) of [19, p. 433] states that h2(V ) = h2(V
⊥). Since V is

one-dimensional there exists a non-zero polynomial Q ∈ V of height h2(V
⊥)

by the very definition of the Schmidt height. Finally, P and Q are Q-collinear
and hence

h2(C) = h2(P ) = h2(Q) < h2(C).
This contradiction implies the lemma.

4. Bounding the height of singular moduli. In the following sec-
tions, we need to bound the height of a singular modulus in terms of its
discriminant and class number. Lemma 3 in combination with Lemma 5
suffices for this purpose. All claims in this section are well-known and we
give proofs just because appropriate references seem rare to us.

Lemma 3. For every ε > 0 there exists an absolute constant c3(ε) > 0
having the following property: Let j(τ) be a singular modulus associated with
a CM-elliptic curve whose endomorphism ring is an imaginary quadratic
order of discriminant ∆τ = f2τ dτ and class number h∆τ . Then the height
h(j(τ)) is bounded from above by

c3(ε)|∆τ |1/2h−1+ε∆τ
.

Proof. For readability, we write ∆, f , d instead of ∆τ , fτ , dτ . We denote
by T∆ the set of all triples (a, b, c) of integers such that gcd(a, b, c) = 1,
∆ = b2 − 4ac and either −a < b ≤ a < c or 0 ≤ b ≤ a = c. Recall that j(τ)
is an algebraic integer and that its h∆ = [Q(j(τ)) : Q] Galois conjugates are

j

(
−b+ i

√
4ac− b2

2a

)
, (a, b, c) ∈ T∆.

In particular, note that |T∆| = h∆. This implies

h(j(τ)) =
1

h∆

∑
(a,b,c)∈T∆

log max

{
1,

∣∣∣∣j(−b+ i
√
|∆|

2a

)∣∣∣∣}.
From (2.4) we deduce

h(j(τ)) ≤ c7|∆|1/2

h∆

∑
(a,b,c)∈T∆

a−1

for some constant c7 > 0. Denote by T∆(a) the set of triples in T∆ having a
as first component. In addition, for positive integers m,n we define

T ∗m(n) = {b (mod n) | m ≡ −b2 (mod n)} ⊆ Z/nZ.
Since |b| ≤ a the map sending (a, b, c) ∈ T∆(a) to b (mod 4a) ∈ T ∗|∆|(4a) is

injective. From Lemma 4 below it follows that there exist at most

c8(ε) gcd(4a, f)(4a)ε/4
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elements in T ∗|∆|(4a). Thus,

h(j(τ)) ≤ c9(ε)h−1∆ |∆|
1/2
∑
a

min{gcd(a, f)aε/4, |T∆(a)|}a−1

for some c9(ε) > 0. Setting t = gcd(a, f), a = ta0 and rearranging terms we
obtain

h(j(τ)) ≤ c9(ε)h−1∆ |∆|
1/2
∑
t|f

∑
a0

(a0,f)=1

min{tε/4aε/40 , |T∆(ta0)|}a−10

≤ c9(ε)h−1∆ |∆|
1/2
∑
t|f

tε/4
( ∑

a0
|T∆(ta0)|6=0

a
−1+ε/4
0

)
.

The inner sum is bounded by
∑h∆

a0=1 a
−1+ε/4
0 ≤

	h∆
1 x−1+ε/4 dx+1. Together

with [11, Theorem 315] this yields a constant c10(ε) > 0 such that

h(j(τ)) ≤ c10(ε)|∆|1/2f ε/2h−1+ε/4∆ .

From (2.2) we deduce f2/3 ≤ f2/3hd ≤ c11h∆ for an absolute constant

c11 > 0. Hence, f ε/2 ≤ c3ε/411 h
3ε/4
∆ and

h(j(τ)) ≤ c3(ε)|∆|1/2h−1+ε∆ .

Lemma 4. The set T ∗|∆|(n), where ∆ = f2d is a negative discriminant,

contains at most c8(ε) gcd(n, f)nε elements.

Proof. We first bound the cardinality of T ∗m(n) for a general non-zero
integer m coprime to n, which means m (mod n) ∈ (Z/nZ)×. Write n as a
product 2a0pa11 . . . parr of prime factors. We assume ai > 0 for all 1 ≤ i ≤ r.
By the Chinese remainder theorem

(Z/nZ)× = (Z/2a0Z)× ×
∏r

i=1
(Z/paii Z)×.

Hence, every solution b (mod n) of m ≡ −b2 (mod n) corresponds uniquely
to a tuple

(b0 (mod 2a0), b1 (mod pa11 ), . . . , br (mod parr ))

solving the following tuple of equations:

(m ≡ −b20 (mod 2a0),m ≡ −b21 (mod pa11 ), . . . ,m ≡ −b2r (mod parr )).

Now, [5, Proposition 2.1.24] states that (Z/2Z)× = 1 and (Z/2nZ)× =
(Z/2n−2Z) × (Z/2Z) for n ≥ 2. The latter group is a product of two
cyclic groups of even order. Thus, the number of solutions b0 (mod 2a0) of
m≡−b20 (mod 2a0) is at most 4. Similarly, from (Z/paii Z)×=Z/pai−1i (pi−1)Z
it follows that the equation m ≡ −b2i (mod paii ) has exactly

(
1 +

(−m
pi

))
so-

lutions bi (mod paii ), where
(−m
pi

)
is the Legendre symbol. In conclusion, the
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cardinality of T ∗m(n) is bounded from above by

4
∏
p|n
p 6=2

(
1 +

(
−m
p

))
≤ c12(ε)nε.

Assume now gcd(n, |∆|) = 2c0pc11 . . . pcss , where ci > 0 for all 1 ≤ i ≤ s.
Write |∆| = 2c0pc11 . . . pcss m and n = 2c0pc11 . . . pcss n0. We define a map

ϕ : T ∗|∆|(n)→ T ∗m̃(n0),

where m̃ is some integer such that (m̃, n0) = 1. Let b (mod n) be a solution

of ∆ ≡ −b2 (mod n). Then b ∈ 2dc0/2ep
dc1/2e
1 . . . p

dcs/2e
s Z/nZ, which means

that b can be written as b = 2dc0/2ep
dc1/2e
1 . . . p

dcs/2e
s b0 (mod n) for some b0

(mod n). Furthermore, |∆| ≡ −b2 (mod n) is equivalent to

2c0pc11 . . . pcss m ≡ −22dc0/2ep
2dc1/2e
1 . . . p2dcs/2es b20 (mod 2c0pc11 . . . pcss n0).

Cancelling 2c0pc11 . . . pcss , we infer from this

m ≡ −2c
∗
0p
c∗1
1 . . . pc

∗
s
s b

2
0 (mod n0),

where c∗i is 0 or 1 if ci is even or odd, respectively. If 2c
∗
0p
c∗1
1 . . . p

c∗s
s is not a unit

in Z/n0Z then this equation is unsolvable because (n0,m) = 1. In this case,
T ∗|∆|(n) must be empty and there is nothing left to define or to prove. Thus,

we may assume that there exists some k ∈ Z such that k · 2c∗0pc
∗
1
1 . . . p

c∗s
s ≡ 1

(mod n0). Setting m̃ = km, we obtain

m̃ ≡ −b20 (mod n0).

Therefore, b0 (mod n0) is an element of T ∗m̃(n0). We set ϕ(b) = b0 (mod n0).

It is easy to see that ϕ is well-defined and maps at most 2bc0/2cp
bc1/2c
1 . . .

. . . p
bcs/2c
s elements of T ∗|∆|(n) to each b0 (mod n0) ∈ T ∗m̃(n0). In conclusion,

|T ∗|∆|(n)| ≤ 2bc0/2cp
bc1/2c
1 . . . pbcs/2cs |T ∗m̃(n0)|.

Since ∆ = f2d and d is square-free except for a possible square factor of 4,

2bc0/2cp
bc1/2c
1 . . . pbcs/2cs ≤ 2 gcd(n, f).

By using (m̃, n0) = 1 we infer from our result above that

|T ∗|∆|(n)| ≤ c8(ε) gcd(n, f)nε.

The following lemma gives us a good lower bound on the class number
in most cases.

Lemma 5. There exists an effective constant c4(ε) > 0 and at most one
fundamental discriminant d∗ < 0 such that h∆ ≥ c4(ε)|∆|1/2−ε for every
discriminant ∆ = df2 with d 6= d∗.
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Proof. According to [22, Theorem 3] (see also [12, Theorem 22.8]), there
is an effectively computable constant c13(ε) > 0 such that

c13(ε)|d|1/2−ε < hd

for all but one fundamental discriminant d∗ < 0. Furthermore, we deduce
from (2.2) that

c14(ε)f
1−2εhd ≤ h∆

for some constant c14(ε) > 0. These two estimates readily imply the lemma.

For the non-effective Theorem 2, we use Siegel’s theorem as given above
in (1.4). Note that the bound (1.4) is a simple consequence of Lemma 5
since presuming knowledge about d∗ (and hence about hd∗) the constant
c4(ε) can be easily altered into some (non-effective) constant c′4(ε) such that
the bound (1.4) is valid in general.

Lemma 6. Let ε > 0. Denote by g∆ the genus class number of the imag-
inary quadratic order O of discriminant ∆. Then there exists an effective
constant c15(ε) > 0 such that for all discriminants ∆ = df2, where d 6= d∗,
the bound g∆ ≥ c15(ε)|∆|1/2−ε holds.

Proof. Recall that [GF(O) : Q(
√
d)] ≤ 2ω(∆)+1 by (2.3). By [11, Theo-

rem 315] there exists a constant c16(ε) > 0 such that 2ω(∆)+1 ≤ c16(ε)|∆|ε.
We deduce

g∆ =
[RCF(O) : Q(

√
d)]

[GF(O) : Q(
√
d)]
≥ h∆

2ω(∆)+1
≥ c16(ε/2)−1h∆|∆|−ε/2.

From Lemma 5 above we infer

g∆ ≥ c4(ε/2)c16(ε/2)−1|∆|1/2−ε.

5. Proof of Theorem 2 and Corollary 1. We set δ = max{δ1, δ2},
D = [K : Q] and (again) δ∗ = 2δ1δ2 + 1 for readability. Choose some
real number ε satisfying 0 < ε < 1/10. Bézout’s theorem implies that the
number of CM-points which are intersections with modular curves V(Φm),
1 ≤ m ≤ 4δ5, is bounded from above by some constant C8(δ). Hence, it
remains to bound the number of CM-points on C for which the bound (1.1)
of Theorem 1 is satisfied. Let x = (x1, x2) be such a CM-point of discrim-
inant (∆1, ∆2). Lemma 3 together with Siegel’s theorem (1.4) implies that
max{h(x1), h(x2)} is bounded from above by

c3(ε/2)|∆i|1/2h−1+ε/2∆i
≤ c3(ε/2)c′4(ε/2)|∆i|ε/2hε/2∆i

≤ c3(ε/2)c′4(ε/2)|∆i|ε.

Combining this with (1.1) we obtain

h(x) ≤ max{h(x1), h(x2)} ≤ C ′9(ε, δ,D) max{1, h(C)}9ε,
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where C ′9(ε, δ,D) = c3(ε/2)c′4(ε/2)C1(ε, δ,D)ε is a positive constant. In or-
der to apply Lemma 2 we change from h(·) to h2(·) using (2.1). This yields

h2(x) ≤ C ′10(ε, δ,D) max{1, h2(C)}9ε,
where C ′10(ε, δ,D) = C ′9(ε, δ,D) + 1

2 log 3.
We now distinguish two cases: If

(5.1) C ′11(ε, δ,D) = max{1, (δ1 + δ2)(δ∗ − 1)C ′10(ε, δ,D)}1/(1−9ε) < h2(C),
then x is a point of small height on C, i.e. it satisfies (3.1). By Lemma 2
the number of points of small height on C is bounded by δ2∗ . This proves
Theorem 2 in case (5.1) holds. If it does not, i.e. C ′11(ε, δ,D) ≥ h2(C), then
a direct application of Theorem 1 yields

max{|∆1|, |∆2|} < C1(ε, δ,D) max{1, C ′9(ε, δ,D)}8+ε = C ′12(ε, δ,D).

Now, the observation that there exist only finitely many CM-points of
bounded discriminant completes the proof of Theorem 2. Its Corollary 3
follows from the fact that the Galois orbit of a CM-point of discriminant
(∆1, ∆2) intersects C in at least [K : Q]−1 max{h∆1 , h∆2} CM-points of the
same discriminant, and from Siegel’s theorem (1.4).

6. Proof of Theorem 3 and Corollary 2. Choose again a real number
ε with 0 < ε < 1/10. The proof imitates Section 5: By Bézout’s theorem
we know that the number of CM-points on the intersections of C with the
modular curves V(Φm), 1 ≤ m ≤ 4δ5, is bounded from above by C8(δ) > 0.
For any CM-point x on C of discriminant (d1f

2
1 , d2f

2
2 ) such that d1 6= d∗

and d2 6= d∗, Lemma 3 together with Lemma 5 implies the upper bound
c3(ε/2)c4(ε/2)|∆1|ε on max{h(x1), h(x2)}. As in Section 5 we see that the
number of such CM-points is bounded from above. Furthermore, since c4(ε)
is effectively computable, their number can be also effectively bounded. To
finish the proof, we have to bound effectively the number of CM-points on C
of discriminant (d∗f

2
1 , df

2
2 ) or (df21 , d∗f

2
2 ) for some fundamental discriminant

d 6= d∗. For this, we use Lemma 1, whose proof we give now.

Proof of Lemma 1. Let x be a CM-point of discriminant

(∆1, ∆2) = (d1f
2
1 , d2f

2
2 ), d1 6= d2,

on C. Furthermore, assume that d2 6= d∗. The argument in the second section
(“Première réduction, via la théorie du corps de classes”) of [1] shows that
max{g∆1 , g∆2} ≤ δD (2). Furthermore, this implies c13(ε)|∆2|1/2−ε ≤ δD by
Lemma 6 and hence |∆2| < C13(ε, δ,D) for some constant C13(ε, δ,D) > 0.
For every discriminant ∆2 < 0 there exist at most δ1h∆2 CM-points on C

(2) Proofs of the same conclusion, slightly more accessible than that in [1], can be
found in [7, Proposition 3.1] and [23, Section IV.3].
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whose discriminant is of the form (d∗f
2
1 , ∆2). Hence, the number of CM-

points on C having discriminant (d1f
2
1 , d2f

2
2 ), d1 6= d2, d2 6= d∗, is bounded

from above by the sum δ1
∑

∆ h∆, where ∆ ranges through all discriminants
of imaginary quadratic orders of absolute value up to C13(ε, δ,D). In the
same way, we bound the number of CM-points on C having discriminant
(d1f

2
1 , d2f

2
2 ), where d1 6= d2 and d1 6= d∗.

This completes the proof of Theorem 3. Its Corollary 2 can be inferred
like Corollary 1 by using the effective lower bound on h∆ from Gross–
Zagier’s (1.5) instead of Siegel’s theorem (1.4).

7. Proof of Theorem 4. Using Lemma 1, we can restrict to find
an effective bound on the number of CM-points having some discriminant
(∆1, ∆2) = (f21d, f

2
2d). Let x = (x1, x2) ∈ C be such a CM-point. Under the

assumption on C, we can modify [13, Proposition 3] to obtain

Proposition 1. There exist constants C14(δ,D), C15(δ,D) > 0 such
that the following is true: If x ∈ C is a CM-point of discriminant (∆1, ∆2) =
(f21d, f

2
2d) then

(7.1) max{|∆1|, |∆2|} ≤ C14(δ,D) max{1, h(C)}2,
or there exists some 1 ≤ m ≤ C15(δ,D) for which x ∈ V(Φm).

Proof. We concentrate on the parts of the proof of [13, Proposition 3]
that have to be modified. In particular, we make free use of the results from
there. From now on assume |∆1| = max{|∆1|, |∆2|}. We may and do also
assume

x1 = j

(
∆1 + if1

√
|d|

2

)
and x2 = j

(
−b+ if2

√
|d|

2a

)
with integers a, b, c such that |∆2| = 4ac− b2, (a, b, c) = 1 and either −a <
b ≤ a < c or 0 ≤ b ≤ a = c. Since (∞,∞) is the only point of C at infinity,

[13, Lemma 2] states now that |x1| > (δ + 1)4H4D implies |x2| > |x1|(2δ)
−1

for all x ∈ C. Indeed, by our assumption the polynomial of Q in the proof
of that lemma is constant and hence the second case of the lemma cannot
be realized for the given curve C. Consequently, we only need to deal with
CM-points near (∞,∞), omitting [13, Lemmas 3 and 4] completely.

In summary, there exists a constant C16(δ,D) > 0 such that |∆1| ≥
C16(δ,D) max{1, logH}2 implies |x2| > |x1|(2δ)

−1
. By using both [13, (2.4)]

and inequality (2.4) in the present article we infer that

exp

(
k2f2
a

√
|d|π

)
+ 2310 ≥ exp((2δ)−1k1f1

√
|d|π)− 1193.

Hence, either f21 |d| = |∆1| is absolutely bounded from above by some posi-
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tive constant C17(δ), or

k2f2
a

√
|d|π ≥ k1f1

4δ

√
|d|π,

which implies 1 ≤ a ≤ 4δ(k2/k1)(f2/f1).

Now, the final part of the second section in [1] shows that there exists
a constant C18(δ,D) > 0 bounding the numerator and denominator of f =
f2/f1 from above (3). Write den(f) for the denominator of f . Then,

−b+ if2
√
|d|

2a
=

(
2f den(f) −f1f2 den(f)d− bden(f)

0 2a den(f)

)
∆1 + if1

√
|d|

2
.

Hence, (x1, x2) is on a modular curve V(Φm), where

1 ≤ m ≤ 4af den(f)2 ≤ 16δk2C18(δ,D)4 ≤ C14(δ,D).

We return to the proof of Theorem 4. By Bézout’s theorem, we may
restrict ourselves to bounding the number of CM-points satisfying (7.1).
For this, we use again our Lemma 2. Choose some 0 < ε < 1. Lemma 3
together with Gross–Zagier’s (1.5) implies for a CM-point x = (x1, x2) with
discriminant (∆1, ∆2) that

h(xi) ≤ c3(ε)|∆i|1/2h−1+ε∆i
≤ c3(ε)c5(ε)−1+ε|∆i|1/2(log |∆i|)−(1−ε)

2

for i ∈ {1, 2}. Our argument in Section 5 shows that we may assume

h(C) ≥ 1. Since x1/2(log x)−(1−ε)
2

increases monotonically for x ≥ c16(ε)
we infer by using Proposition 1 that the height h(x) is bounded from above
by

c17(ε)C14(δ,D)1/2h(C)(logC14(δ,D) + 2 log h(C))−(1−ε)2 ,
where c17(ε) is some positive constant. We deduce by use of (2.1) that

h2(x) ≤ C18(δ,D)(logC14(δ,D) + 2 log h2(C))−(1−ε)
2
h2(C) + (log 3)/2

for some constant C18(δ,D) > 0. Thus, x is a point of small height (3.1) if

C18(δ,D)(logC14(δ,D) + 2 log h2(C))−(1−ε)
2

+ (log 3)/(2h2(C))
is less than (δ1+δ2)

−1(δ∗−1)−1. It is easy to see that this condition amounts
to demanding that h2(C) > C19(δ,D) for some effectively computable con-

(3) There are two unimportant errors in the exposition of André [1]: First, he claims
that the composite of the ring class fields associated with the orders of discriminants f2

1 d
and f2

2 d is the ring class associated with the order of discriminant lcm(f1, f2)2d. This is
wrong for d = −3 and d = −4, while it is true for all other fundamental discriminants.
However, it is well known that the latter field is an extension of the former of degree at
most 3. This suffices to complete the proof. Second, one of the formulas contains a typing
error: The product must be taken over all primes p | f , p - f1 instead of over all primes
p | f/f1.
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stant C19(δ,D) > 0. For the same reason as in Section 5 we may do so.
Finally, an application of Lemma 2 concludes the proof.

8. Proof of Theorem 5. Suppose there exist singular moduli j(τ1) and
j(τ2) such that j(τ1) + j(τ2) = 1. Set ∆i = ∆τi for i ∈ {1, 2} and assume
|∆1| ≥ |∆2|. We may also assume that ∆1 6= −3,−4,−7,−8 since otherwise
{j(τ1), j(τ2)} ⊆ {0, 1728, 3375, 8000} (cf. [6, (12.20)]). Therefore, we have
|∆1| ≥ 11 in the following. The discriminant of the imaginary quadratic
order

Z +
∆1 + i

√
|∆1|

2
Z

is ∆1. By the irreducibility of the class equation this implies that there exists
σ ∈ Gal(K/K) such that

j(τ1)
σ = j

(
∆1 + i

√
|∆1|

2

)
.

Furthermore, there exist integers a and b with |b| ≤ a ≤
√
|∆2|/3 such that

j(τ2)
σ = j

(
−b+ i

√
|∆2|

2a

)
,

and therefore

(8.1) j

(
∆1 + i

√
|∆1|

2

)
+j

(
−b+ i

√
|∆2|

2a

)
−1 = j(τ1)

σ+j(τ2)
σ−1 = 0.

Without loss of generality we assume that

τ1 =
∆1 + i

√
|∆1|

2
and τ2 =

−b+ i
√
|∆2|

2a
.

Then Im(τ1) =
√
|∆1|/2 > 1, so [13, (2.4)] in combination with the bound

(2.4) of the present article gives

−1194 + exp(2π Im(τ1)) ≤ |j(τ1)| − 1 ≤ |j(τ2)| ≤ 2310 + exp(2π Im(τ2)),

which implies Im(τ2) > log(−3504 + exp(π
√

11))/(2π) > 1. Thus, we can
apply [13, (2.4)] for τ = τ1 and τ = τ2. This way, we infer from equation (8.1)
that

|exp(−2πiτ1) + exp(−2πiτ2) + 1487| < 898.

Multiplication by |exp(2πiτ1)| yields

|1 + exp(−2πiτ2 + 2πiτ1)| < 2385|exp(2πiτ1)|.

More concretely, this means

(8.2)

|1 + exp(πi(∆1 + b/a)) exp(−π(
√
|∆1| −

√
|∆2|/a))| < 2385 exp(−π

√
|∆1|).
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Now 2385 exp(−π
√
|∆1|) > 1/2 if and only if |∆1| < (log 4770)2/π2 < 8.

So by assumption, the left-hand side of the inequality must be less than
or equal to 1/2. Below, we denote the principal branch of the logarithm
on C \ (−∞, 0] by log. Note that |log(1 + u)| < 2|u| for |u| ≤ 1/2. Set-
ting

u = −1− exp(πi(∆1 + b/a)) exp(−π(
√
|∆1| −

√
|∆2|/a))

we deduce that∣∣log
(
− exp(πi(∆1 + b/a)) exp(−π(

√
|∆1| −

√
|∆2|/a))

)∣∣
is bounded from above by 4470 exp(−π

√
|∆1|). In this inequality, denote

the interior of the absolute value on the left-hand side by Λ.
We want to express Λ as a linear form in logarithms of algebraic numbers

with algebraic coefficients. Note that log(rz) = log r + log z for all positive
reals r, and therefore

Λ = log
(
− exp(πi(∆1 + b/a))

)
− π(

√
|∆1| −

√
|∆2|/a).

Denote the 2ath root of unity − exp(πi(∆1 + b/a)) by ρ in the following.
Inequality (8.2) above shows that ρ 6= −1. Then

Λ = log ρ+ (i
√
|∆1| − i

√
|∆2|/a)(iπ).

In the general case of Theorem 1 we would now apply Baker’s theorem on Λ,
using the fact that exp(iπ) = −1 is algebraic. However, in this particular
case a simpler argument is possible. Indeed, if ρ 6= 1 then

4770 exp(−π
√
|∆1|) > |Im(Λ)| = |Im(log ρ)|

≥ sin

(
π

2a

)
≥ sin

(
π

2
√
|∆1|

)
,

which is impossible for |∆1|≥11. Hence, ρ= 1 and Λ= π(
√
|∆1|−

√
|∆2|/a).

This implies that if a 6= 1 then |Λ| ≥ π
√
|∆1|/2 > 1/2, which is a contra-

diction. Thus a = 1 and Λ = π(
√
|∆1| −

√
|∆2|). If ∆1 6= ∆2 then√

|∆1| −
√
|∆1| − 1 < |Λ| < 2385 exp(−π

√
|∆1|),

which implies |∆1| < 11. We infer ∆1 = ∆2, which gives a contradiction to
(8.1) itself.
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