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The number of S4-fields with given discriminant
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1. Introduction. For a number field k we denote by dk ∈ N the absolute
value of the field discriminant of k. The class group will be denoted by Clk
and the p-rank rkp(A) of an abelian group A is defined to be the minimal
number of generators of A/Ap. We denote by N the absolute norm. The
symbol Oε denotes the usual Landau symbol O, where the implied constant
is depending on ε.

In this note we answer a question of Akshay Venkatesh about the number
of S4-extensions of degree 4 with given discriminant d. It is conjectured that
this number is Oε(d

ε) for all ε > 0. On average we have the stronger result
(see [Bha02, Bel04])

lim
x→∞

1

x

∑

K:dK≤x

1 = c(S4),

where K runs through all quartic S4-extensions and c(S4) > 0 is explicitly

given. We prove the bound Oε(d
1/2+ε) for all ε > 0, which improves the

bound Oε(d
4/5+ε) given in [MV02].

As an application we give an upper bound for the dimension of the space
of octahedral forms of weight 1 and given conductor N . In the general case
the best known bound is Oε(N

4/5+ε) for all ε > 0, given in [MV02]. For

squarefree conductors this bound is improved to Oε(N
2/3+ε) on average. In

this note we are able to prove the upper bound Oε(N
1/2+ε) in many cases,

e.g. when N is prime or a square.
The discrepancy between the expected bound Oε(d

ε) and the proven
bound Oε(d

1/2+ε) for the number of S4-extensions of discriminant d comes
from the fact that we can only use weak bounds for the 3-rank of the class
group of quadratic fields and the 2-rank of the class group of non-cyclic
cubic fields.

In order to understand the problems which arise we give the follow-
ing easy example. Let us count the number of cubic S3-extensions M/Q of
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discriminant d such that the normal closure contains a given quadratic ex-
tension k. Since every unramified cyclic cubic extension N/k corresponds to
a cubic extension M we see that the number of elements h3 of order 3 in the
class group Clk plays an important role. In the general case we can only use
the estimate h3 ≤ #Clk and the latter can be bounded by O(d1/2 log(d))
using Lemma 2 below. It is very difficult to improve this trivial bound for
elements of order p in the class group when p > 3. Just recently for p = 3
Helfgott and Venkatesh [HV04] (λ = 0.44179) and independently Pierce
[Pie05] (λ = 0.49108 or λ = 0.41667 in special cases) proved that for all
ε > 0 we get

3rk3(Clk) = Oε(d
λ+ε
k ).

Using this improved bound it is straightforward to get the upper bound
Oε(d

λ+ε) for the number of cubic S3-extensions.
In the following we would like to explain the idea of the proof of our main

result. We will improve the following elementary approach given in [Duk95,
p. 101]. In the worst case we cannot exclude the possibility that there exists

a quadratic field k/Q such that 3rk3(Clk) = O(d
1/2
k log(dk)). Using these

unramified C3-extensions of k there are 3rk3(Clk)−1
3−1 non-cyclic cubic fields M

of the same discriminant. In the worst case all these extensions have a large
2-rank, i.e.

2rk2(ClM ) = O(d
1/2
M log(dM )2).

Every unramified C2-extension leads to an S4-extension K of degree 4 of the
same discriminant dK = dk = dM . Using this idea we get the upper bound
O(dK log(dK)3) for the number of S4-extensions of discriminant dK .

As we see from the above example, there is a problem for our upper
estimates when rk2(ClM ) and rk3(Clk) are large. We will use Theorem 1
below, proved by Frank Gerth III, which says that rk3(ClM ) has about the
same size as rk3(Clk). This means that rk3(ClM ) is large when rk3(Clk) is
large. This in turn implies that rk2(ClM ) must be small.

For instance, consider the special case that d is squarefree, i.e. the cor-
responding S3-extension L is unramified over k. Then the first part of The-
orem 1 and the above-explained elementary approach already proves our
desired result, i.e. the number of S4-extensions of discriminant d is bounded
by O(d1/2+ε).

2. Parameterizing S4-extensions. Let K/Q be a quartic field such
that the normal closure N has Galois group S4. Then there is a unique
normal subfield L of degree 6 with Galois group S3. We denote by M a
subfield of L of degree 3 and by k the unique subfield of degree 2 of L
(or N):
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For n ∈ N we define

Rad(n) :=
∏

p|n

p,

where the product is only taken over primes. To each K/Q as above we
associate a triple

(a, b, c) = (Rad(dk), Rad(N (dL/k)), Rad(N (dN/L))) ∈ N3

of squarefree numbers. We define

(1) Ψ : K → N3, K 7→ (a, b, c),

where K is the set of quartic S4-extensions of Q up to isomorphism. Ψ is a
well defined mapping with bounded fibres. In the rest of this section we want
to give upper bounds for the size of the fibres, i.e. to give an upper bound
for the number of fields K which are associated to a given triple (a, b, c).

Assuming this situation k is one of the following quadratic fields. If 2 ∤ a
we get k = Q(

√±a) where the sign is positive if a ≡ 1 mod 4. If 2 | a then k

is one of the following three fields: Q(
√

a), Q(
√−a), and Q(

√
±a/2), where

the sign is positive when a/2 ≡ 3 mod 4. Therefore at most 3 quadratic
fields are associated to a given a. The number of b’s for a given field k can
be easily bounded by the following lemma; we denote by ω(b) the number
of prime factors of b.

Lemma 1. Let b ∈ N as above. Then all fields M (up to isomorphism)
such that L/K is only ramified at primes dividing b are contained in the ray

class field of a := 3bOk. The number of those extensions can be bounded by

3r − 1

3 − 1
, where r = rk3(Clk) + ω(b) + 2.

Proof. We are looking for all fields which are at most ramified at primes
dividing b. We need to choose a in such a way that all these fields are
subfields of the ray class field of a. For primes p not dividing 3 it is sufficient
that p | a. For the wildly ramified primes there exists a maximal exponent
such that all these fields occur as subfields [Ser95, p. 58] of the ray class
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field of a. Using elementary properties of the ray class group Cla we get

rk3(Cla) ≤ rk3(Clk) + rk3((Ok/a)∗).

For all prime ideals p not dividing 3 we find that the 3-rank of (Ok/p)∗ is at
most 1, which shows that rk3(Ok/pOk) ≤ 2. Equality can only occur in the
case p ≡ 1 mod 3, where p ∈ P ∩ p. In this case there exists a C3-extension
of Q only ramified at p. Denote by A the 3-part of the ray class group Cla.
We can write A := A+ ⊕ A−, where the classes in A+ are invariant under
Gal(k/Q). Because a prime p ≡ 1 mod 3 increases the 3-rank of A+ by
one, we see that all odd primes increase the 3-rank of A− by at most one.
The theory used in [FK03, Section 6] shows that S3-extensions correspond
to quotients of index 3 of A−. Finally, we need to estimate the 3-rank for
(Ok/pw)∗ for primes dividing 3. In [HPP03] it is proved that the p-rank of
(Ok/pw)∗ is at most [kp : Qp] + 1. In all cases it is sufficient to add 2 since
there is one C3-extension of Q only ramified at 3.

We use the trivial class group bound which can be found in [Nar90,
Theorem 4.4].

Lemma 2. For all n ∈ N there exists a constant c(n) such that for all

number fields F of degree n we have

|ClF | ≤ c(n)d
1/2
F log(dF )n−1.

Trivially, we have 3rk3(Clk) ≤ |Clk|. For a given cubic S3-field M we prove
a lemma similar to Lemma 1.

Lemma 3. Let c ∈ N be as above. Then the number of S4-extensions

N which contain a given S3-field M such that N (dN/L) is only divisible by

primes dividing c is bounded by

2r − 1, where r = rk2(ClM ) + 3ω(c) + 6.

Proof. In [Bai80, Lemmata 4, 5] it is proven that the Galois closure of
M(

√
α) for α ∈ M has Galois group S4 if and only if N (α) is a square. If

N (α) is a square this certainly implies that the norm of the principal ideal
(α) is a square. Therefore we get an upper bound if we count all extensions
such that the conductor is a square. For a prime p 6= 3 we have at most three
possibilities to produce squarefree ideals of norm p2. The 6 is computed in
a similar way to Lemma 1 and gives an upper bound for the contribution of
primes above 3.

Altogether we get the following upper bound for the number of S4-fields
associated to a given triple (a, b, c):

(2) 3 · 3r1 − 1

3 − 1
(2r2 − 1) ≤ 3

2
· 9 · 263rk3(Clk)2rk3(ClM )3ω(b)8ω(c),

where r1 = rk3(Clk) + ω(b) + 2 and r2 = rk3(ClM ) + 3ω(c) + 6.
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The following theorem relates the 3-parts of the class groups of k and M .

Theorem 1 (Gerth III). Let M/Q be a non-cyclic cubic extension and

denote by L the normal closure of M and by k the unique quadratic subfield

of L. Then:

(i) If L/k is unramified , then rk3(ClM ) = rk3(Clk) − 1.
(ii) rk3(ClM ) = rk3(Clk) + t − 1 − z − y, where y ≤ t − 1 and t is the

number of prime ideals of Ok which ramify in L. Furthermore we

have 0 ≤ z ≤ u where u is the number of primes which are totally

ramified in M but split in k.

(iii) rk3(ClM ) ≥ rk3(Clk) − u.

Proof. The first part is Theorem 3.4 in [Ger76]. The second part is The-
orem 3.5 in that paper. The last part is an immediate consequence.

Since we are only interested in the asymptotic behaviour we can ignore
ramification at 2 and 3. Therefore we define S := {2, 3} and aS to be the
largest number dividing a which is coprime to S. Using this we easily see
that dS

M = aS(bS)2, where M is one of the cubic extensions constructed

above. Using Theorem 1 we get the following estimate for 3rk3(Clk)2rk3(ClM ).

Lemma 4. Let M, k be the fields defined before. Then there exists a con-

stant C > 0 such that

3rk3(Clk)2rk2(ClM ) ≤ Ca1/2b log(ab2)23ω(b).

Proof. Theorem 1 shows rk3(ClM ) ≥ rk3(Clk) − ω(b). Therefore we get

3rk3(Clk)2rk2(ClM ) ≤ 3rk3(ClM )3ω(b)2rk2(ClM ) ≤ 3ω(b)|ClM |.
Using Lemma 2 and the fact that dS

M = (ab2)S differs from dM by a quantity
which can be bounded by a constant we get the desired bound.

Combining Lemma 4 and (2) we deduce the following corollary.

Corollary 1. The number of elements of the fibre Ψ−1(a, b, c) is boun-

ded by

3325Ca1/2b log(ab2)29ω(b)8ω(c).

3. Upper bounds for quartic S4-extensions with given discrim-

inant. In this section we prove an upper bound for the number of quar-
tic S4-extensions with given discriminant. In order to do this we need to
compute the discriminant dK using the triple (a, b, c). In a second step we
determine how many triples may lead to the same discriminant.

Let us assume that we are given a field K ∈ K with Ψ(K) = (a, b, c)
ramified at p. Assuming p 6= 2, 3 we can compute the cycle shape of a
generator of the cyclic inertia group at p in the degree 4 representation
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of S4. Here the cycle shape means the lengths of the cycles if we decompose
a group element into disjoint cycles. Using local theory we get for primes
p > 3 the following identities, where vp denotes the ordinary p-valuation:

Cycle shape vp(dK)

p | a, p ∤ bc 122 1

p | a, p | c, p ∤ b 4 3

p | b, p ∤ ac 13 2

p | c, p ∤ ab 22 2

The other cases cannot occur since in these cases the inertia group would
not be cyclic. The cases p = 2 and p = 3 can be handled by analyzing the
local Galois groups. We still use the definition of aS for S := {2, 3} from the
preceding section and get

dS
K = aS(bS)2(cS)2.

The contribution of the primes 2 and 3 is bounded by a constant factor.
Therefore we ignore these primes in the following.

Using the results of the preceding section it remains to count the number
of triples (a, b, c) which may lead to the same discriminant. In the following
let d be the discriminant of a quartic S4-extension.

Theorem 2. Let d = 2e23e3d1d
2
2d

3
3 be such that 6d1d2d3 is squarefree.

Then the number of S4-fields with discriminant d is bounded above by

(i) C̃(d1d3)
1/2d2 log(d1d3d

2
2)

218ω(d2)8ω(d3) for a suitable C̃ > 0,

(ii) Oε(d
1/2+ε) for all ε > 0.

Proof. By the above discussion all fields K/Q with Ψ(K) = (a, b, c) have
the properties

aS = d1d3, d3 | cS , (bc)S = d2d3.

Therefore we have 2ω(d2) possibilities for choosing bS . The number of possi-
bilities for the 2- and the 3-part can be bounded by a constant. By Corol-
lary 1 the worst case is when bS = d2 and therefore, for some computable

constant C̃ > 0, we get

C̃2ω(d2)(d1d3)
1/2d2 log(d1d3d

2
2)

29ω(d2)8ω(d3)

as an upper bound. For the second statement we write xω(d) = O(dε) for a
given number x and get the desired result.

Remark 1. For squarefree discriminants d we can derive the better
upper bound O(d1/2 log(d)2).

We can combine Theorem 2 with well known results to get bounds for
degree 4 fields.
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Theorem 3. The number of degree 4 fields of given discriminant d is

bounded above by Oε(d
1/2+ε) for all ε > 0.

Proof. Using the theorem of Kronecker–Weber we easily deduce that
the number of fields with Abelian Galois group is bounded by Oε(d

ε) for
all ε > 0. Since D4-fields can be constructed by quadratic extensions over
quadratic extensions and the 2-torsion part of the class group can be easily
controlled, we get the same result for D4-extensions.

For A4-extensions we use the same approach as in the S4-case. The main
difference is that we have only one step where we need to consider class
groups. This gives Oε(d

1/2+ε) for the number of such extensions with given
discriminant d. Using more advanced methods [MV02] this number can be

reduced to Oε(d
1/3+ε).

4. Upper bounds for the dimension of the space of octahe-

dral modular forms of given conductor. In this section we give up-
per bounds for the dimension of the space of octahedral modular forms of
weight 1. Denote by GQ the absolute Galois group Gal(Q/Q). Suppose we are
given a quartic S4-extension K/Q which gives rise to a projective representa-
tion ˜̺ : GQ → PGL2(C). The conductor of this projective representation is
defined to be the product of the local conductors of ̺|G

Qp
: G

Qp
→ PGL2(C)

which is the minimal p-power of a so-called local lift (see e.g. [Ser77, §6] or
[Won99] for more details).

In this section we count S4-extensions using the above-defined conductor.
A prime p divides the conductor if and only if p divides the discriminant.
To simplify all computations we ignore the contribution of the 2- and 3-
part of the conductor. All other (tamely) ramified primes have the property
that p exactly divides the conductor when the local Galois group is cyclic.
Otherwise the local Galois group is dihedral and p2 exactly divides the
conductor [Won99, Prop. 1, p. 144].

To each projective representation with image S4 we can associate an
octahedral modular form of the same conductor. This means that we get the
corresponding bounds for the modular forms when we compute the bounds
for the number of projective representations (see e.g. [Duk95, Won99] for
more details).

In order to use the results of Section 2 we need to compute the conductor
of the associated modular form only using the triple (a, b, c). Similarly to
the discriminant case we can do all computations locally. In the discriminant
case it was only important to know the inertia group. Now it is important
to know the decomposition group. Let p > 3 be a divisor of abc. Then p
exactly divides the conductor if the decomposition group is cyclic. In the
following table we collect the information we get (for p > 3) using the prime
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ideal factorization

pOK =

r∏

i=1

p
ei

i .

We remark that some cases can be distinguished by congruence conditions.
In the last column we place the letters which are divisible by p. The infor-
mation vp(d) on the discriminant is not needed in this section.

Dp Ip vp(N) vp(d) p ≡ p |

p
2
1p2p3 C2 C2 1 1 a

p
2
1p2 C2 × C2 C2 2 1 a

p
2
1 C2 × C2 or C4 C2 2 or 1 2 c

p
2
1p

2
2 C2 × C2 or C2 C2 2 or 1 2 c

p
4
1 D4 C4 2 3 3 mod 4 a, c

p
4
1 C4 C4 1 3 1 mod 4 a, c

p
3
1p2 C3 C3 1 2 1 mod 3 b

p
3
1p2 D3 C3 2 2 2 mod 3 b

Let K/Q be a quartic S4-extension with associated triple (a, b, c) and
conductor N . Then we write

a = a1a2, b = b1b2, c = c0c1c2,

where c0 := gcd(a, c) is such that

NS = (a1a
2
2b1b

2
2c1c

2
2)

S .

Since gcd(b, ac)S = 1 we easily see that aS
1 , aS

2 , bS
1 , bS

2 , cS
1 , cS

2 are pairwise
coprime. Using the above table we know that bi is (up to the 3-part) exactly
divisible by the primes dividing b which are congruent to i mod 3 (i = 1, 2).

Theorem 4. Let N = 2n23n
3N1,1N1,2N

2
2 be such that 6N1,1N1,2N2 is

squarefree. Furthermore we assume that p |N1,i if and only if p ≡ i mod 3
(i = 1, 2). Then the number of S4-fields of given conductor N is bounded

above by

C54ω(N)N1,1N
1/2
1,2 N2 log(N)2

for a suitable C > 0.

Proof. We have 3ω(N) possibilities to partition the primes into three sets
corresponding to a, b, c. Furthermore we have at most 2ω(N) possibilities
for c0. Using Corollary 1 we have the worst case when b is large. Primes
dividing N1,2 cannot divide b. Here we get the worst case when these primes
divide a. Therefore we have an upper bound

C̃3ω(N)2ω(N)N1,1N
1/2
1,2 N2 log(N1,2N

2
1,1N

2
2 )29ω(N).

We easily get the desired result.
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To get good estimates for the dimension of the space of octahedral forms
with given conductor we have to avoid the situation when b1 is large. Using
this we can derive the following corollaries.

Corollary 2. Let p be a prime. Then the dimension of the space of

octahedral modular forms of weight 1 and conductor p or p2 is bounded

above by O(p1/2 log(p)2).

Proof. The quadratic subextension must be ramified at at least one
prime. Therefore p | a for all possible triples.

Corollary 3. Assume that all primes which exactly divide N are con-

gruent to 2 mod 3. Then the dimension of the space of octahedral forms of

weight 1 and conductor N is bounded above by O(N1/2+ε) for all ε > 0.

Proof. We have N1,1 = 1 and the assertion follows.

This improves the bound O(N4/5+ε) given in [MV02]. We remark that
in the case that b1 resp. N1,1 is large we only get the trivial linear bound
using our method.

Acknowledgments. I thank Karim Belabas and Gunter Malle for fruit-
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