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1. Introduction. Let E be an elliptic curve over Q and F the maximal
elementary abelian 2-extension of Q, that is, F := Q({√m; m ∈ Z}). It
is known that the torsion subgroup E(F )tors of E(F ) is finite (Ribet [8]).
More precisely, Laska and Lorenz showed that there exist at most thirty-one
possibilities for E(F )tors (see [3, Theorem] or Theorem 2.1). However, it is
not known whether all the groups listed in Theorem 2.1 can happen as
E(F )tors.

Now assume that E has non-cyclic torsion over Q; then by Mazur’s
theorem ([4]), the group E(Q)tors is isomorphic to Z/2Z ⊕ Z/mZ, where
m = 2, 4, 6 or 8. Such an elliptic curve has a Weierstrass model E : y2 =
x(x + M)(x + N), where M and N are non-zero integers with M > N .
Further we may assume that the greatest common divisor (M,N) of M
and N is a square-free integer or 1, since for any positive integer d, E is
isomorphic overQ to an elliptic curve Ed2 given by y2 = x(x+d2M)(x+d2N)
by replacing x with x/d2 and y with y/d3, respectively. Then using the
result of Ono ([6, Main Theorem 1], see also Theorem 2.2), Kwon classified
the torsion subgroup of E over all quadratic fields ([2, Theorem 1]); Qiu
and Zhang classified the torsion subgroup of E for a certain elliptic curve
E with E(Q)tors ' Z/2Z ⊕ Z/2Z over all elementary abelian 2-extensions
of Q, i.e., over all number fields of type (2, . . . , 2) ([7, Theorems 3 and 4]);
Ohizumi classified the torsion subgroup of E for an elliptic curve E with
E(Q)tors ' Z/2Z⊕Z/8Z or Z/2Z⊕Z/6Z over all bicyclic biquadratic fields,
i.e., over all number fields of type (2, 2) ([5, Main Theorems 4.1 and 4.2]).

In this paper, first we completely determine the structure of the torsion
subgroup E(F )tors when E(Q)tors is non-cyclic:

Theorem 1. Let E be an elliptic curve over Q given by the equation
y2 = x(x+M)(x+N), where M and N are integers with M > N . Assume
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that (M,N) is a square-free integer or 1. Let F := Q({√m; m ∈ Z}) be
the maximal elementary abelian 2-extension of Q. Then E(F )tors can be
classified as follows:

(a) If E(Q)tors ' Z/2Z⊕ Z/8Z, then E(F )tors ' Z/4Z⊕ Z/16Z.
(b) If E(Q)tors ' Z/2Z⊕ Z/6Z, then E(F )tors ' Z/4Z⊕ Z/12Z.
(c) If E(Q)tors ' Z/2Z⊕Z/4Z, then E(F )tors ' Z/4Z⊕Z/8Z or Z/8Z⊕

Z/8Z. In this case, we may assume that both M and N are squares.
Then E(F )tors ' Z/8Z⊕Z/8Z if and only if M−N is a square (this
is equivalent to the condition that E−1(Q)tors ' Z/2Z⊕ Z/4Z).

(d) If E(Q)tors ' Z/2Z⊕Z/2Z, then E(F )tors ' Z/4Z⊕Z/4Z, Z/4Z⊕
Z/8Z, Z/8Z⊕Z/8Z, Z/4Z⊕Z/12Z or Z/4Z⊕Z/16Z. In this case,
E(F )tors ' Z/4Z ⊕ Z/4Z if and only if ED(Q)tors ' Z/2Z ⊕ Z/2Z
for all square-free integers D. Otherwise, E(F )tors can be determined
depending only on the type(s) of ED(Q)tors (and of E−D(Q)tors when
ED(Q)tors ' Z/2Z ⊕ Z/4Z) for D with ED(Q)tors 6' Z/2Z ⊕ Z/2Z
through the isomorphism E ' ED over F .

Secondly, using Theorem 1 we classify the torsion subgroup E(K)tors for
all elementary abelian 2-extensions K of Q (Section 5). This is a generaliza-
tion of the result of Kwon ([2, Theorem 1]).

The following notation is in force throughout this paper. F denotes the
maximal elementary abelian 2-extension of Q. If k is an algebraic extension
of Q, then we denote by Ok the ring of algebraic integers in k. For integers
M and N , we denote by (M,N) the greatest common divisor of M and N .
For a square-free integer D, we define the D-quadratic twist ED of an elliptic
curve E : y2 = x(x+M)(x+N) over Q by ED : y2 = x(x+DM)(x+DN).
Given a Weierstrass model for E, we often denote by x(P ) the x-coordinate
of a point P on E. If A is an abelian group, then we denote by A[n] the
subgroup of A annihilated by n. For a prime number l and an elliptic curve
E over a field k, we denote by E(k)(l) the l-primary part of E(k)tors. For a
field k and an element a in k, we mean by

√
a an element α in the algebraic

closure of k satisfying α2 = a. If a is a positive real number, then we take
the positive root as

√
a and we define

√−a =
√
−1
√
a with the imaginary

unit
√
−1, as usual.

Acknowledgments. We would like to thank Professor Tetsuo Naka-
mura for his helpful comments and suggestions.

2. Preliminary results. We begin by stating the result of Laska and
Lorenz:

Theorem 2.1 ([3, Theorem]). Let E be an elliptic curve over Q. Then
the torsion subgroup E(F )tors is isomorphic to one of the following thirty-one
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groups:

Z/2a+bZ⊕ Z/2aZ (a = 1, 2, 3 and b = 0, 1, 2, 3),

Z/2a+bZ⊕ Z/2aZ⊕ Z/3Z (a = 1, 2, 3 and b = 0, 1),

Z/2aZ⊕ Z/2aZ⊕ Z/5Z (a = 1, 2, 3),

Z/2aZ⊕ Z/2aZ⊕ Z/3Z⊕ Z/3Z (a = 1, 2, 3)

or {O}, Z/3Z, Z/3Z⊕ Z/3Z, Z/5Z, Z/7Z, Z/9Z, Z/15Z.

Just as in [2] or [7], the result of Ono is a basic tool in this paper:

Theorem 2.2 ([6, Main Theorem 1]). Let E : y2 = x(x+M)(x+N) be
an elliptic curve over Q, where M and N are integers. Assume that (M,N)
is a square-free integer or 1. Then the torsion subgroup E(Q)tors can be
classified as follows:

(i) E(Q) ⊃ Z/2Z⊕Z/4Z if and only if M and N are both squares, or
−M and −M +N are both squares, or −N and −N +M are both
squares.

(ii) E(Q)tors ' Z/2Z ⊕ Z/8Z if and only if M = u4 and N = v4, or
−M = u4 and −M+N = v4, or −N = u4 and −N+M = v4, where
u and v are relatively prime positive integers with u2 + v2 = w2 for
some integer w.

(iii) E(Q)tors ' Z/2Z ⊕ Z/6Z if and only if M = a4 + 2a3b and N =
b4 + 2b3a, where a and b are relatively prime integers with a/b 6∈
{−2,−1,−1/2, 0, 1}.

(iv) In all other cases, E(Q)tors ' Z/2Z⊕ Z/2Z.

If we write E = E(M,N), then we obtain E(M,N) ' E(−M,N−M) '
E(−N,M − N) over Q by replacing x with x −M and x − N . Hence, if
E(Q) ⊃ Z/2Z⊕Z/4Z (resp. E(Q)tors ' Z/2Z⊕Z/8Z), then we can assume
that M and N are both squares (resp. M = u4 and N = v4) by changing
x-coordinates suitably.

The following lemma is useful for finding whether a point on E over a
field k is divisible by 2 in E(k) (see [1, Theorem 4.2, p. 85] and its proof):

Lemma 2.3. Let k be a field of characteristic not equal to 2 or 3, and
E an elliptic curve over k given by y2 = (x− α)(x− β)(x− γ) with α, β, γ
in k. For P = (x, y) ∈ E(k), there exists a k-rational point Q = (x′, y′) on
E such that [2]Q = P if and only if x− α, x− β and x− γ are all squares
in k. In this case, if we fix the sign of

√
x− α,

√
x− β and

√
x− γ, then x′

equals one of the following :
√
x− α

√
x− β ±

√
x− α√x− γ ±

√
x− β√x− γ + x
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or
−
√
x− α

√
x− β ±

√
x− α√x− γ ∓

√
x− β√x− γ + x,

where the signs are taken simultaneously.

Using Theorem 2.2 and Lemma 2.3, Kwon classified the torsion subgroup
of E = E(M,N) over all quadratic fields ([2, Theorem 1]) and the torsion
subgroup of ED for all square-free integers D:

Theorem 2.4 ([2, Theorem 2]). Let E : y2 = x(x + M)(x + N) be an
elliptic curve over Q, where M and N are integers.

(i) If E(Q)tors ' Z/2Z⊕Z/8Z, then ED(Q)tors ' Z/2Z⊕Z/2Z for all
square-free integers D.

(ii) If E(Q)tors ' Z/2Z⊕Z/6Z, then ED(Q)tors ' Z/2Z⊕Z/2Z for all
square-free integers D.

(iii) If E(Q)tors ' Z/2Z ⊕ Z/4Z, we may assume that M = s2 and
N = t2 for some integers s and t. If D = −1 and s2 − t2 = ±r2

for some integer r, then ED(Q) ' Z/2Z⊕Z/4Z. In all other cases,
ED(Q)tors ' Z/2Z⊕ Z/2Z.

(iv) If E(Q)tors ' Z/2Z⊕Z/2Z, then ED(Q)tors ' Z/2Z⊕Z/4Z, Z/2Z⊕
Z/6Z, Z/2Z⊕Z/8Z for only finitely many D and ED(Q) ' Z/2Z⊕
Z/2Z for almost all D.

The following proposition is classical (see, e.g., [1, III.1]).

Proposition 2.5. Any integral solution (x, y, z) of X4 ± Y 4 = Z2 sat-
isfies xyz = 0.

3. Squares of algebraic integers in F . Let R := Z[{√m; m ∈ Z}];
it is a subring of OF .

Lemma 3.1. If a ∈ OF is of degree 2d over Q for some integer d ≥ 0,
then 2da ∈ R.

Proof. We prove this lemma by induction on d. It is obvious that the
lemma holds for d = 0, 1.

Assume that d ≥ 2. Let Kd := Q(a). Then Kd is a number field of type
(2, . . . , 2) of degree 2d over Q. We may write

a =
1
b

(b0 + b1
√
θ1 + · · ·+ bm

√
θm )

with some integer m ≥ d, where b0 ∈ Z, b, b1, . . . , bm are non-zero integers
and θ1, . . . , θm are distinct square-free integers. For each i with 1 ≤ i ≤ m,
we may choose a basis {1,

√
θi1, . . . ,

√
θid} of Kd over Q such that θi1 = θi

and θi2, . . . , θid ∈ {θ1, . . . , θ̌i, . . . , θm}. We define the subfield K
(i)
d of Kd of

degree 2d−1 to be Q(
√
θi1,
√
θi3, . . . ,

√
θid ). Let αi be the sum of the elements
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in the set {
1
b
b0,

1
b
b1
√
θ1, . . . ,

1
b
bm
√
θm

}
∩K(i)

d .

Note that the terms (1/b)b0 and (1/b)bi
√
θi appear in the sum αi, since

(1/b)b0, (1/b)bi
√
θi ∈ K

(i)
d . Then αi ∈ K

(i)
d and we can write a = αi +

βi
√
θi2 with some βi ∈ K

(i)
d . Let σ be a generator of the Galois group

Gal(Kd/K
(i)
d ). Then 2αi = a + aσ ∈ K(i)

d ∩ OF . By the inductive assump-
tion, 2dαi = 2d−12αi ∈ R. Since the terms in the sum 2dαi are linearly
independent over Z, each term in 2dαi is contained in R; in particular,
2d(1/b)b0, 2d(1/b)bi

√
θi ∈ R. Since this holds for each i with 1 ≤ i ≤ m, we

obtain

2da = 2d
1
b
b0 + 2d

1
b
b1
√
θ1 + · · ·+ 2d

1
b
bm
√
θm ∈ R.

This completes the proof of the lemma.

We need the following lemmas in order to verify that a certain element
in F is not a square in F .

Lemma 3.2. For a ∈ OF , an odd prime l and an integer i ≥ 0, if li
√
l

divides a2 in OF , then so does li+1.

Proof. If li
√
l divides a2 in OF , then a/

√
li ∈ OF , since (a/

√
li )2 =

a2/li ∈ OF . By replacing a with a/
√
li, it suffices to prove the assertion for

i = 0.
Let F ′ := Q({√m; m is an integer indivisible by l}). Since Lemma 3.1

implies that 2da ∈ R for some integer d ≥ 0, we may write 2da = α + β
√
l

with α, β ∈ R ∩ OF ′ . Thus

22da2 = (α2 + β2l) + 2αβ
√
l.(3.1)

Assume that
√
l divides a2 in OF . The equation (3.1) implies that

√
l divides

α2 in OF . Lemma 3.1 allows us to write α2 =
√
l (γ + δ

√
l)/2e with γ, δ ∈

R ∩ OF ′ and some integer e ≥ 0. Hence 2eα2 = γ
√
l + δl. However, α2 ∈

OF ′ , together with the linear independence of 1 and
√
l over OF ′ , implies

that γ = 0. Hence 2eα2 = δl. Since (
√

2e α/
√
l )2 = δ ∈ OF , we have

(
√

2e/
√
l )α ∈ OF . Hence it is easy to find that

√
l divides α in OF . It

follows from (3.1) that l divides 22da2 in OF , that is, l divides a2 in OF .

Remark 3.3. When l = 2, Lemma 3.2 does not hold in general. For
example, let a = 1 +

√
−1 +

√
2. Then

a2 = 2
√

2
1 +
√
−1√

2
(1 +

√
2).

Since (1+
√
−1 )/

√
2 ∈ OF , it is obvious that 2

√
2 divides a2 in OF . Suppose
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that 4 divides a2 in OF . Then we must have

1 +
√
−1

2
∈ OF ∩Q(

√
−1 ) = OQ(

√−1 ),

since a2/4 = (1 +
√
−1)/2 + (1 +

√
−1)/

√
2, which contradicts the fact that

OQ(
√−1 ) ⊂ R. It follows that a2 is divisible not by 4 but by 2

√
2 in OF .

Lemma 3.4 ([7, Assertion, p. 166]). For any m ∈ Z,
√
m is a square in

F if and only if |m| is a square in Q.

Proof. Suppose that
√
m is a square in F . Then it is not difficult to find

that it can be expressed as
√
m = c(a+ b

√
m)2, where c ∈ Q and a, b ∈ Z.

If m is not a square in Q, then a2 + b2m = 0, that is, m = −(a/b)2. The
converse obviously holds.

4. Proof of Theorem 1. We begin by examining the structure of
E(F )(2) when E(Q)tors ' Z/2Z⊕ Z/8Z.

Proposition 4.1. Assume that E(Q)tors ' Z/2Z⊕Z/8Z. Then E(F )(2)
' Z/4Z⊕ Z/16Z.

Proof. We may assume that M = u4 and N = v4, where u and v are
relatively prime integers with u > v > 0 and u2 + v2 = w2 for some integer
w > 0.

First, we show that E(F ) 6⊃ Z/8Z⊕Z/8Z. By Lemma 2.3, we can find a
point P = (x, y) of order 4 on E such that x = u2w

√
u2 − v2 − u4. Suppose

that E(F ) ⊃ Z/8Z ⊕ Z/8Z. Then by Lemma 2.3, x + u4 = u2w
√
u2 − v2

must be a square in F . This means that
√
u2 − v2 is a square in F . It follows

from Lemma 3.4 that u2−v2 is a square in Q, which contradicts Proposition
2.5 and the assumption u2 + v2 = w2. Hence x + u4 = u2w

√
u2 − v2 is not

a square in F . Therefore, E(F ) 6⊃ Z/8Z⊕ Z/8Z.
Secondly, we show that E(F ) 6⊃ Z/32Z. Let

P3 = (uv(u+ w)(v + w), uvw(u+ v)(v + w)(w + u)).

Then P3 is a point of order 8 in E(Q) and [4]P3 = (0, 0). Using Lemma 2.3,
we can find a point P4 = (x4, y4) of order 16 in E(F ) such that [2]P4 = P3

and x4 =
√
ξ η, where

η =
√
ξ +
√
η1 +

√
η2 + η3,

ξ = uv(u+ w)(v + w), η1 = uw(u+ v)(w + v),

η2 = vw(v + u)(w + u), η3 = w(u+ v).

Note that ξ, η1, η2, η3 ∈ Z and η ∈ OF . Since u2+v2 = w2, (u, v) = 1 and η is
symmetric with respect to u, v, we may assume that u = 2mn, v = m2−n2,
w = m2 + n2, where m and n are relatively prime integers with m > n > 0
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and m 6≡ n (mod 2). Then
√
ξ = 2m(m+ n)

√
mn(m2 − n2),

η1 = 4m3n(m2 + n2)(m2 + 2mn− n2),

η2 = (m+ n)2(m4 − n4)(m2 + 2mn− n2),

η3 = (m2 + n2)(m2 + 2mn− n2).

We see that none of ξ, η1 and η2 is a square in Q by using (u, v) = 1 and
u2 + v2 = w2 (see [2, p. 157]). We need the following lemma:

Lemma 4.2. There exists an odd prime l and an integer i ≥ 0 such that
x4 is divisible not by li+1 but by li

√
l in OF .

Proof of Lemma 4.2. Suppose that the square-free part of mn(m2− n2)
is 2. Then both m + n and m − n are squares and either m = 2(m′)2, n =
(n′)2 or m = (m′)2, n = 2(n′)2 for some integers m′, n′, since any two of
m,n,m + n,m − n are relatively prime. If m = 2(m′)2 and n = (n′)2,
then both 2(m′)2 + (n′)2 and 2(m′)2 − (n′)2 must be squares, which cannot
happen, since either 2(m′)2 + (n′)2 or 2(m′)2 − (n′)2 is congruent with 2 or
3 modulo 4. If m = (m′)2 and n = 2(n′)2, then both (m′)2 + 2(n′)2 and
(m′)2 − 2(n′)2 must be squares, which contradicts the fact that 2 is not
a congruent number. Hence there exists an odd prime l which divides the
square-free part of mn(m2− n2). In order to prove the lemma, it suffices to
show that

√
l does not divide η in OF .

Suppose that
√
l divides η in OF . Since l divides either η1 or η2, Lemma

3.1 implies that l divides η3. Hence, it is easy to see that l divides both mn
and m2− n2, which contradicts (m,n) = 1. Therefore,

√
l does not divide η

in OF . This completes the proof of the lemma.

Now comparing Lemma 3.2 with Lemma 4.2, we easily find that x4 is
not a square in OF . It follows from Lemma 2.3 that P4 6∈ 2E(F ).

Next, using Lemma 2.3 we can find a point P ′4 = (x′4, y
′
4) of order 16 in

E(F ) such that [2]P ′4 = P3 +Q1 = P ′3 and

x′4 =
√
uv(u+ w)(v − w){

√
uw(u− v)(w − v) +

√
vw(v − u)(w + u)

+
√
uv(u+ w)(v − w) + w(u− v)},

where P ′3 = (uv(u+w)(v−w), uvw(u−v)(v−w)(w+u)) and Q1 = (−u4, 0).
Since x′4 is obtained by substituting −v into v in x4, it is easy to show that
x′4 is not a square in F . It follows from Lemma 2.3 that P ′4 6∈ 2E(F ). Put
Q2 := P ′4 − P4 ∈ E(F ). Then [2]Q2 = P ′3 − P3 = Q1. Note that Q2 is not a
multiple of P4, since Q1 would then be a multiple of [8]P4 = (0, 0). Suppose
that there exists a point P of order 32 in E(F ). Then [2]P = [a]P4+[b]Q2 for
some integers a ∈ {1, 3, 5, 7, 9, 11, 13, 15} and b ∈ {0, 1, 2, 3}, since E(F ) 6⊃
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Z/8Z⊕ Z/8Z. Now we define a point Q ∈ 〈P4〉 ⊕ 〈Q2〉 as follows:

Q :=
{−[(a− 1)/2]P4 − [b/2]Q2 if b = 0, 2,

−[(a− 1)/2]P4 − [(b− 1)/2]Q2 if b = 1, 3.

Then [2](P + Q) = P4 or P ′4. Since P + Q ∈ E(F ), we must have either
P4 ∈ 2E(F ) or P ′4 ∈ 2E(F ), which is a contradiction. Therefore, E(F ) 6⊃
Z/32Z. Consequently, E(F )(2) ' Z/4Z⊕Z/16Z, which completes the proof
of Proposition 4.1.

When E(Q)tors ' Z/2Z⊕ Z/6Z, we define E(F )(2′) as follows:

E(F )(2′) := {P ∈ E(F ); [n]P = O for some odd integer n}.
We can easily determine the structure of E(F )(2′) using Theorem 2.1 and
Theorem 1(ii) in [2], which implies that E(Q(

√
D )) 6⊃ Z/3Z⊕ Z/3Z for all

square-free integers D.

Proposition 4.3. Assume that E(Q)tors ' Z/2Z⊕Z/6Z. Then E(F )(2′)
' Z/3Z.

Proof. It suffices to show that E(F ) 6⊃ Z/3Z⊕Z/3Z, since Theorem 2.1
implies that E(F ) 6⊃ Z/6pZ for any odd prime p. By the triplication formula,
the x-coordinates of points of order 3 on E are the roots of some equation of
degree 4 with coefficients in Q. Assume that E(Q) ⊃ Z/3Z. Then one of the
roots is the x-coordinate of a point P1 of order 3 in E(Q). Hence, if E(F ) ⊃
Z/3Z⊕ Z/3Z, then some polynomial g(x) of degree 3 with coefficients in Q
must be decomposed as a product of linear polynomials in F . Since the
Galois group Gal(F/Q) has no element of order 3, there exists α ∈ Q such
that g(α) = 0. Let E be given by y2 = f(x), let D be the square-free part
of f(α) and put β :=

√
f(α). Then the point P2 = (α, β) is of order 3 in

E(Q(
√
D )), and P1 and P2 generate E[3]. Hence E(Q(

√
D )) ⊃ E[3], which

contradicts Theorem 1(ii) in [2]. Therefore, E(F ) 6⊃ Z/3Z⊕ Z/3Z.

In order to determine the structure of E(F )(2), we need an elementary
lemma:

Lemma 4.4. Let α, β ∈ Q and let γ be a square-free integer. If α+ β
√
γ

is a square in F , then α2 − β2γ is a square in Q.

Proof. If α+β
√
γ is a square in F , then it can be expressed as α+β

√
γ =

c(a + b
√
γ )2, where c ∈ Q and a, b ∈ Z. This means that c(a2 + b2γ) = α

and 2abc = β. Then 4(a2c)2 − 4α(a2c) + β2γ = 0. Hence

a2c =
α±

√
α2 − β2γ

2
∈ Q.

Therefore,
√
α2 − β2γ ∈ Q.
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Since we have ED(Q)(2) ' Z/2Z ⊕ Z/2Z for all square-free integers D
by Theorem 2.4(ii), it suffices to show the following.

Proposition 4.5. Assume that E(Q)(2) ' Z/2Z⊕ Z/2Z and ED(Q)(2)
' Z/2Z⊕Z/2Z for all square-free integers D. Then E(F )(2) ' Z/4Z⊕Z/4Z.

Proof. By Lemma 2.3, the x-coordinate of a point P of order 4 on E
equals one of ±

√
MN , −M ±

√
M(M −N), −N ±

√
N(N −M). Suppose

that E(F ) ⊃ Z/8Z. By Lemma 2.3, there exists a point P = (x, y) of order 4
in E(F ) such that x, x+M and x+N are all squares in F .

Suppose that x = ±
√
MN . By Lemma 3.4, |MN | is a square inQ. Hence,

we may assume that M = d2
1D,N = ±d2

2D for some D, a square-free integer
or 1, and some relatively prime integers d1, d2. If M = d2

1D,N = d2
2D, then

the D-quadratic twist ED of E is given by y2 = x{x+(d1D)2}{x+(d2D)2}.
Hence by Theorem 2.2(i) we have ED(Q) ⊃ Z/2Z⊕Z/4Z, which contradicts
the assumption. Therefore assume that M = d2

1D,N = −d2
2D. Then x+M

= ±d1d2D
√
−1 + d2

1D. By Lemma 4.4, if x + M is a square in F , then√
(d2

1D)2 + (d1d2D)2 ∈ Q, that is,
√
d2

1 + d2
2 ∈ Q. However, since the D-

quadratic twist ED of E = E(M,N) is isomorphic over Q to an elliptic
curve E′ = ED(−N,M−N) given by y2 = x{x+(d2D)2}{x+(d2

1 +d2
2)D2},

we must have ED(Q) ' E′(Q) ⊃ Z/2Z ⊕ Z/4Z by Theorem 2.2(i), which
contradicts the assumption.

If x = −M ±
√
M(M −N) (resp. x = −N ±

√
N(N −M) ), then we

also arrive at a contradiction by replacing M,N and x with −M,N −M
and x + M (resp. with −N,M − N and x + N) in the above argument.
Therefore, E(F ) 6⊃ Z/8Z. Since it is clear that E(F ) ⊃ Z/4Z ⊕ Z/4Z, we
obtain the assertion.

When E(Q)tors ' Z/2Z ⊕ Z/4Z, the structure of E(F )(2) depends on
whether E−1(Q)tors is isomorphic to Z/2Z ⊕ Z/2Z. Note that in this case
E−1(Q)tors is isomorphic to either Z/2Z⊕ Z/2Z or Z/2Z⊕ Z/4Z (see The-
orem 2.4(iii)).

Proposition 4.6. Assume that E(Q)tors ' Z/2Z⊕Z/4Z. If E−1(Q)tors
' Z/2Z⊕Z/2Z, then E(F )(2) ' Z/4Z⊕Z/8Z. Otherwise, E(F )(2) ' Z/8Z
⊕ Z/8Z.

Proof. We may assume that M = s2 and N = t2, where s and t are
relatively prime integers with s > t > 0. Then

E(Q)tors = 〈Q1〉 ⊕ 〈P2〉 ' Z/2Z⊕ Z/4Z,
where P2 = (st, st(s + t)) and Q1 = (−s2, 0). Note that [2]P2 = (0, 0). By
Lemma 2.3, E(F ) ⊃ Z/4Z⊕Z/8Z and there exist points P3 and Q2 of order 8
and order 4, respectively, in E(F ) such that [2]P3 = P2, [2]Q2 = Q1 and
x(P3) = st+s

√
t(s+ t)+ t

√
s(s+ t)+(s+ t)

√
st, x(Q2) = −s2 +s

√
s2 − t2.
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Suppose that P3 ∈ 2E(F ). Since

x(P3) =
√
st

{
1√
2

(
√
s+
√
t+
√
s+ t )

}2

,

we see that x(P3) is a square in F if and only if
√
st is a square in F ; hence

by Lemma 3.4, st is a square in Q. This means that there exist positive
integers u, v such that s = u2, t = v2, since (s, t) = 1. Thus

x(P3) +M = u2v2 + u2v
√
u2 + v2 + uv2

√
u2 + v2 + (u2 + v2)uv + u4

= u(u+ v)
√
u2 + v2 (v +

√
u2 + v2 ).

Since (u, v) = 1, we have (v, u2 + v2) = 1. Note that by Theorem 2.2(ii),
u2 + v2 is not a square in Q, since E(Q)tors ' Z/2Z ⊕ Z/4Z. Suppose that
the square-free part of u2 + v2 is 2. If we write u2 + v2 = 2w2 with some
integer w > 0, then x(P3)+M = uw(u+v)(2w+v

√
2 ). Since x(P3)+M is a

square in F , we can write 2w+v
√

2 = c(a+b
√

2 )2, where c ∈ Q and a, b ∈ Z
with (a, b) = 1. Then c(a2 + 2b2) = 2w and 2abc = v, which means that
v(a2 + 2b2) = 4abw. Since v is odd because of u2 + v2 = 2w2, we must have
a2+2b2 ≡ 0 (mod 4), that is, a ≡ b ≡ 0 (mod 2), which contradicts (a, b) = 1.
Therefore there exists an odd prime l which divides the square-free part of
u2 + v2. However for such a prime l,

√
l does not divide v+

√
u2 + v2 in OF

because of (v, u2 + v2) = 1 and Lemma 3.1; hence there exists an integer
i such that x(P3) + M is divisible not by li+1 but by li

√
l in OF , which

contradicts Lemma 3.2. It follows that x(P3) +M is not a square in F , and
from Lemma 2.3 that P3 6∈ 2E(F ).

Case 1: E−1(Q)tors ' Z/2Z ⊕ Z/2Z. In this case, by Theorem 2.4(iii),
s2 − t2 is not a square in Q. Suppose that E(F ) ⊃ Z/8Z ⊕ Z/8Z, that is,
Q2 ∈ 2E(F ). Then by Lemma 2.3, x(Q2), x(Q2) + M and x(Q2) + N are
all squares in F . Since x(Q2) + M = s

√
s2 − t2, Lemma 3.4 implies that

x(Q2) + M is a square in F if and only if s2 − t2 is a square in Q, which
contradicts the assumption. Hence E(F ) 6⊃ Z/8Z⊕Z/8Z. Using Lemma 2.3,
we can find a point P ′3 of order 8 in E(F ) such that [2]P ′3 = P2 + Q1 = P ′2
and x(P ′3) = −st + s

√
−t(s− t) − t

√
s(s− t) + (s − t)√−st, where P ′2 =

(−st,−st(s−t)). Since x(P ′3) is obtained by substituting−t into t in x(P3), it
is easy to see that x(P ′3)+M is not a square in F . It follows from Lemma 2.3
that P ′3 6∈ 2E(F ). Put Q′2 := P ′3 − P3 ∈ E(F ). Then [2]Q′2 = P ′2 − P2 = Q1.
Suppose that there exists a point P of order 16 in E(F ). Then [2]P =
[a]P3 + [b]Q′2 for some integers a ∈ {1, 3, 5, 7} and b ∈ {0, 1, 2, 3}, since
E(F ) 6⊃ Z/8Z⊕ Z/8Z. Now we define a point Q ∈ 〈P3〉 ⊕ 〈Q′2〉 as follows:

Q :=
{−[(a− 1)/2]P3 − [b/2]Q′2 if b = 0, 2,

−[(a− 1)/2]P3 − [(b− 1)/2]Q′2 if b = 1, 3.
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Then [2](P +Q) = P3 or P ′3. Since P +Q ∈ E(F ), we must have either P3 ∈
2E(F ) or P ′3 ∈ 2E(F ), which is a contradiction. Therefore, E(F ) 6⊃ Z/16Z.
Consequently, E(F )(2) ' Z/4Z⊕ Z/8Z.

Case 2: E−1(Q)tors ' Z/2Z ⊕ Z/4Z. In this case, by Theorem 2.4(iii),
s2 − t2 = r2 for some integer r > 0. Then x(Q2) = s(r− s). By Lemma 2.3,
E(F ) ⊃ Z/8Z ⊕ Z/8Z. In fact, there exists a point Q3 of order 8 in E(F )
such that [2]Q3 = Q2 and x(Q3) = s

√
r(r − s)+(s−r)√−rs+r

√
s(s− r)+

s(r − s). Thus

x(Q3) +M =
√
−rs

{
1√
2

(
√
s−
√
−r +

√
s− r )

}2

.

However, by Proposition 2.5 and (r, s) = 1 it is easy to see that rs is not
a square in Q. It follows from Lemma 3.4 that x(Q3) + M is not a square
in F , and from Lemma 2.3 that Q3 6∈ 2E(F ).

Next, we show that E(F ) 6⊃ Z/16Z. Using Lemma 2.3, we can find a
point R3 of order 8 in E(F ) such that [2]R3 = R2 and

x(R3) =
√
rt

1 +
√
−1√

2

{√
r + s+

√
r − s√

2

}2

+ t
√
r

{
1 +
√
−1√

2

}2√r + s+
√
r − s√

2

+ r
√
t

1 +
√
−1√

2

√
r + s+

√
r − s√

2
+ t(r

√
−1− t),

where R2 = (t(r
√
−1− t), rt(r

√
−1− t)) and [2]R2 = (−t2, 0). Then we have

x(R3) +N =
√
rt

1 +
√
−1√

2

{√
r + s+

√
r − s√

2
+
√
r

}

×
{√

r + s+
√
r − s√

2
+
√
t

1 +
√
−1√

2

}
.

Put

A :=
√
r + s+

√
r − s√

2
+
√
r, B :=

√
r + s+

√
r − s√

2
+
√
t

1 +
√
−1√

2
.

Note that A,B, x(R3) +N ∈ OF and that both A and B divide x(R3) +N
in OF . Suppose that x(R3) +N is a square in OF .

First, suppose that there exists an odd prime l which divides the square-
free part of t. Since r < s,

√
r + s and

√
r − s are linearly independent

over Z; and since (r+ s, r− s) divides (2r, 2s) = 2, l does not divide (r+ s,
r − s). Hence by Lemma 3.1,

√
l does not divide

√
r + s +

√
r − s in OF ,

which means that
√
l does not divide B in OF . If

√
r + s,

√
r − s and

√
2r

are linearly independent over Z, then it is clear that
√
l does not divide A
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in OF because of (l, 2r) = 1 and Lemma 3.1. Otherwise, the square-free
part of r + s equals that of 2r; it is either 1 or 2, since s = m2 + n2 and
r = 2mn or m2 − n2 for some relatively prime integers m,n. Then the
square-free part of r − s is either −1 or −2. Thus A can be expressed as
A = a0 + a1

√
−1 + a2

√
2 + a3

√
−2 with integers a0, a1, a2, a3. Hence by

Lemma 3.1 there exists an integer i such that A is divisible not by li
√
l but

by li in OF . Therefore for some integer e, x(R3) + N is divisible not by
le+1 but by le

√
l in OF . It follows from Lemma 3.2 that x(R3) +N is not a

square in OF , which contradicts the assumption. Therefore, either t = (t′)2

or t = 2(t′)2 for some integer t′.
Secondly, suppose that there exists an odd prime p which divides the

square-free part of r. In the same way as above, we easily see that
√
p does

not divide A in OF , that B can be expressed as B = a0 + a1
√
−1 + a2

√
2 +

a3
√
−2 with integers a0, a1, a2, a3 (since either t = (t′)2 or t = 2(t′)2) and

that x(R3) + N is not a square in OF , which contradicts the assumption.
Therefore, either r = (r′)2 or r = 2(r′)2 for some integer r′. It follows
that r = (r′)2 and t = (t′)2, r = 2(r′)2 and t = (t′)2 or r = (r′)2 and
t = 2(t′)2. It is not difficult to see that none of these cases happens because
of Proposition 2.5. It follows that x(R3) +N is not a square in F , and from
Lemma 2.3 that R3 6∈ 2E(F ).

Now let P4, Q4, R4 be points of order 16 on E such that [2]P4 = P3,
[2]Q4 = Q3, [2]R4 = R3, and put P := {P4 + P ; P ∈ E[8]}, Q := {Q4 + P ;
P ∈ E[8]}, R := {R4 + P ; P ∈ E[8]}. Then it is obvious that E[16] =
E[8] t P t Q t R. Since P4, Q4, R4 cannot be in E(F ), we obtain E(F ) 6⊃
Z/16Z. Consequently, E(F )(2) ' Z/8Z⊕Z/8Z. This completes the proof of
Proposition 4.6.

In order to prove Theorem 1, we need one more proposition due to Qiu
and Zhang.

Proposition 4.7 ([7, Theorem 2 and Remark 2]). Let E be an elliptic
curve over Q. Assume that E(Q)tors = E(Q)(2) and ED(Q)tors = ED(Q)(2)
for all square-free integers D. Then E(F )tors = E(F )(2).

Remark 4.8. Although Theorem 2 and Remark 2 in [7] are expressed
in terms of a number field K of type (2, . . . , 2) instead of F , it is clear that
they are also valid for F .

Now all we have to do is put the propositions together.

Proof of Theorem 1. Since if E(Q)tors ' Z/2Z⊕Z/8Z or Z/2Z⊕Z/4Z,
then ED(Q)tors = ED(Q)(2) for all square-free integers D by Theorem 2.4,
(a) follows from Propositions 4.1 and 4.7; (c) follows from Propositions 4.6
and 4.7 (note that by Theorem 2.4(iii), M − N is a square if and only if
E−1(Q)tors ' Z/2Z⊕Z/4Z). We obtain (b) just by combining Propositions
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4.5 and 4.3. In (d), if ED(Q)tors ' Z/2Z⊕ Z/2Z for all D, then E(F )tors '
Z/4Z ⊕ Z/4Z from Propositions 4.5 and 4.7; if ED(Q)tors ' Z/2Z ⊕ Z/8Z
(resp. Z/2Z⊕Z/6Z) for some D, then (a) (resp. (b)) shows that E(F )tors '
Z/4Z ⊕ Z/16Z (resp. Z/4Z ⊕ Z/12Z) through the isomorphism E ' ED
over F ; if ED(Q)tors ' Z/2Z⊕Z/4Z and E−D(Q)tors ' Z/2Z⊕Z/2Z (resp.
Z/2Z ⊕ Z/4Z) for some D, then (c) shows that E(F )tors ' Z/4Z ⊕ Z/8Z
(resp. Z/8Z⊕ Z/8Z). This completes the proof of Theorem 1.

5. A classification over number fields of type (2, . . . , 2). Let E :
y2 = x(x + M)(x + N) be an elliptic curve over Q, where M and N are
integers with M > N such that (M,N) is a square-free integer or 1. Let
K be a number field of type (2, . . . , 2). It is not difficult to determine the
structure of E(K)tors because of Theorem 1.

Case 1: E(Q)tors ' Z/2Z ⊕ Z/8Z. We may assume that M = u4 and
N = v4, where u and v are relatively prime integers with u > v > 0 and
u2 + v2 = w2 for some integer w > 0.

(I) By Lemma 2.3, E(K) ⊃ Z/4Z⊕ Z/8Z if and only if
√
−1,
√
u4 − v4

∈ K. Since u4 − v4 = w2(u2 − v2), we see that
√
u4 − v4 ∈ K if and only if√

u2 − v2 ∈ K. Hence, E(K) ⊃ Z/4Z⊕ Z/8Z if and only if
√
−1,
√
u2 − v2

∈ K.
(II) We find a necessary and sufficient condition for E(K)tors ' Z/2Z⊕

Z/16Z. Let P3 = (uv(u+w)(v+w), uvw(u+ v)(v+w)(w+u)) ∈ E(Q) and
P ′3 = P3 +Q1 ∈ E(Q), where Q1 = (−u4, 0). Then P3 and P ′3 are of order 8
and x(P ′3) = uv(u+w)(v−w). Assume that E(K)tors ' Z/2Z⊕Z/16Z. Then
it is easy to see that either P3 or P ′3 is contained in 2E(K). By Lemma 2.3,
this is equivalent to the condition that either√

uv(u+ w)(v + w),
√
uw(u+ v)(w + v) ∈ K

or √
uv(u+ w)(v − w),

√
uw(u− v)(w − v) ∈ K.

On account of (I), we obtain the following: E(K)tors ' Z/2Z⊕Z/16Z if and
only if either

√
−1 6∈ K or

√
u2 − v2 6∈ K and either√

uv(u+ w)(v + w),
√
uw(u+ v)(w + v) ∈ K

or √
uv(u+ w)(v − w),

√
uw(u− v)(w − v) ∈ K.

(III) Assume that E(K)tors ' Z/4Z ⊕ Z/16Z. By Theorem 1(a), there
exists a point P4 of order 16 in E(F ) such that [2]P4 = P3. Let P ′′3 := P3+Q2,
where Q2 is a point of order 4 in E(K) such that [2]Q2 = Q1. If P4 6∈ E(K),
then it is not difficult to find that there exists a point P ′′4 ∈ E(K) (of
order 16) such that [2]P ′′4 = P ′′3 . However since [2](P ′′4 −P4) = P ′′3 −P3 = Q2,
we have Q2 ∈ 2E(F ). Hence E(F ) ⊃ Z/8Z ⊕ Z/8Z, which contradicts
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Theorem 1(a). Therefore we must have P4 ∈ E(K). On account of (I) and
(II), we obtain the following: E(K)tors ' Z/4Z⊕ Z/16Z if and only if

√
−1,

√
u2 − v2,

√
uv(u+ w)(v + w),

√
uw(u+ v)(w + v) ∈ K.

(IV) In all other cases, we obtain E(K)tors ' Z/2Z⊕Z/8Z from Theorem
1(a).

Case 2: E(Q)tors ' Z/2Z ⊕ Z/6Z. By Theorem 1(b), we may restrict
ourselves to the 2-primary part of E(K)tors.

(I) By Lemma 2.3, E(K) ⊃ Z/4Z⊕Z/6Z if and only if
√
M,
√
N ∈ K,√

−M,
√
−M +N ∈ K or

√
−N,

√
−N +M ∈ K.

(II) By Lemma 2.3 and Theorem 1(b), E(K)tors ' Z/4Z⊕Z/12Z if and
only if

√
−1,
√
M,
√
N,
√
M −N ∈ K.

(III) In all other cases, we obtain E(K)tors ' Z/2Z⊕Z/6Z from Theorem
1(b).

Case 3: E(Q)tors ' Z/2Z ⊕ Z/4Z. We may assume that M = s2 and
N = t2, where s and t are relatively prime integers with s > t > 0. Put
r :=

√
s2 − t2.

(I) By Lemma 2.3, E(K) ⊃ Z/4Z ⊕ Z/4Z if and only if
√
−s2, r

√
−1

∈ K, namely,
√
−1, r ∈ K.

(II) Assume that E(K) 6⊃ Z/4Z⊕Z/4Z. Let P1 = (0, 0), Q1 = (−s2, 0),
P2 = (st, st(s+ t)) and P ′2 = (−st, st(t− s)), where [2]P2 = P1 and P2 +Q1
= P ′2. Then E(K) ⊃ Z/8Z if and only if either P2 ∈ 2E(K) or P ′2 ∈ 2E(K).
By Lemma 2.3, this is equivalent to the condition that either

√
st,
√
s(s+ t)

∈ K or
√−st,

√
s(s− t) ∈ K. On account of (I), we obtain the following:

E(K)tors ' Z/2Z⊕Z/8Z if and only if either
√
−1 6∈ K or r 6∈ K and either

√
st,
√
s(s+ t) ∈ K or

√
−st,

√
s(s− t) ∈ K.

(III) We find a necessary and sufficient condition on which E(K) ⊃
Z/4Z⊕ Z/8Z. Assume that E(K) ⊃ Z/4Z⊕ Z/4Z.

Let P2 = (st, st(s + t)), Q2 = (s(r − s), rs(r − s)
√
−1 ) and R2 =

(t(r
√
−1−t), rt(r

√
−1−t)), where [2]P2 = P1, [2]Q2 = Q1 and [2]R2 = R1 =

(−t2, 0). Then it is obvious that E(K) ⊃ Z/8Z if and only if P2, Q2 or R2 is
contained in 2E(K). By Lemma 2.3, this is equivalent to the condition that
√
st,
√
s(s+ t) ∈ K,

√
s(r − s),√rs ∈ K or

√
r(r + t

√
−1 ),

√
rt
√
−1 ∈ K

(note that
√
−1 ∈ K by the assumption that E(K) ⊃ Z/4Z⊕ Z/4Z). Since
√
r(r + t

√
−1 ) = ±

√
2r
2

(
√
r + s+

√
r − s)

and √
rt
√
−1 = ±

√
2rt
2

(1 +
√
−1 ),
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the third condition can be replaced with
√

2rt,
√

2r(r + s),
√

2r(r − s) ∈ K.
Further, since

√
2r(r − s) = 2rt

√
−1/

√
2r(r + s), we see that

√
2r(r − s) ∈

K if and only if
√

2r(r + s) ∈ K. Similarly we find that
√
s(r − s) ∈

K if and only if
√
s(r + s) ∈ K. Hence E(K) ⊃ Z/8Z if and only if√

st,
√
s(s+ t) ∈ K,

√
rs,
√
s(r + s) ∈ K or

√
2rt,

√
2r(r + s) ∈ K (on

the assumption that E(K) ⊃ Z/4Z ⊕ Z/4Z). On account of (I), we obtain
the following: E(K) ⊃ Z/4Z⊕ Z/8Z if and only if

√
−1, r ∈ K and

√
st,
√
s(s+ t) ∈ K, √rs,

√
s(r + s) ∈ K or

√
2rt,

√
2r(r + s) ∈ K.

(IV) We easily see that E(K)tors ' Z/8Z ⊕ Z/8Z if and only if
√
−1, r,√

st,
√
s(s+ t),

√
rs,
√
s(r + s),

√
2rt,

√
2r(r + s) ∈ K, that is,

√
−1, r,

√
rs,
√
st,
√
s(r + s),

√
s(s+ t) ∈ K.

Note that this case can occur only if r ∈ Q.
(V) In all other cases, we obtain E(K)tors ' Z/2Z ⊕ Z/4Z from Theo-

rem 1(c).

Case 4: E(Q)tors ' Z/2Z ⊕ Z/2Z. If ED(Q)tors ' Z/2Z ⊕ Z/8Z (resp.
Z/2Z⊕ Z/6Z, Z/2Z⊕ Z/4Z) and

√
D ∈ K for some square-free integer D,

then we may consider ourselves to be in Case 1 (resp. Case 2, Case 3) through
the isomorphism E ' ED over F . Hence in the case where ED(Q)tors '
Z/2Z ⊕ Z/8Z, Z/2Z ⊕ Z/6Z or Z/2Z ⊕ Z/4Z for some D, assume that√
D 6∈ K; in the case where ED(Q)tors ' E−D(Q)tors ' Z/2Z ⊕ Z/4Z for

some D, assume that
√
D 6∈ K and

√
−D 6∈ K.

Case 4.1: ED(Q)tors ' Z/2Z⊕Z/8Z for some square-free integer D. We
may assume thatM = D(u′)4 and N = D(v′)4, where u′ and v′ are relatively
prime positive integers such that (u′)2 + (v′)2 is a square. By Lemma 2.3, it
is clear that E(K) 6⊃ Z/4Z⊕ Z/4Z because of

√
D 6∈ K.

(I) By Lemma 2.3, E(K) ⊃ Z/2Z ⊕ Z/4Z if and only if either
√
−D,√

−D{(u′)4 − (v′)4} ∈ K or
√
−D,

√
−D{(v′)4 − (u′)4} ∈ K, that is,

√
−D

∈ K and either
√

(u′)2 − (v′)2 ∈ K or
√

(v′)2 − (u′)2 ∈ K. Suppose that
E(K) ⊃ Z/2Z ⊕ Z/8Z. Then since P1 = (0, 0) 6∈ 2E(K), either Q1 =
(−D(u′)4, 0) or R1 = (−D(v′)4, 0) is contained in 4E(K); hence P1 ∈ 4E(F )
implies that E(F ) ⊃ Z/8Z⊕Z/8Z, which contradicts Theorem 1(a). There-
fore we obtain the following: E(K)tors ' Z/2Z⊕Z/4Z if and only if

√
−D ∈

K and either
√

(u′)2 − (v′)2 ∈ K or
√

(v′)2 − (u′)2 ∈ K.
(II) In all other cases, we obtain E(K)tors ' Z/2Z⊕ Z/2Z.

Case 4.2: ED(Q)tors ' Z/2Z⊕Z/4Z for some square-free integer D. We
may assume that M = D(s′)2 and N = D(t′)2, where s′ and t′ are relatively
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prime positive integers. By Lemma 2.3, it is clear that E(K) 6⊃ Z/4Z⊕Z/4Z
because of

√
D 6∈ K.

(I) By Lemma 2.3, E(K) ⊃ Z/2Z ⊕ Z/4Z if and only if either
√
−D,√

−D{(s′)2 − (t′)2} ∈ K or
√
−D,

√
−D{(t′)2 − (s′)2} ∈ K, that is,

√
−D

∈ K and either
√

(s′)2 − (t′)2 ∈ K or
√

(t′)2 − (s′)2 ∈ K. Suppose that
E(K)tors ' Z/2Z ⊕ Z/8Z. Then since P1 = (0, 0) 6∈ 2E(K), either Q1 =
(−D(s′)2, 0) or R1 = (−D(t′)2, 0) is contained in 4E(K); hence P1 ∈ 4E(F )
implies that E(F ) ⊃ Z/8Z ⊕ Z/8Z. It follows from Theorem 1(c) that
E−D(Q)tors ' Z/2Z⊕Z/4Z. Hence by assumption we must have

√
−D 6∈ K,

which is a contradiction. Therefore we obtain the following: E(K)tors '
Z/2Z⊕ Z/4Z if and only if

√
−D ∈ K and either

√
(s′)2 − (t′)2 ∈ K or

√
(t′)2 − (s′)2 ∈ K.

(II) In all other cases, we obtain E(K)tors ' Z/2Z⊕ Z/2Z.

Case 4.3: ED(Q)tors ' Z/2Z⊕Z/2Z or Z/2Z⊕Z/6Z for all square-free
integers D. Assume that ED(Q)tors ' Z/2Z ⊕ Z/6Z for some D. Then
by Theorem 1(b) we know that E(F )(2′) ' ED(F )(2′) ' Z/3Z, and by
Theorem 2.2(iii) we may assume that the points of order 3 in E(F ) are
(Da2b2,±D

√
Da2b2(a+b)2) with some integers a, b. It follows from

√
D 6∈ K

that E(K)(2′) = {O}. Therefore this case can be treated just as the case
where ED(Q)tors ' Z/2Z ⊕ Z/2Z for all square-free integers D. Thus from
Lemma 2.3 we easily get the following:

(I) E(K) ⊃ Z/2Z ⊕ Z/4Z if and only if
√
M ,
√
N ∈ K,

√
−M ,√

−M +N ∈ K or
√
−N ,

√
−N +M ∈ K.

(II) E(K)tors ' Z/4Z ⊕ Z/4Z if and only if
√
−1,
√
M,
√
N,
√
M −N

∈ K.
(III) In all other cases, we obtain E(K)tors ' Z/2Z⊕ Z/2Z.

Remark 5.1. The result of Qiu and Zhang ([7, Theorem 4]) is contained
in Case 4.3. In fact, in Theorem 4 in [7], they classified E(K)tors on the
assumption that M and N are relatively prime square-free integers, not
equal to ±1, which implies that E(Q)tors ' Z/2Z⊕ Z/2Z and ED(Q)tors '
Z/2Z⊕ Z/2Z for all square-free integers D ([7, Lemma 2]).

Let d be an integer such that [K:Q] = 2d. Then we write K = Kd. We
conclude this paper to give the minimal dm for which each type above can
be realized as E(Kdm)tors with some E and some Kdm . Close examination
will show the following:

• In Case 1, we have dm = 4 for the type Z/4Z⊕ Z/16Z.
• In Case 2, we have dm = 3 for the type Z/4Z⊕ Z/12Z.
• In Case 3, we have dm = 4 for the type Z/8Z⊕ Z/8Z.
• For all other types, we have dm = 2.



Torsion subgroups of elliptic curves 45

It is easy to see that this and the classification in this section together imply
Theorem 3 in [7] and Main Theorems 4.1 and 4.2 in [5], which are stated
for K2.
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