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Index form equations in sextic fields: a hard computation

by

Yuri Bilu (Bordeaux), István Gaál (Debrecen) and
Kálmán Győry (Debrecen)

The purpose of this paper is to compute all generators of power integral
bases in a totally real sextic field with Galois group S6. To perform this
computation was hardly possible using the previously available tools. Some
new ideas are involved that may also be useful for other types of diophantine
equations.

1. Introduction. Let K be an algebraic number field of degree n with
ring of integers ZK . It is a classical problem in algebraic number theory to
decide if K admits power integral bases, that is, integral bases of the form
{1, α, α2, . . . , αn−1}. A general survey of this area can be found in K. Győry
[10]. For a recent monograph with a detailed description of (mainly) compu-
tational results and methods on power integral bases we refer to I. Gaál [4].

If {1, ω2, . . . , ωn} is an integral basis of K, then

DK/Q(ω2X2 + · · ·+ ωnXn) = (I(X2, . . . ,Xn))2DK

where DK denotes the discriminant of the field K, and I(X2, . . . ,Xn) is
the index form corresponding to the above integral basis. As is known, α =
x1 + ω2x2 + · · · + ωnxn ∈ ZK generates a power integral basis of K if and
only if x1 ∈ Z and (x2, . . . , xn) is a solution of the index form equation

(1) I(x2, . . . , xn) = ±1 with x2, . . . , xn ∈ Z.

General effective finiteness results for the solutions of index form equations
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were obtained by K. Győry [8], which made it possible, at least in principle,
to determine all solutions in concrete cases; for recent improvements, see
[9], [10]. In the last decade considerable effort was made to develop effi-
cient algorithms for finding explicitly the solutions, which was successful for
lower degree fields (n ≤ 5) and partially successful for higher degree fields;
see [4].

I. Gaál and K. Győry [6] gave an algorithm for solving index form equa-
tions in arbitrary quintic fields. Despite the very short CPU times we had
for cubic and quartic fields, in the quintic case (in the most interesting case
of totally real fields with Galois group S5) about 8 hours of CPU time were
necessary (using a 1 GHz PC under Linux). In [6] the ideas of K. Győry
[8], [9] were used in reducing the index form equation to appropriate unit
equations in two variables and applying Baker’s estimates. It was observed
that if K = Q(ξ) is a totally real quintic field with a doubly transitive
Galois group (which is satisfied in the most difficult cases), then the val-
ues of the linear factors of the index form are contained in fields of type
Li,j = Q(ξ(i) + ξ(j), ξ(i)ξ(j)) of degree 10 with 9 fundamental units. Af-
ter having derived a Baker’s type estimate for the corresponding 9 unknown
exponents in the unit equation, the usual reduction algorithm and a suitably
modified version (see I. Gaál and M. Pohst [7], I. Gaál [4]) of K. Wildan-
ger’s enumeration method [11] were still applicable. The critical part of the
algorithm was the enumeration of the small exponent vectors.

Since that time we have been trying to extend the same method to
sextic fields, when in the most interesting cases (totally real sextic field,
with a doubly transitive Galois group) the corresponding fields Li,j are of
degree 15 with 14 fundamental units. This unit rank is already beyond the
applicability of the same enumeration procedures.

Despite this, some refinements of the enumeration method lead us to
being able to compute all generators of power integral bases in a totally
real sextic field with Galois group S6. As we expected, the total CPU time
was far longer than in the previous lower degree fields: about 5 months. In
this paper we present the refined enumeration process and report on the
computation.

2. Preliminaries. We use the same notation as in [6], giving here only
the basic definitions.

Let K = Q(ξ) be a totally real sextic field with a doubly transitive Galois
group. As in [6] this covers the most difficult (hence most interesting) cases.
In our example the field has Galois group S6. Let d ∈ Z be a common
denominator such that each ϑ ∈ ZK can be written in the form

(2) ϑ =
y0 + y1ξ + · · ·+ y5ξ

5

d
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with y0, y1, . . . , y5 ∈ Z. In the following assume that ϑ is a generator of a
power integral basis, that is, the index of ϑ is 1,

(3) I(ϑ) = 1.

As in [6] we let

lij(Y ) = (ξ(i) − ξ(j))Y1 + · · ·+ ((ξ(i))5 − (ξ(j))5)Y5

and

δ(i,j) =
d(ϑ(i) − ϑ(j))

ξ(i) − ξ(j)

for 1 ≤ i < j ≤ 6. Equation (3) implies

∏

1≤i<j≤6

δ(i,j) =
d15

I(ξ)
= d0

with d0 ∈ Z. Hence δ(1,2) is an integer in L1,2 = Q(ξ(1) + ξ(2), ξ(1)ξ(2)) of
norm d0, whence it can be represented in the form

δ(1,2) = γ(1,2)η(1,2)

where γ(1,2) is an integer in L1,2 of norm d0 (the finitely many non-associated

possible values of γ(1,2) can be determined by using Kash [2]) and

η(1,2) = ±(ε
(1,2)
1 )a1 · · · (ε(1,2)

14 )a14

is a representation of the unit η(1,2) in a system of fundamental units ε
(1,2)
1 , . . .

. . . , ε
(1,2)
14 of L1,2 with rational integer exponents a1, . . . , a14. Let A =

max1≤i≤14 |ai|. We are going to determine a1, . . . , a14, from which y1, . . . , y6

and thus ϑ can be calculated.
Denote by λ(i,j) the conjugate of any λ = λ(1,2) ∈ L1,2 corresponding to

ξ(i) + ξ(j), ξ(i)ξ(j) (1 ≤ i < j ≤ 6) and for simplicity let λ(j,i) = λ(i,j).

3. Application of Baker’s method. For any distinct integers i, j, k
with 1 ≤ i, j, k ≤ 6, Siegel’s identity

lij(Y ) + ljk(Y ) + lki(Y ) = 0

can be written in the form

(4) β(ijk) + β(kji) = 1

where

β(ijk) = α(ijk)µ(ijk), α(ijk) =
γ(i,j)(ξ(i) − ξ(j))

γ(i,k)(ξ(i) − ξ(k))
,

µ(ijk) =
14∏

h=1

(ν
(ijk)
h )ah , ν

(ijk)
h =

ε
(i,j)
h

ε
(i,k)
h

(h = 1, . . . , 14).
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Observe that our notation implies

(5) β(ijk) =
ϑ(i) − ϑ(j)

ϑ(i) − ϑ(k)
.

Just as in [6] we can apply Baker’s type estimates, that is, we can calcu-
late positive constants c1, c2 and C0 (this latter constant is a huge one given
for example by the estimates of A. Baker and G. Wüstholz [1]) such that
for certain distinct indices i, j, k,

(6) exp(−C0 logA)

≤
∣∣log |α(kji)|+ a1 log |ν(kji)

1 |+ · · ·+ a14 log |ν(kji)
14 |

∣∣ ≤ 2c2 exp(−A/c1),

which implies an upper bound AB for A. In our example we had AB = 10122.

4. Reduction. The reduction of this bound AB is performed by using
an appropriate version of Lemma 2.2.2 of [4].

For a triple (k, j, i) of distinct indices 1 ≤ k, j, i ≤ 6, consider the lattice
L spanned by the columns of the 15 by 14 matrix




1 0 . . . 0

0 1 . . . 0
...

...
...

0 0 . . . 1

C · log |α(kji)| C · log |ν(kji)
1 | . . . C · log |ν(kji)

14 |




where C is a large constant. Denote by b1 the first vector of an LLL reduced
basis of L.

Lemma 1. If A = max |ah| < A0 and

(7) |b1| > 512 ·A0

then for all solutions of the inequality
∣∣log |α(kji)|+ a1 log |ν(kji)

1 |+ · · ·+ a14 log |ν(kji)
14 |

∣∣ ≤ 2c2 exp(−A/c1)

we have

A ≤ c1(logC + log(2c2)− logA0).

Note that if in the above linear form the terms are linearly dependent
over Q then we can reduce the number of variables. We have to perform
the reduction procedure for all possible triples (k, j, i). Since (k, j, i) and
(k, i, j) give the same linear form, this yields 60 cases to consider. In each
case we perform several consecutive reduction steps. In our example the final
reduced bound AR for A was 336.
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5. Enumeration. We have to introduce considerable changes in the
enumeration process. First, as in [6] we calculate an S∗0 with

1

S∗0
≤ |β(ijk)| ≤ S∗0

for any i, j, k. This is obtained by

(8) logS∗0 = max
i,j,k

(∣∣log |α(ijk)|
∣∣+ AR

∣∣log |ν(ijk)
1 |

∣∣+ · · ·+ AR
∣∣log |ν(ijk)

14 |
∣∣).

In our example we had S∗0 = 103125.
Our procedure is based on the following statement. In the lemma a triple

will mean a 3-element ordered subset of {1, . . . , n}.
Lemma 2. Let γ1, . . . , γn be pairwise distinct complex numbers and let

(9) D =
∏

1≤i<j≤n
|γi − γj |.

Let s > 1 be a real number. Then either

(10)

∣∣∣∣log |γi − γj | −
2

n(n− 1)
logD +

log s

n

∣∣∣∣ ≤ log s

for all 1 ≤ i < j ≤ n, or there exists a triple (i1, j1, k1) such that

(11)

∣∣∣∣
γj1 − γi1
γk1 − γi1

∣∣∣∣ ≤
(

3

s

)(n−1)/(n−2)

.

Proof. Replacing each γi by γiD
−2/(n(n−1)), we may assume that D = 1

and (10) transforms to

(12)

∣∣∣∣log |γi − γj |+
log s

n

∣∣∣∣ ≤ log s (1 ≤ i < j ≤ n).

Put

δ = min
1≤i<j≤n

|γi − γj |, ∆ = max
1≤i<j≤n

|γi − γj |.

There exists a triple (i1, j1, k1) such that |γj1−γi1 | = δ and |γk1−γi1 | ≥ ∆/2.
Since ∣∣∣∣

γj1 − γi1
γk1 − γi1

∣∣∣∣ ≤
2δ

∆
,

it remains to show that if (12) fails, then

(13)
2δ

∆
≤
(

3

s

)(n−1)/(n−2)

.

If |γl − γm| = ∆ then for every i 6= l,m we have either |γi − γl| ≥ ∆/2 or
|γi − γm| ≥ ∆/2. Hence the product in (9) has, besides |γl − γm|, at least
n− 2 factors exceeding ∆/2. Therefore the product can be estimated from

below by (∆/2)n−1δ(n−1)(n−2)/2 and trivially from above by δ∆n(n−1)/2−1.
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Thus
(∆/2)n−1δ(n−1)(n−2)/2 ≤ 1 ≤ δ∆n(n−1)/2−1,

which implies that

2

n− 2
log

∆

2
≤ log δ−1 ≤

(
n(n− 1)

2
− 1

)
log∆,

which in turn yields the inequality

(14) log
∆

2δ
≥ max

{
n

n− 2
log

∆

2
,

n(n− 1)

(n− 2)(n+ 1)
log δ−1 − log 2

}
.

Now, if (12) fails, then either

log∆ ≥ ((n− 1)/n) log s or log δ−1 ≥ ((n+ 1)/n) log s.

Any of these inequalities, combined with (14), implies (13).

Equation (3) can be written as
∏

1≤i<j≤6

|ϑ(i) − ϑ(j)| =
√
|DK |.

Let s > 1 be a real number. Applying Lemma 2 we deduce that either for
all 1 ≤ i < j ≤ 6 we have

(15)

∣∣∣∣log |ϑ(i) − ϑ(j)| − log |DK |
15

+
log s

6

∣∣∣∣≤ log s

or there are distinct i, j, k with

(16)

∣∣∣∣
ϑ(i) − ϑ(j)

ϑ(i) − ϑ(k)

∣∣∣∣ ≤
(

3

s

)5/4

=

(
s

3

)−5/4

.

Our enumeration process is divided into several steps similar to those
in [6]. Instead of Lemma 2 in [6] we shall use the following consequence of
our Lemma 2 above:

Lemma 3. Let 3 < s < S be positive constants and let

Q =

(
s

3

)5/4

.

Assume that for all distinct 1 ≤ i, j, k ≤ 6 we have

(17)
1

S2
≤ |β(ijk)| ≤ S2.

Then either for all distinct 1 ≤ i, j, k ≤ 6 we have

(18)
1

s2
≤ |β(ijk)| ≤ s2,

or there are distinct indices 1 ≤ i0, j0, k0 ≤ 6 such that

(19)
∣∣log |β(k0j0i0)|

∣∣ ≤ log
Q

Q− 1
.
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Further , for all l = {1, . . . , 6} \ {i0, j0, k0} we have either

(20)
∣∣log |β(lj0i0)|

∣∣ ≤ log

√
Q√

Q− 1
or

∣∣log |β(k0li0)|
∣∣≤ log

√
Q√

Q− 1
.

Proof. Apply Lemma 2 with n = 6, γi = ϑ(i), 1 ≤ i ≤ 6 and D = DK .
Then there are two possibilities.

Firstly, if (15) is satisfied for all pairs of indices, then we infer that for
any distinct i, j, k,

log |β(ijk)| =
∣∣∣∣
ϑ(i) − ϑ(j)

ϑ(i) − ϑ(k)

∣∣∣∣

≤
(

log s+
log |DK |

15
− log s

6

)
−
(
− log s+

log |DK |
15

− log s

6

)

= 2 log s.

The same inequality can be derived for β(kji) = 1/β(ijk), hence we have
∣∣log |β(ijk)|

∣∣ ≤ 2 log s,

which implies (18).
Secondly, consider the case when (16) holds for some distinct i, j, k. Note

that for any Q > 1 and β ∈ R,

(21) if |β − 1| ≤ 1

Q
then

∣∣log |β|
∣∣ ≤ log

Q

Q− 1
.

Then, putting Q = (s/3)5/4, we deduce from (16) that

|β(kji) − 1| = |β(ijk)| ≤
(
s

3

)−5/4

=
1

Q
,

whence, by inequality (21), we obtain (19) with k0 = k, j0 = j, i0 = i.
Further, for any l ∈ {1, . . . , 6} \ {i0, j0, k0} observe that

β(ijk) =
ϑ(i) − ϑ(j)

ϑ(i) − ϑ(k)
=
ϑ(i) − ϑ(j)

ϑ(i) − ϑ(l)
· ϑ

(i) − ϑ(l)

ϑ(i) − ϑ(k)
= β(ijl) · β(ilk).

By |β(ijk)| < 1/Q this implies that either

|β(ijl)| ≤ 1√
Q
, or |β(ilk)| ≤ 1√

Q
,

whence using inequality (21) we obtain (20).

Let S0 > S1 > · · · > Sk. We now apply Lemma 3 repeatedly for S = Si,
s = Si+1, i = 0, . . . , k − 1. Initially (17) is satisfied for S = S0 =

√
S∗0 .

In each step we assume that (17) holds. Then either (18) is satisfied for
all indices i, j, k, in which case there is nothing to do, or we have (19) for
a triple i0, j0, k0 and, further, for all l = {1, . . . , 6} \ {i0, j0, k0} one of the
inequalities of (20) is satisfied.
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By
∣∣log |β(ijk)|

∣∣ =
∣∣log |β(ikj)|

∣∣ we have altogether 6 · 5 · 4/2 = 60 triples
i, j, k. Arrange these triples i, j, k into a sequence I1, . . . , I60 where each Im
yields a triple i, j, k. Let

λ1 =
1

2 logS
, λ2 =

1

log
Q

Q− 1

, λ3 =
1

log

√
Q√

Q− 1

and set

λIm =





λ2 if (19) is satisfied for Im,

λ3 if (20) is satisfied for Im,

λ1 otherwise.

There are 60 possibilities for the indices i0, j0, k0 in (19). Further, for each
l = {1, . . . , 6} \ {i0, j0, k0} there are two possibilities according to which part
of (20) holds. This makes altogether 480 possible distributions of the weights
λ1, λ2, λ3. As in [6], we define

ϕ(b) =




λ1 log |β(I1)|
...

λ60 log |β(I60)|


 , ϕ(g) =




λ1 log |α(I1)|
...

λ60 log |α(I60)|




and

ϕ(eh) =




λ1 log |ν(I1)
h |

...

λ60 log |ν(I60)
h |


 for h = 1, . . . , 14.

The vectors ϕ(e1), . . . , ϕ(e14) are linearly independent and we have

ϕ(b) = ϕ(g) + a1ϕ(e1) + · · ·+ a14ϕ(e14).

By the definition of the weights, in view of (19), (20) we have

‖ϕ(g) + a1ϕ(e1) + · · ·+ a14ϕ(e14)‖22 = ‖ϕ(b)‖22(22)

=
60∑

m=1

λ2
Im log2 |β(Im)| ≤ 60.

This inequality defines an ellipsoid that can be enumerated by using the
method of U. Fincke and M. Pohst [3], as in [6].

This enumeration relies on the ideas of K. Wildanger [11]. It is important
that here we have altogether four large weights in the coordinates. Since the
14 variables are already too many for this enumeration method (it is efficient
at most up to unit rank 11 or 12, see [4] or [5]), our first idea was to eliminate
three of the variables and then to have only 11 variables and one large weight.
After making several computational experiments, we found that this method
is less efficient than the present algorithm involving 14 variables and four
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large weights. Also, to have all the possible coordinates here (all 60 possible
triples) reduces the number of enumerated vectors (a1, . . . , a14) considerably
(at the price of enumerating more ellipsoids). The reason for this is that for
the enumerated points, almost all initial inequalities are satisfied, and thus
having more initial inequalities reduces the number of enumerated vectors.

In the last step

(23) ‖ϕ(g) + a1ϕ(e1) + · · ·+ a14ϕ(e14)‖22

= ‖ϕ(b)‖22 =

60∑

m=1

λ2
Im log2 |β(Im)| ≤ 60 · (2 logSk)

2

also defines an ellipsoid.
We carried out several tests in order to choose the sequence S0 > S1 >

· · · > Sk appropriately. The constant S0 is determined by (8). We made
several tests to see how large we could make Sk so that the lattice points in
the ellipsoid (23) could be enumerated. In our example we could enumerate
these lattice points within a couple of minutes with Sk = 10, but Sk = 15
was not successful (even with 12 days of CPU time on a 1 GHz PC). Then
the interval (Sk, S0) was divided into several parts (also after making several
experiments) so that each intermediate step can be performed.

6. Sieve. We only remark that, as in [6], we also used sieving modulo
a suitable prime number (see Section 6 of [6]) in enumerating the vectors
(a1, . . . , a14). This was used to get rid of the majority of possible vectors.

7. The example. Let f(x) = x6 − 5x5 + 2x4 + 18x3 − 11x2 − 19x+ 1
and let ξ be a root of f(x). Then K = Q(ξ) is a totally real sextic field
with discriminantDK = 592661, integral basis {1, ξ, ξ2, ξ3, ξ4, ξ5} and Galois
group S6. (Hence we have d = 1 in the representation (2).) The fieldsQ(ξ(1)+

ξ(2)),Q(ξ(1)ξ(2)) are in this case the same. The minimal polynomial of ξ(1)ξ(2)

is

F (x) = x15 − 2x14 − 79x13 + x12 + 2311x11

+ 3943x10 − 23190x9 − 77373x8 − 22532x7 + 145057x6

+ 110573x5 − 36269x4 + 996x3 + 344x2 − 11x− 1,

the field L1,2 = Q(ξ(1)ξ(2)) has discriminant 123374497805640685368241. In
the example we have d0 = 1. The fundamental units in L1,2 were computed
by Kash [2]; it would be far too long to include their explicit forms here.

Using the estimates for the linear form in the logarithms in (6) we have
c1 = 2.394, c2 = 21.4 and finally we obtain the upper bound AB = 10122 for
A = max1≤i≤14 |ai|.
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The table below gives a summary of the reduction procedure. In each
step C is the constant used in Lemma 1, and “digits” shows the accuracy
used.

Step A < ‖b1‖ > C Digits New bound for H CPU time

I 10122 5.12 · 10124 101300 1500 6502 300 min

II 6502 3.39 · 106 1090 120 484 7 min

III 484 2.47 · 105 1065 85 352 5 min

IV 352 180224 1062 85 336 4 min

The most interesting (and time consuming) part of the computation
was the enumeration process. By (8) we had S∗0 = 103125, hence we put
S0 = 101563. In the following table we describe the steps of the enumeration
process. Note that while enumerating the ellipsoids we also used sieving
modulo 5869. We display S = Si, s = Si+1, the approximate number of
the enumerated vectors in all the 480 ellipsoids, the number of vectors that
survived the sieve, the accuracy and the CPU time (the total for the 480
ellipsoids). Note that the CPU times refer to a 1 GHz PC running under
Linux. The last line refers to the last ellipsoid (23).

Step S s Enumerated Survived Digits CPU time

I 101563 1050 0 0 200 12 hours

II 1050 1010 0 0 100 9 hours

III 1010 107 0 0 100 6.2 hours

IV 107 105 0.004 · 106 3 100 4 hours

V 105 104 0.12 · 106 112 100 2.2 hours

VI 10000 7000 0.048 · 106 79 50 7 hours

VII 7000 5000 0.12 · 106 121 50 6 hours

VIII 5000 3000 0.26 · 106 308 50 4.5 hours

IX 3000 2000 0.52 · 106 488 50 2.5 hours

X 2000 1000 2.8 · 106 2069 50 7 hours

XI 1000 500 8.6 · 106 6787 50 16 hours

XII 500 400 6.2 · 106 4963 50 16 hours

XIII 400 300 10.56 · 106 8440 50 22 hours

XIV 300 200 26.4 · 106 18353 50 36 hours

XV 200 150 29.7 · 106 22228 50 53 hours

XVI 150 100 67.2 · 106 46101 50 96 hours

XVII 100 50 278.4 · 106 190300 50 384 hours

XVIII 50 20 120.0 · 106 850644 50 1632 hours

XIX 20 10 883.2 · 106 758542 50 1128 hours

XX 10 50.6 · 106 34412 50 0.5 hours
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Altogether there were 1943950 vectors that survived the sieve out of
1484.7 · 106 enumerated vectors. The total CPU time for the enumeration
(involving the first sieve) was 3443.9 hours (that is, 143 days or 4.8 months).
These routines were running on a machine with six parallel 1 GHz processors
under Linux, so the real time was about one month. Note that the CPU time
for the enumeration of the last ellipsoid (23) with S = 10 was short. The
enumeration of this last ellipsoid with S = 15 was not successful within two
weeks. Hence we could not diminish the critical CPU times in steps XVII,
XVIII.

The following processes took just a couple of minutes. We performed
a second sieving using the prime 12421 which allowed only 23308 vectors
out of the above 1943950 possible vectors. It turned out that there are only
199 distinct vectors out of these 23308 vectors (the same vectors can of
course be contained in several ellipsoids). The third sieve was performed
with the prime 78277, there remained 45 possible vectors which survived
also a fourth sieve with the prime 68813. All these 45 surviving vectors
yielded a solution of (3). These solutions are listed in the following table.
Note that if (y1, . . . , y6) is a solution then so also is (−y1, . . . ,−y6) but we
list only one of them. (Recall that in the representation (2) we have d = 1.)

(y2, y3, y4, y5, y6) =

(1, 0, 0, 0, 0), (−1, 1, 0, 0, 0), (−2,−2, 1, 0, 0), (2, 7,−2,−3, 1),

(4, 9,−3,−3, 1), (−4, 12, 0,−4, 1), (5,−1,−3, 1, 0), (−5,−5, 4, 2,−1),

(5, 6,−2,−3, 1), (−5, 9, 1,−4, 1), (5, 9,−3,−3, 1), (−6, 2, 3,−1, 0),

(6,−5,−2, 1, 0), (6, 8,−3,−3, 1), (7, 1,−4, 1, 0), (−7, 6, 2,−1, 0),

(−7,−6, 5, 2,−1), (8, 10,−4,−3, 1), (9, 10,−4,−3, 1), (10, 0,−4, 1, 0),

(10, 8,−6,−2, 1), (−10,−17, 6, 6,−2), (11, 3,−8, 2, 0), (−11,−7, 6, 2,−1),

(−11,−13, 7, 5,−2), (−11, 18, 2,−5, 1), (12, 7,−6,−2, 1),

(−13,−6, 6, 2,−1), (13, 15,−8,−5, 2), (−14,−14, 8, 5,−2),

(16, 16,−9,−5, 2), (17, 16,−9,−5, 2), (18, 11,−10,−4, 2),

(20, 22,−11,−8, 3), (21,−10,−8, 6,−1), (22, 24,−12,−8, 3),

(23, 14,−12,−4, 2), (−26,−20, 14, 7,−3), (43, 45,−21,−14, 5),

(−46,−45, 26, 15,−6), (108, 106,−63,−36, 15), (−119,−118, 68, 40,−16),

(153,−26,−126, 75,−12), (173, 167,−105,−58, 25),

(−590,−585, 336, 198,−79).
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