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1. Introduction. In this article, we prove a generalisation of the
Mertens theorem for prime numbers to number fields and algebraic vari-
eties over finite fields, paying attention to the genus of the field (or the
Betti numbers of the variety), in order to make it tend to infinity and thus
to point out the link between it and the famous Brauer–Siegel theorem.
Using this we deduce an explicit version of the generalised Brauer–Siegel
theorem under GRH, and a unified proof of this theorem for asymptotically
exact families of almost normal number fields.

The classical Brauer–Siegel theorem describes the asymptotic behaviour
of the quantity hR (the product of the class number and the regulator)
in a family of number fields with growing genus under the conditions that
the genus grows much faster than the degree and assuming some additional
properties like normality or the Generalised Riemann Hypothesis (GRH) to
deal with the Siegel zeroes. These two hypotheses are of different nature:
omitting the first changes the final result, while the second is a technical
hypothesis. Tsfasman and Vlăduţ [9] were able to remove the first hypothe-
sis, which led to the so called generalised Brauer–Siegel theorem, and Zykin
[10] was able to replace “normality” by “almost normality” in the second
hypothesis by using results of Stark and Louboutin. He also managed to
generalise the Brauer–Siegel theorem to the case of smooth absolutely irre-
ducible projective varieties over finite fields.

As for the Mertens theorem, proven by Mertens in the case of Q, and
much later generalised by Rosen [5] to both number and function fields, it
can be regarded as the Brauer–Siegel theorem in the global field or variety
constituting the family. An explicit Mertens theorem leads therefore to an
explicit formulation of the generalised Brauer–Siegel theorem. We first recall
the formulations of the (generalised) Brauer–Siegel theorem and Mertens
theorem, then we prove their explicit versions for number fields and smooth
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projective absolutely irreducible varieties over finite fields, and finally we
deduce the explicit generalised Brauer–Siegel theorem.

2. Around the Brauer–Siegel theorem. Let us now recall the no-
tations and definitions involved in the generalized Brauer–Siegel theorem,
and state it for global fields and smooth absolutely irreducible projective
algebraic varieties (s.a.i.p.a.v.) over a finite field Fr. Throughout this paper
we will write (NF) and (V) to say that something is true in the case of
number fields and s.a.i.p.a.v. respectively.

2.1. Number field case. Given a number field K, let ζK be the zeta func-
tion of K and κK be its residue at s = 1. The genus of K is log

√

|Discr(K)|.
Denote by Φq(K) the number of places of K whose norm is equal to q. We
will say that a number field L is almost normal if there exists a tower
L0 ⊂ · · · ⊂ Ln = L of fields such that Li+1 is normal over Li for all i.

For any sequence (Ki)i∈N of finite extensions of Q denote by gi the genus
of Ki and by ni its degree. Recall that a sequence (Ki)i∈N of number fields
is said to be a family if Ki is not isomorphic to Kj for i 6= j (see [9]).
For any real number g, there are only a finite number of number fields
whose genus does not exceed g. Therefore, in any family, the sequence (gi)
tends to +∞. A family (Ki)i∈N is said to be asymptotically exact if φq :=
limΦq(Ki)/gi exists for all prime powers q and if φR := lim r1(Ki)/gi and
φC := lim r2(Ki)/gi exist, where r1(Ki) and r2(Ki) stand for the number
of real and complex places of Ki respectively. We put φ∞ = φR + 2φC.
Being asymptotically exact is not a restrictive property. In fact, every tower
of global fields is asymptotically exact, and each family of number fields
contains an asymptotically exact subfamily. In the classical Brauer–Siegel
theorem, all the φq are zero because of the assumption ni/gi → 0:

Theorem 1 (Classical Brauer–Siegel). Let (Ki)i∈N be a family of num-

ber fields. Assume that the fields Ki are normal over Q or that GRH holds,
and assume that limi ni/gi = 0. Then log hiRi ∼ gi.

Using the class number formula

κK =
2r1(2π)r2

w|dK |1/2
hR,

this result can be reformulated in this way:

lim
i

log κKi

gi
= 0.

Suppressing the second hypothesis leads to the Tsfasman–Vlăduţ Brauer–
Siegel theorem (T-V Brauer–Siegel). This time, the φq are not always zero:

Theorem 2 (T-V Brauer–Siegel (2002)). Let (Ki)i∈N be an asymptoti-

cally exact family of number fields. Assume that either GRH holds, or (Ki) is
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a family of almost normal number fields. Then the limit κ = limi log(κKi
)/gi

exists and satisfies

κ =
∑

q

φq log

(

q

q − 1

)

<∞,

where the sum is taken over all powers of prime numbers.

In [9], Tsfasman and Vlăduţ proved this theorem without the assumption
of GRH for asymptotically good families of almost normal number fields
(this means limni/gi > 0), and Zykin [10] proved it also for asymptotically
bad families. In order to get this result, we have to deal with two inequalities,
but one of them is always satisfied:

Theorem 3 (Brauer–Siegel Inequality). Let K = (Ki)i∈N be an asymp-

totically exact family of number fields. Then

lim sup
i

log κKi

gi
≤

∑

q

φq log

(

q

q − 1

)

<∞.

The difficulties come from the second inequality

∑

q

φq log

(

q

q − 1

)

≤ lim inf
i

log κKi

gi
,

which requires technical assumptions.

2.2. Case of algebraic varieties over a finite field. Consider an algebraic
variety X of dimension d, defined over a finite field Fr. Suppose that X is
smooth, projective and absolutely irreducible and let |X| denote the set of its
closed points. For p ∈ |X| and k(p) its residue field, let deg(p) = [k(p) : Fr].
For m ≥ 1 define the Φ-numbers as before:

Φrm := #{p ∈ |X| | deg(p) = m}.
Put X = X⊗F where F = Fr is the algebraic closure of Fr. Let ℓ be a prime
different from p. Let bi = dimH i(X,Qℓ) for 0 ≤ i ≤ 2d be the Betti numbers
for the ℓ-adic etale cohomology of X. As X is smooth, they do not depend
on ℓ and satisfy bi = b2d−i by Poincaré duality. Let bX = maxi=0,...,2d bi. In
the case of dimension 1, b0 = b2 = 1 and b1 = g, so bX = max(g, 1). In this
theory the quantity bX will play the role of the genus of number fields (and
function fields). Since the asymptotic theory of varieties of dimension higher
than 1 is not yet well understood, we do not know exactly which quantity
is the exact analogue of the genus. We choose bX because it was easier to
compute the sums, but it might happen that the sum of bi’s or a sum with
coefficients depending on r could make a better choice. However, unless we
want to increase r or d unboundedly, all these choices are equivalent.
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By the famous Deligne–Grothendieck theorem, the zeta function of X
satisfies

Z(X, t) =

2d
∏

i=0

Pi(t)
(−1)i+1

, where Pi(t) =

bi
∏

j=1

(1 − ωi,jr
i/2t),

ωi,j being algebraic numbers of modulus 1 and P0(t) = 1−t, P2d(t) = 1−rdt.
We will consider ζX(s) = Z(X, r−s) and κX = Ress=dζX .

Let us fix the dimension d, and let (Xi)i∈N be a family of s.a.i.p.a.v.
of dimension d. We say that the family (Xi)i∈N is asymptotically exact if
bXi

→ ∞ and, for all m ≥ 1, the limit φrm = limi Φrm(Xi)/bXi
exists.

We can now formulate a generalisation of the Brauer–Siegel theorem
for varieties of dimension d. It was proved by Tsfasman and Vlăduţ in the
function field case [9], and by Zykin (unpublished) in the case of d > 1,
using a different definition of bX .

Theorem 4. Let (Xi)i∈N be an asymptotically exact family of s.a.i.p.a.v.

of dimension d defined over Fr. Then κ = limi log(κXi
)/bXi

exists and sat-

isfies

κ =
∞
∑

m=1

φrm log

(

rdm

rdm − 1

)

.

Unfortunately, we do not know any reasonable interpretation of the
residue of the zeta function at s = d, such as we have for s = 1 through the
class number formula in the number field and function field cases.

3. Mertens theorem and its relation to the generalised Brauer–

Siegel theorem. If one wants to get an explicit version of the generalized
Brauer–Siegel equality, one needs to know what happens explicitly between
the residue κKi

and
∑

q≤x φq log q
q−1 at the finite steps of the family. This

is given by the Mertens theorem.

Theorem 5 (Mertens). For any number field K and any s.a.i.p.a.v. X,
one has, as N, x→ ∞:

(V)
∏

P∈|X|
deg(P )≤N

(

1 − 1

NP d

)

=
e−γX

N
+ OX

(

1

N2

)

,

(NF)
∏

P∈Pf (K)
NP≤x

(

1 − 1

NP

)

=
e−γK

log x
+ OK

(

1

log2 x

)

,

(NF&GRH)
∏

P∈Pf (K)
NP≤x

(

1 − 1

NP

)

=
e−γK

log x
+ OK

(

1√
x

)

,
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where
(V) γX = γ + log(κX log r),

(NF) γK = γ + log κK ,

Pf (K) being the set of the non-archimedean places of K, and NP denoting

the absolute norm of the place P.

The function field and number field cases are due to Rosen, who proved
them following the classical proof of the Mertens theorem [2]. But he paid no
attention to the behaviour of the constants in field extensions. Unfortunately
we did not know about his work before having finished ours. Mireille Car
also proposed in [1] a different proof in the case of function fields. In the
number field case, we also follow the classical Mertens proof with small
variations in order to get an explicit version of this theorem, which takes
into account the genus and the degree of K. In the case of varieties over
finite fields, we present a natural proof using explicit formulae. We prove in
fact the following sharper results:

Without assuming GRH, we have to deal with exceptional zeroes. A real
zero ̺ of ζK is said to be exceptional if 1 − (8g)−1 ≤ ̺ < 1. A number
field has at most one exceptional zero. A real zero ̺ is a Siegel zero if
1 − (32g)−1 ≤ ̺ < 1.

Theorem 6. Let K be a number field. Then

(NF)
∑

q≤x

Φq log

(

q

q − 1

)

= log log x+ γ + log κK + τ1(x) +
1

1 − ̺
τ2(x),

and there exist effective constants C,C1, C2 such that , for all x ≥ Cng2,

|τ1(x)| ≤ C1
1

log x
,

|τ2(x)|







≤ C2
1

log x
if K has an exceptional zero ̺,

= 0 otherwise.

The condition on x does not allow us to have explicit results as in the
case where GRH holds, but these results, combined with Theorem 3, lead
us to a unified proof of the Brauer–Siegel theorem, and to other nice results
around the Brauer–Siegel theorem and the family of φq’s.

Corollary 1. Let (Ki) be an asymptotically exact family of almost

normal number fields. Then the limit limi→∞ log(κKi
)/gKi

= κ exists and

satisfies
∑

q

φq log

(

q

q − 1

)

= κ,

the sum being taken over all prime powers q.
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We cannot suppress the hypothesis of normality, because of exceptional
zeroes that can appear in the family. But we can say something more in the
general case:

Proposition 1. Let (Ki) be an asymptotically exact family of number

fields.

(i) Assume that limi ni log(ni)/gi = 0. Then κ exists and equals 0.
(ii) Assume that the family (Ki) is asymptotically good (i.e. φ∞ > 0),

and there are infinitely many Siegel zeroes in the family. Then
∑

q

φq log

(

q

q − 1

)

≤ φ∞ log

(

e

φ∞

)

.

If we assume GRH, then there is no condition on x, and we have the
following result, which leads to an explicit version of the generalised Brauer–
Siegel theorem.

Theorem 7 (GRH Mertens theorem). Assume that GRH holds. For

any number field K and any s.a.i.p.a.v. X, one has, as N, x→ ∞:

(V)

N
∑

m=1

Φrm log

(

rdm

rdm − 1

)

= logN + γ + log(κX log r)

+ O
(

1

N

)

+ bXO
(

r−N/2

N

)

,

(NF&GRH)
∑

q≤x

Φq log

(

q

q − 1

)

= log log x+ γ + log κK

+ nKO
(

log x√
x

)

+ gKO
(

1√
x

)

,

where the O constants are effective and depend neither on X, nor on K.

Corollary 2. Let (Ki) be an asymptotically exact family of

number fields, and (Xi) a family of s.a.p.a.i.v. of dimension d. Assume

GRH in the number field case. Then limi→∞ log(κKi
)/gKi

= κ (resp.
limi→∞ log(κXi

)/gXi
= κ) exists, and

(V)
∑

q≤rN

φq log

(

q

q − 1

)

= κ+ O
(

r−N/2

N

)

,

(NF&GRH)
∑

q≤x

φq log

(

q

q − 1

)

= κ+ O
(

log x√
x

)

.

4. Proof of the Mertens theorem

4.1. Proof in the number field case. To prove the Mertens theorem for
number fields, we follow the nice proof of the classical Mertens theorem of
[2] as Rosen does in his article, but we use another counting function for
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prime ideals. In addition, we need a precise version of the Mertens theorem,
so we will have to do the work once again, sketching Rosen’s proofs.

Let K be a number field, n = [K : Q] and g = 1
2 log |Discr(K)|. Put

π(x) := #{P ∈ P (K) | NP ≤ x}. One can estimate π(x) by the following
bound due to Lagarias and Odlyzko, and improved by Serre [6]:

Consider the Li-function defined by

Li(x) =

x\
2

dt

log t
.

Theorem 8 (Prime ideals theorem).

(NF) π(x) = Li(x) +∆(x),

where, for all x such that

(C1) log x ≥ c3ng
2,

we have
|∆(x)| ≤ Li(x̺) + c1x exp (−c2n−1/2 log1/2 x),

the term Li(x̺) being only present if ζK has an exceptional zero ̺. Under

GRH, one has a stronger result for all x ≥ 2:

(NF&GRH) |∆(x)| ≤ cx1/2(2g + n log x).

First, we will give an asymptotic expression for
∑ 1

NP :

Proposition 2.
∑

NP≤x

1

NP
= log log x+B + o(1).

Proof. We have

C(x) =
∑

NP≤x

1

NP
= C(2) +

x\
2

dπ(t)

t
= C(2) +

x\
2

dt

t log t
+

x\
2

d∆(t)

t
,

thus
∑

NP≤x

1

NP
=

x\
2

dt

t log t
+
∆(x)

x
+

x\
2

∆(t) dt

t2
.

The prime ideals theorem implies that
x\
2

dt

t log t
+

∆(x)

x
= log log x− log log 2 + o(1) as x→ ∞.

It remains to prove that
Tx
2(|∆(t)|/t2) dt is convergent, which is the case ifTx

2 Li(t̺)t−2 dt and
Tx
2 c1t exp(−c2n−1/2 log1/2 t)t−2 dt are convergent.

Since ̺ < 1 and

Li(t̺) ∼ t̺

log t̺
, as t→ ∞,

the integral
Tx
2 Li(t̺)t−2 dt is convergent.
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In order to prove the convergence of the second integral, we need the
following lemma:

Lemma 1. For all x such that

(C2) log x ≥ 322c−2
2 n log2

(

n1/2

c2

)

,

we have

exp(−c2n−1/2 log1/2 x) ≤ log−2 x.

Proof of Lemma 1. Put y = log1/2 x and a = n1/2/c2. Consider f(y) =
y4 exp(−y/a). We have to prove that f(y) < 1 if y is large enough. One can
easily see that f is decreasing for y ≥ 4a. Assume first that a ≤ e. Then
y = 16a satisfies f(y) ≤ 1. Indeed,

f(16a) = 216a4e−16 =
216

e12

a4

e4
≤ 1.

If a > e, then y = 32a log a fits. Indeed,

f(y) = 324a4 log4(a)e−32 log a =
220

a24

log4 a

a4
≤ 1,

finishing the proof.

Therefore we have exp(−c2n−1/2 log1/2 t) = O(log−2 t), thus
x\
2

t exp(−c2n−1/2 log1/2 t) dt

t2
is convergent

and we get the expansion of Proposition 2.

We now make the residue appear by calculating the constant term B.

Proposition 3.

B =
∑

P

{

log

(

1 − 1

NP

)

+
1

NP

}

+ γ + log κK .

Proof. For a complete proof, we refer to the article of Rosen [5]; let us
still give a sketch. Write C(x) = log log x+B + ε(x). For δ > 0 define

g(δ) =
∑

P

1

NP 1+δ
, f(δ) = g(δ) − log ζ(1 + δ).

After some computation using the Abel transform, we find g(δ) = B − γ −
log δ + O(δ). Comparing with log ζK(1 + δ) = − log δ + log κK + O(δ), we
get f(δ) = B− γ − log κK +O(δ). Taking the limit as δ → 0, we obtain the
assertion.

We finally conclude that
∑

NP≤x

log

( NP

NP − 1

)

= log log x+ γ + log κK + o(1).
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Let us now estimate the error term

ε(x) = ∆(x)x−1 −
∞\
x

∆(t)t−2 dt,

as a function of n and g.

Proposition 4. There are computable constants such that :

(GRH) |ε(x)| ≤ cx−1/2(6g + 3n log x+ 2n) for any x ≥ 2,

|ε(x)| ≤ c4
1

̺ log x
(1+(1−̺)−1) + 2c1 log−1 x for any x≫ 1,

x ≫ 1 meaning that x must satisfy conditions (C1) and (C2), the term

involving ̺ being present only if ζK has an exceptional zero.

Proof. Assuming GRH, we obtain directly

|ε(x)| ≤ cx−1/2(2g + n log x) +

∞\
x

ct−3/2(2g + n log t) dt,

|ε(x)| ≤ cx−1/2(2g + n log x) + 2cx−1/2(n log x+ 2n+ 2g),

and finally

(GRH) |ε(x)| ≤ cx−1/2(6g + 3n log x+ 4n).

If we do not believe in GRH, we have to use the prime ideal theorem
again: for x satisfying (C1),

|∆(x)| ≤ Li(x̺) + c1x exp(−c2n−1/2 log1/2 x).

Consider first the term ∆1 := Li(x̺). Put

ε1(x) = ∆1(x)x
−1 −

∞\
x

∆1(t)t
−2 dt.

Let c4 be a constant such that Li(x) ≤ c4x log−1 x (for example (1−log 2)−1).
Then

|ε1(x)|/c4 ≤ 1

̺ log x
+

∞\
x

dt

̺t2−̺ log t
.

We can thus easily bound the first error term by

|ε1(x)|/c4 ≤ 1

̺ log x
(1 + (1 − ̺)−1).

We now deal with the second error term

∆2(x) = c1x exp(−c2 n−1/2 log1/2 x).
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Using Lemma 1, for x satisfying condition (C2), we have

exp(−c2n−1/2 log1/2 x) ≤ log−2 x.

Put

ε2(x) = ∆2(x)x
−1 −

∞\
x

∆2(t)t
−2 dt.

Thus, for x satisfying (C1) and (C2) (note that (C2) is very weak as com-
pared to (C1)) and x ≥ e, we obtain

ε2(x) ≤ c1(log−2 x+ log−1 x) ≤ 2c1 log−1 x.

End of proof of the Mertens theorem. Let us start with the equality
∑

NP≤x

1

NP
= log log x+BK + εK(x).

One has
∑

NP≤x

log

( NP

NP − 1

)

= log log x+
∑

NP>x

{

log

(

1 − 1

NP

)

+
1

NP

}

+ γ + log κK + εK(x).

We can bound the remainder term in the following way:
∣

∣

∣

∣

∑

NP>x

{

log

(

1 − 1

NP

)

+
1

NP

}∣

∣

∣

∣

≤
∑

NP>x

1

NP 2
.

This sum can be calculated easily under GRH using the prime ideal theorem:

D(x) =
∑

NP>x

1

NP 2
=

∞\
x

dt

t2 log t
+

∞\
x

t−2 d∆(t)

≤ 1

x log x
+

|∆(x)|
x2

+ 2

∞\
x

|∆(t)|t−3 dt,

therefore

(GRH) D(x) ≤ 1

x log x
+

10g + 3n log x

3x
√
x

+
2n

x
for any x ≥ 2.

Without GRH, we can use the bound for π(x) (see [6]) valid for

(C3) log x ≥ c5g log 2g log log 12g,

namely

π(x) ≤ c6x log−1 x.

We have

D(x) =
∑

NP>x

1

NP 2
=

∞\
x

dπ(t)

t2



Generalised Mertens and Brauer–Siegel theorems 343

and, for x sufficiently large,

D(x) = −π(x)

x2
+ 2

∞\
x

π(t)t−3 dt ≤ 2c6

∞\
x

t−2 log−1 t dt ≤ 2c6
x log x

.

Putting all this together, we obtain the following. For x satisfying con-
ditions (C1)–(C3),

∑

NP≤x

log

( NP

NP − 1

)

= log log x+ γ + log κK

+ O
(

1

log x

)

+
1

1 − ̺
O

(

1

log x

)

,

where the ̺-term is only present if K has an exceptional zero. The classical
Mertens theorem follows by an easy application of the Taylor expansion.

Under GRH, we obtain a stronger result for x ≥ 2:

∑

NP≤x

log

( NP

NP − 1

)

= log log x+ γ + log κK

+ nO
(

log x√
x

)

+ gO
(

1√
x

)

,

which leads to the Mertens theorem under GRH.

4.2. Proof in the case of algebraic varieties. We first establish the
Mertens theorem in the case of smooth absolutely irreducible projective
algebraic varieties. The generalised Brauer–Siegel theorem follows immedi-
ately from it.

For any sequence (vn) such that the radius ̺ of convergence of the series
∑

vnt
n is strictly positive, put

ψm,v(t) =
∞

∑

n=1

vmnt
mn,

and ψv(t) = ψ1,v(t). For t < r−d̺, we have the explicit formulae:

Theorem 9 (Explicit formula, see [3]).

∞
∑

f=1

fΦrfψf,v = ψv(t) + ψv(r
dt) +

2d−1
∑

i=1

(−1)i
bi

∑

j=1

ψv(r
i/2ωi,jt).

Choose N ∈ N and take vn(N) = 1/n if n ≤ N , and 0 otherwise.
Applying the explicit formula with t = r−d, we get

S0(N) = S1(N) + S2(N) + S3(N),
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where

S0(N) =
N

∑

n=1

n−1r−dn
∑

m|n

mΦrdm ,

S1(N) =

N
∑

n=1

1

n
,

S2(N) =
N

∑

n=1

1

nrdn
,

S3(N) =
2d−1
∑

i=1

(−1)i
bi

∑

j=1

N
∑

n=1

1

n
(ri/2−dωi,j)

n.

Lemma 2.

0 ≤
N

∑

f=1

Φrf log

(

rdf

rdf − 1

)

− S0(N) ≤ 8

NrdN/2
+

6b

Nr(d+1/2)N/2
.

Proof of Lemma 2. Let us first transform the expression of S0:

S0(N) =
N

∑

f=1

E(N/f)
∑

m=1

fΦrf r−dfm(fm)−1 =
N

∑

f=1

Φrf

E(N/f)
∑

m=1

1

rdfmm
.

Then we evaluate S0:

0≤
N

∑

f=1

Φrf log

(

rdf

rdf−1

)

−S0(N) =

N
∑

f=1

Φrf

(

log

(

rdf

rdf−1

)

−
E(N/f)
∑

m=1

1

rdfmm

)

=

N
∑

f=1

Φrf

∞
∑

m=E(N/f)+1

1

rdfmm
.

As 1/m ≤ 1/(E(N/f) + 1), we get

0 ≤
N

∑

f=1

Φrf log

(

rdf

rdf − 1

)

−S0(N) ≤
N

∑

f=1

Φrf

(E(N/f) + 1)(rdf )E(N/f)(rdf − 1)
.

In order to deal with Φrf we use

Φrf ≤ rdf + 1 +
∑2d−1

i=1 rif/2bi
f

.

Let b = bX = maxi(bi). We obtain

Φrf ≤ 1

f

(

rdf + 1 + b
2d−1
∑

i=1

rif/2
)

≤ 1

f

(

rdf + 1 + brf/2 r
(2d−1)f/2 − 1

rf/2 − 1

)

≤ 1

f
(rdf + 1 + 2brdf−f/2).
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Thus

0 ≤
N

∑

f=1

Φrf log

(

rdf

rdf −1

)

−S0(N) ≤ 1

N

N
∑

f=1

(rdf + 1 + 2brdf−f/2)(rdf −1)−1

rdfE(N/f)
.

We split our sum in two in the following way: for f > E(N/2) where
E(N/f) = 1, and for f ≤ E(N/2) where we use fE(N/f) ≤ N − f. Hence

0 ≤
N

∑

f=1

Φrf log

(

rdf

rdf − 1

)

− S0(N) ≤ 1

N

E(N/2)
∑

f=1

2 + 4br−f/2

rd(N−f)

+
1

N

N
∑

f>E(N/2)

2 + 4br−f/2

rdf

≤ 8 + 12br−N/4

NrdN/2
.

We finally obtain the following inequality:

0 ≤
N

∑

f=1

Φrf log

(

rdf

rdf − 1

)

− S0(N) ≤ 8

NrdN/2
+

6b

Nr(d+1/2)N/2
.

In order to estimate S1 we use the following well-known inequality
(see [2]):

Lemma 3.
1

N(N + 1)
≤ S1(N) − logN − γ ≤ 1

N
.

Lemma 4.

0 ≤ log

(

rd

rd − 1

)

− S2(N) =
∞
∑

n=N+1

1

nrdn
≤ 1

rdN (N + 1)(rd − 1)
.

Proof of Lemma 4. S2 is the partial summation of the entire func-

tion log
(

rd

rd−1

)

. The inequality comes from the estimation of the remainder
term.

Let us recall first that

log(κX log r) − log

(

rd

rd − 1

)

=
2d−1
∑

i=1

(−1)i+1
bi

∑

j=1

log(1 − ri/2−dωi,j).

Compute now S3:

Lemma 5.
∣

∣

∣
S3(N) −

2d−1
∑

i=1

(−1)i+1
bi

∑

j=1

log(1−ri/2−dωi,j)
∣

∣

∣
≤ b

(r1/2−1)(N + 1)(rN/2−1)
.
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Proof of Lemma 5. Consider

R(N) =
∣

∣

∣
S3(N) −

2d−1
∑

i=1

(−1)i+1
bi

∑

j=1

log(1 − ri/2−dωi,j)
∣

∣

∣
.

One has

R(N) =

∣

∣

∣

∣

2d−1
∑

i=1

(−1)i
bi

∑

j=1

∞
∑

n=N+1

1

n
(ri/2−dωi,j)

n

∣

∣

∣

∣

,

therefore

R(N) ≤
2d−1
∑

i=1

bi
∑

j=1

1

N + 1

∞
∑

n=N+1

(ri/2−d)n ≤ 1

N + 1

2d−1
∑

i=1

bi(r
i/2−d)N+1

1 − ri/2−d
,

and

R(N) ≤ b

(r1/2 − 1)(N + 1)rdN

2d−1
∑

i=1

riN/2,

which leads to the result.

Putting everything together. We deduce that for N large enough,

log
N
∏

f=1

(

1 − 1

rdf

)Φ
rf

= − logN − γ + log

(

1 − 1

rd

)

− log

(

1 − 1

rd

)

− log(κX log r) + O
(

1

N

)

+ bO
(

r−N/2

N

)

,

where the O constants do not depend on X.

5. Proof of the generalised Brauer–Siegel theorem

5.1. Without GRH. If we do not believe in the generalised Riemann
hypothesis, we have to take into account the conditions on x which forbid us
to take the limit. Consider an asymptotically exact family (Ki) of number
fields, and divide it into three subfamilies. The first one consists of the
fields that have no exceptional zeroes, the second of the fields that do have
exceptional zeroes but no Siegel zero, and the last of the fields that have a
Siegel zero. If one of the subfamilies is finite, we omit it.

Let us focus on the second and third families, the case of the first one
being much easier because of the absence of the ̺-term (or take ̺ = 0 in

the following). Let us specialise the Mertens theorem to x = eCng2(1−̺)−1
,

where C is large enough to allow x satisfy all the three conditions. Thus, for
g large enough and an explicit constant M ,

(∗)
∣

∣

∣

∣

∑

q≤eCng2(1−̺)−1

Φq

g
log

(

q

q − 1

)

− log κ

g

∣

∣

∣

∣

≤M
log g

g
− log(1 − ̺)

g
.
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Lemma 6. Consider the family (Ki) and its exceptional zeroes ̺i. Sup-

pose that

lim
i

log(1 − ̺i)/gi = 0.

Then κ exists and

κ =
∑

q

φq log

(

q

q − 1

)

.

Let us assume the lemma. Look first at the second subfamily still denoted
by (Ki). Each ζKi

has an exceptional zero satisfying 1 − (8g)−1 ≤ ̺ <
1 − (32g)−1, thus (1 − ̺)−1 ≤ 32g. Taking the logarithm, we see that this
family satisfies the condition of the lemma.

The case of the third subfamily, which is still denoted by (Ki) for conve-
nience, is not so easy, because ̺ can get very close to 1. In order to control
the ̺-term, we need to assume that the fields are almost normal (or some
additional condition as below). Indeed, thanks to Stark we know that a
Siegel zero ̺ of an almost normal number field K is also a Siegel zero of a
subextension of K of degree 2 over Q (see [7]). In addition, we can estimate
(1 − ̺)−1 as follows [4]:

Lemma 7. Let K be a number field of degree nK > 1. Then

1

1 − ̺K
≤ κ−1

K

(

gK

nK

)nK

.

Let (ki) be a family of quadratic extensions of Q having the same Siegel
zeroes as (Ki). Lemma 7 yields

− log(1 − ̺Ki
) = − log(1 − ̺ki

) ≤ − log κki
+ 2 log

(

gki

2

)

.

Thus we obtain

0 < − log(1 − ̺Ki
)

gKi

≤ − log κki

gKi

+ 2g−1
Ki

log

(

gki

2

)

.

As ki ⊂ Ki, we have gKi
≥ gki

; both terms of the right side of the inequal-
ity tend to zero as i → ∞. The second term, if positive, can be bounded
by g−1

ki
log κi and we use the classical Brauer–Siegel theorem for quadratic

fields which says that it tends to 0. We then apply Lemma 7 to deduce the
generalised Brauer–Siegel theorem.

We still have to prove the preceding lemma.

Proof of Lemma 6. Put

fg(q) =
Φq

g
log

(

q

q − 1

)

δg(q),
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where δg(q) = 1 if q ≤ eCng2(1−̺)−1
, and 0 otherwise. Now let the genus tend

to infinity (gKi
being gi again). As

sup
i≫1

∑

q

fgi
(q) ≤ sup

i

log κKi

gi
+ 1,

this last quantity being well defined because of the basic inequality of [9],
we can apply the Fatou lemma to obtain

∑

q

φq log

(

q

q − 1

)

=
∑

q

lim inf
i→∞

fgi
(q)

≤ lim inf
i→∞

∑

q

fgi
(q) = lim inf

i→∞

log κKi

gi
.

Combining this result with the Brauer–Siegel inequality (Theorem 3), we de-
duce the existence of the limit of log(κKi

)/gi, which equals
∑

q φq log
( q

q−1

)

.

Note that in the case of the first subfamily, the proof becomes easier, be-
cause we do not have to deal with the ̺-term. Specialising to x = eCng2

in the
Mertens theorem (the bound in (∗) being then M(log g)/g) and suppressing

the ̺-term in fg(q) (q > eCng2
), we obtain the generalised Brauer–Siegel

theorem.

Let us now prove Proposition 1. First, we recall the following key lemma
of Stark.

Lemma 8 ([7, Lemma 8]). Let k be a number field of degree nk > 1.
Assume that there is a β ∈ R such that

1 − 1

8nk!gk
≤ β < 1

and ζk(β) = 0. Then there is a quadratic subfield F of k such that ζF (β) = 0.

Assume as before that (Ki) has an infinite number of Siegel zeroes which
do not satisfy the condition of Lemma 8.

Let us split the family (Ki) as before into three subfamilies: the first con-
taining the fields that do not have an exceptional zero, the second consisting
of the fields that have zeroes that do not satisfy the condition of Lemma 8,
and the last one consisting of those whose Siegel zeroes satisfy the condition
of the lemma. If one of these families is finite, we omit it. The first and
third cases have already been treated before, so let us consider the second
subfamily. Let us call it (Ki) again. We still have to bound g−1 log

(

1
1−̺

)

.
The exceptional zeroes satisfy

log

(

1

1 − ̺

)

≤ 8 + log n! + log g.
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As logn! ≤ n log n, we deduce that

1

g
log

(

1

1 − ̺

)

≤ n log n

g
+m

log g

g
,

where m is an explicit positive constant. Therefore this quantity tends to 0
and this completes the proof.

Suppose now that the family (Ki) is asymptotically good, and that an
infinite number of Ki’s admit a Siegel zero. Then, by Louboutin’s lemma,

1

gi
log

(

1

1 − ̺

)

≤ − log κi

gi
+
ni

gi
log

(

e
gi

ni

)

.

This leads to the result, since φ∞ = lim(ni/gi).

5.2. Assuming GRH. In the number field case, let (Ki) be a family of
fields with gi → ∞. Starting with the Mertens theorem, dividing by gi,
taking gi → ∞ (we can do this because this time there is no condition
on x), we obtain the Brauer–Siegel theorem. Indeed, the preceding subsec-
tion shows that the limit of log(κKi

)/gi exists, and the asymptotical result
follows directly.

In the variety case, let (Xi) be a family of smooth absolutely irreducible
projective algebraic varieties over Fr. We either assume the result of Zykin,
or use the bounds for Φrf that we needed for the Mertens theorem, to prove
that the series

∑

φrm log

(

rdm

rdm − 1

)

is convergent, and that

lim
b→∞

1

b

f(b)
∑

m=1

Φrm log

(

rdm

rdm − 1

)

=
∞

∑

m=1

φrm log

(

rdm

rdm − 1

)

for any function f of b satisfying

lim
b→∞

f(b) = ∞, lim
b→∞

f(b)

b
= 0.

This is a bit technical but not hard (for the case d = 1 see [8]).
Using this result in the Mertens theorem (we put N = f(b), divide by b

and make b → ∞) shows that the limit of log(κXi
)/bXi

exists. We now
divide by bXi

(for any N) in the Mertens theorem and make bXi
→ ∞ to

obtain our version of the Brauer–Siegel theorem for varieties.
One could likely obtain similar results in the non-smooth case, using

virtual Betti numbers. We hope to do this in further work. Let us conclude by
the following remark. The explicit Mertens theorem is much more interesting
than its application to the generalised Brauer–Siegel theorem, because it
contains more information, and can therefore be useful, for example, if we
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would like to look at the problem in the classical way, focusing attention on
the residues κi instead of the convergent series, and consider the limit of
κi/gi in the tower.
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