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1. Introduction. In [2] and [3], A. Knopfmacher and J. Knopfmacher
introduce a general algorithm which leads to series expansions of p-adic
numbers as sums of rational numbers. The problem of characterizing rational
numbers by such expansions is of interest here. The Knopfmachers in [3] are
able to establish a proposition which implies that, subject to a restriction
on the so-called digit set, two particular classes of their series expansions,
namely, the p-adic Sylvester and the p-adic Engel expansions are finite if
and only if they represent rational numbers. Subsequently in [1], a complete
characterization of rational numbers, without the restriction on the digit set,
via their p-adic Engel series expansions is proved, while the one via p-adic
Sylvester series expansions is still open. In another direction, a complete
characterization of rational numbers via their p-adic Liiroth series expansion
was established in [4]. The objective of this article is to complement these
earlier works and fill a gap by establishing a complete characterization of
rational numbers via their p-adic Sylvester series expansions. We mention
in passing that the situation in function fields, i.e., fields of formal Laurent
series over a finite filed, is simpler: it is shown in [5] that an element in a
function field is rational if and only if its Sylvester series expansion is finite.

Let us recall Knopfmachers’ algorithm for constructing series expansion
in the p-adic number field. Let p be a fixed prime, Q, the field of p-adic
numbers equipped with the p-adic valuation |- [, normalized so that |p|, =
p~ L, and let Zy, be the ring of p-adic integers. For A € Q,, define the order
vp(A) of A by |A], = p~*M) and v,(0) = +oo. Each A € Q, \ {0} is
uniquely representable in the form
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00
Z Cnpnv Cn € {07 17 SRRy 1}5 Cup(A) 7& 0.

n=uvp(A)
The fractional part, (A), of A is defined as the finite series
0
(A) = Z cnp” if vp(A) <0,
n=uvp(A)
0 if v,(A) > 0.

Denote the set of all fractional parts by
Sy ={(4); AeQ,} CQ.

The Knopfmachers’ series expansion algorithm proceeds as follows: for A
in Qp, let ap := (A4) € Sp. Define A; := A —aqg. If A, # 0 (n > 1) is already

defined, put
1
Ap = <A_n> € Sp,
and

(1) Apyr = <An - i) n

ap ) Tn
if a,, # 0, where r,, s, are non-zero rational numbers which may depend on
ai,...,ay. Then
1 T1
A:a0+A1:ao+—+—A2:
ai

51
1 ry 1 1 Tp—1 1 1 Th
—a0+—+——+ -+ — + Ant1.
ar 81 a2 817 8Sn—1 Gn  S1°°Sn
The process ends in a finite expansion if some A,.; = 0. If some a, = 0,

then A, is not defined. This is ruled out by imposing the condition

Up(sn) = vp(rn) = 2vp(an) — 1.

A_a0+—+z

We are interested here in the case Where rp, = S, = 1. In this case, the
algorithm yields a well-defined (with respect to the p-adic valuation) and
unique series expansion, termed p-adic Sylvester series expansion or S-series

for short, of the form
=1
A= —
ap + T; n )

where the digits a,, are, by the algorithm, subject to the restrictions

(2) ap = <A>7

Thus

*Sn anJrl
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C C
(3) an=—24- '+;1+c068p;

vp = —vp(an), ¢ €{0,1,...,p—1}, ¢, #0 (n>1).
For A, # 0, writing 1/A, = a5, + )5, c.p", say, we get
vp(anAn — 1) —vp<A Zc )>vp n)+1
r>1
and, with v, = —vp(a,) € N, it is easily checked by induction that
(4) vp>2"—1 and vy >2v,+1 (n>1).
This last inequality shows that the digits a,, are of strictly decreasing order
and so an infinite S-series can never be periodic. For r € N, define
D, :={b,:=c, +cr_ip+ -+ cop;
¢ €{0,1,....,p—1} (i=0,1,...,7), ¢, #0}.
Note that each b, € D, is bounded below and above by
(5) 1<b <(p—1D(1+p+--+p)=p " —1<p™!

To derive a characterization of rational numbers via their S-series, it
clearly suffices to consider only those numbers belonging to pZ, \ {0}. Our
characterization reads:

THEOREM 1. Let A € pZ, \ {0}. Then A € Q if and only if its S-series
is either finite, or of the form

1 1 po
-grs B2 e
where Bni1 € Nt Buat, Bnr1 < p 1L and the tail of A is of the form
W - pr i iﬂ
B by by Bbry by = ey
where B €N, pt 8,8 <p L r(1)=reN,r(i +1)=2r(i) + 1,
be=p ™ =B, by =0 T = Bby by (8> 1),

2. Proof of the theorem. That A having an S-series finite or of the
form as stated in the theorem implies that A is rational is easily checked.
It remains to show the converse, i.e., starting with any A =: A; € Q, we
show that its S-series expansion must either be finite or infinite with tail as
stated in the theorem. Keeping the notation of the last section, note that
A1 € Q implies that A,, € Q for all n > 2, and write
Un On
An=p 3,
where o, € Z, 5, € N, ged(a, 5,) = 1 and p 1 @, G-
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Since the remaining proof is quite involved, we proceed stepwise by es-
tablishing several lemmas and begin with a simplification.

LEMMA 2. If o, and a1 are both > 0, then apy1 < ap. Moreover, if
an <0, then an4+1 <0.

Proof. From the recurrence relation (1), we have A,+1 = A, —1/ay, i.e.,

® o Gl _ Qnbu —
ﬁn-{—l bl/nﬁn
Since the left-hand fraction is in lowest terms, we get

pyn+1_yna +1 < anb Vn 5n < anbm”
SO Qipt1 < (i, and the first assertion is proved. The second assertion follows

at once from (6). m

From Lemma 2 and the recurrence relation (1), if we start off with A =
A1 = p"ay /B > 0, then o > 0, and since A is a rational integer, eventually
for some m € N we must have either a,,, = 0, which yields a terminating
expansion, or a,, < 0, which yields o < 0 for all & > m, resulting in an
infinite expansion.

Henceforth, without loss of generality, we assume that all the numerators
are negative, i.e., a, <0 (n > 1).
Our next lemma shows that certain negative rational numbers have in-
finite S-series of a specific form which will be typical for what follows.
LEMMA 3. Let r,3 € N with p{ 3 and 3 < p"*'. Then we have the
following unique S-series representation:
P’ pr(l) pr(i) pr(iJrl) e pr(i)

B by briiy — Bbray- by =
where r(1) =r, r(i +1) =2r(i) + 1, b, = p"t! — 3, and
br(i—i—l) r(z-‘rl )+1 ,Bb (1) (Z) (Z > 1)

Proof. Observe first that all b, are in D,.. The result follows easily from
the following chain of relations:

7O _pru)(l NE ) Ly pe
B b B b by  Bbe)

r1) (@) 1 1 r1) (@) r(3)
_p _pr(2)( n >:p IR A
bray  br2) b bray  br2)y  Bbr)bre)

br(i)’

upon noting that 8b,(1) -~ b, < p" D+ The uniqueness is immediate by
construction. m
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The next lemma yields a complete characterization for the case where
the denominator, 3, belongs to our starting range.

LEMMA 4. If A = —p’a/B < 0; v,a,0 € N; p1 af; ged(a, 5) =1 and
B < p'tl then A has an S-series expansion of the form

1 1 Vn+1
A= — ..._|___p
ay Qan ﬁn-ﬁ-l

where Bn11 €N, pt Bni1, Bnr1 < P11 and so the tail of A is as specified
in Lemma 3.

Proof. Let —p’a/3 = A =: A1 = p" a1 /p1 < 0. The recurrence relation
(1) is Apy1 = Ap — 1/ay,, implying that A,, < 0 for all n > 2 and so the
S-series of A must be infinite. Observe that for each a,, € S,, we have

O<an<z — =D,
=0 P

(HGN),

and so we can write a,, = b, /p"", where b,,, € D,, . Thus,
0<by, <pmt—1<pntlh
Substituting A,, = p""ay, /By into the recurrence relation (1), we get
(7) by, Cnp1p” T By = (bu, i — Bn) Bt
Since ged(ap41p"" 7", Bpt1) = 1, we have 5,11 | by, Bn and so

bl/n Qpy 1py"+1 vn /Bn
ﬁn—i—l

Here and throughout, | - | denotes the usual absolute value. Since
8) vpy1 220 +120vp+ 20 1 +22> -2V + V1 + -+ 201 0,

we get

’an+1an+1_Vn‘ < = ’bunan - ﬁn’ < ’bynan‘ + ﬁn

(9) lan 1] < || + ]%.

From B,41 | bnfn, we deduce that

(10)  0< Bugt S by, B <o+ S byby, oo by, By < prrtvn-ttotvtng,
Thus, by (8) and 31 < p***+1,

ﬂn - ﬂn an71+"'+V1+n_1/Bl

(11) an+1_Vn - an+1 < p’/n"!‘]- < 17
and so
(12 o] < Janl.

It follows that for all n sufficiently large, —c,, = @ € N and the relation (7)
becomes

_bynapyn+l_yn/6n = (_bl/na - /Bn)ﬂn—i-l‘
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Since ged(a, By) = ged(a, Bpt1) = 1, this implies a = 1. Consequently, for
all large n we must have a,, = —1, and the desired result follows. =

The next lemma will ensure that the construction of S-series does not
technically enlarge the denominator.

LEMMA 5. Let M, N (> 0), a(> 2), v (> 1) be integers satisfying 0 <
(o +M)/2(a+ N) < 1. Let z,y € D,, and define

B(y) = (a+M)p" 'y — (a+ N)y* (y€ D).

Assume that

(13) z—(a+ Ny =—(a—kp"*,
where k € {—N +1,...,a—1,a}. Then
(M +E)(a—k) 9,00 a—2k—M z?
Bly) = vi2 QTN g .
;Iel%)j ) a+ N P a+tN P YT AN

Proof. Since B(y) represents a concave parabola, the sought-after max-
imum, with y € Z, must occur at

a+ M v+1
Y e e 0or1
s oo
where [z] denotes the integer part of z € R. Write
o a+M
Y3arm?P TE
Direct computation yields
(@ +M)? 500
14 B(y) = ~——ZL-p* % — N).
(14) max B(y) otV ? e'(a+N)
Using the assumption (13), we get
L a—2k-M ., x
T 20+ 7 a+ N

Substituting into (14) and using = € D,,, we get the desired result. =

The final step now is to enlarge the denominator, 3, by induction on its
range.

LEMMA 6.

(i) If A = —p”/B < 0; v,B,u (>2) are positive integers; p ¥ [ and
0 < B < pup’tt, then A has an infinite S-series expansion with tail
as in Lemma 3.

(ii) If A = —ap¥/B < 0; v, (=2), B,u (>2) are positive integers;
ptauf, ged(a,B) =1 and 0 < B < up”tl, then A has an infinite
S-series expansion with tail as in Lemma 3.
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Proof. We proceed by induction on p € N assuming that (i)—(ii) hold for
0 < B < (u—1)p”*!, with the starting cases, u = 1, already settled in Lem-
ma 4. It suffices then to consider the case where (u — 1)p** < 3 < up**+1,
> 2, from which we write

B=(u—1p" ™+ with0 <z <p’™
(i) We note the identity

P p”
B (p-1Dprti
p¥ y 1 1
TPt ((u— Dty | prH —331)
_ pI/ ,LLpQIH_l
pu+1 — (N _ 1)p2u+2 _ (,u _ 2)$1pv+1 _ :C%
P’ pag

+
prHl — By

where p"2ag /s, with v > 2v 4+ 1, is in reduced fraction form. Since p > 2,
we have

Ba < (u—1p* "2 = (u = 2)zp"™ — 2] < (u—1)p**2,
and invoking the induction hypothesis we finish the proof of (i).

(ii) In this part, we assume in addition that the result holds for all smaller
a-parts, which are the absolute values of the numerators, with the starting
case @ = 1 being confirmed in (i) and the denominator in the range in
question.

Write v := vy, 6 := (1. The construction gives

Clpyl Oépyl
15 A=A =— = —
( ) 1 51 (/’L _ 1)p1/1+1 + T

Vi

_ P o « n 1
Pt = (b= Dprtl 42 prtl —y
_ P n { (a+p—Dp"H a1 —ay }
(1 —1)

P =y PPt +{zy — (n = Dy yp ™ =z
_._
= + As.
By the algorithm, p*'*! | (21 — ay1), and since x1,y1 € D,,, we must have
Ty —oay € {—(Oé - 1)pyl+17 —(Oé - 2)pl’1+1’ SRR _pyl+1’ O}
Substituting

r1—ay, = —(a—k)p™ T, ki e{l,...,a},
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into (15), we get
—(k1 +p—1)p* ™
(B k1 —a—1)p1+2 4 (2a — p— by + D)pHly; — ayf
agp”?
65

At this point, we pause to make some important observations.

(a) If 20 — pp — k1 + 1 < 0, then
B < (u+ki—a—1)p* P2+ (20— p—ki+ 1)p" Ty —ayf < (p—1)p*1+2,
i.e., By falls inside the previous range, and we are done by induction. We
thus assume that 2o — u — k1 + 1 > 0. By Lemma 5, we have

(@ —p+1) (o — k1) }p21/1+2 I i e 1p”1+1m1

(16) Ay =

,62<{,U+k1—04—1+
« «

k —1 —1-k
_ Rl ml) e p LR
« «
If k1 <p—1, then

By < ki(p—1) p21/1+2 < (u-— 1)p21/1+2.
«

Thus, (3, falls inside the previous inductive range and the induction hypoth-
esis ends this case. If k1 > u, then

A7) B < ki(p—1) Pt 4 ki —p+1 Pt = kip—p+1 P2,

e e
which is < (u — 1)p?1+2 if and only if k1 < (a + 1)(u — 1) /. These consid-
erations show that, without loss of generality, we may assume a > p.

(b) If p| (k1 + p — 1), then the power of the prime p in the numerator of
(16) is larger, i.e., vy > 214 + 2, which forces (2 to fall inside the previous
range because, by (17),

20142
3

Fip—p+1
62 < fp%/ﬁ-? S (,UJ_ 1)]9

and we are done by induction.

(c) If the numerator and denominator in (16) are not relatively prime,
i.e.,
ged(ky+p—1, (ki —a = Dp*" "2 4 (20— p— ki + 1)p" Ty —agd) > 1,
then there is a cancellation between the numerator and the denominator in
(16) and, using also (17), the new denominator is less than

kip—p+1 P22
2a

and we are done again by induction.

< (p—1)p* Tt
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(d) The range of the new denominator (35 is not technically enlarged
because for u > 2, we always have by (17),

By < kip—p+1 P22 w142

(0}

< pp

(e) From observations (b) and (c), it suffices to consider only those A
whose corresponding k; satisfies both ged(k1 +p — 1,p) = 1 and

ged(ky +p—1, (u+k —a—1)p* 2 4 Qo —p—ky +1)p" Ty —ay?) = 1.
This being so, we must have vy =211 + 1,9 = —(k1 + p — 1) and
Bo=(p+ki—a—1p" 2+ (20— p— ki + 1)p" My — ay?
= ﬂ(pyﬁ_l - yl)a
and (7) reduces to agp”?~"* = b,, a1 — (1. Since ged(aq, f1) = 1, we must
have ged(ag, 1) = 1. By induction, we may assume in general that
ged(am41, o) = 1.

(f) For k1 € {1,...,a — pu}, the numerator in (16) has the a-part < a,
so we are done by induction on the a-part. In addition, by the remark right
after (17), we need only consider those k; for which, using also observa-
tion (a),

a+1)(p—1 1
B> Ky = O D@D <M_1)(1+_).
1 1
Returning to the proof, from (16), we have
Ay = —(k1 + p— 1)p*rtt
(b4 k1 —a—Dp1+2 4 (20 — p — ki + 1)p iy — ay?
agp”?
Ba '
where, if the step is not yet done by induction, by the above observations
we may assume that

a2,
the numerator k1 + ¢ — 1 has no extra power of p,

there is no cancellation of the numerator and the denominator,
ged(a, by +p—1) =1,

the denominator belongs to the range ((u — 1)p

2142 211 +2)
s .

Hp
This implies in particular that 15 = 2v1 + 1 and
a<-—arg=ki+p—-1<(p—-1)+a, ged(a,az) =1,
(0 —1)p2* < By = (u+ k1 — o — 1)p?+2
+ (20— pp— k1 + Dp" oy — ag? < pp2
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Proceeding with the construction, we get

— (k1 + p — 1)p™
Ay = -
(1= D)patt + ao

_ pllz B pVZ kl —|— IU, — 1 + 1
Pt =y (b= Dp=tlfay  p2tl -y
S uz{ {1 +2(p = D} + 2 — (ki +p— Dy
(

Pt =y po—= )p2t2 4 {wg — (p = Dy2}p2+t — woys
P
e —— T
Pt =y

Now, p*2 Tt [{xg — (k1 + 1 — 1)y2} and since xa,y2 € D,,, we have

zo—(k1+p—1)ya = —(k1—ko)p”* T €{=(k1+p — 2)p™ ..., —p”T 0},
ko € {_M+2)"'7k1})

I I
The cases 1 < k1 +p—1 < Ky, 4—1,, are handled by observation (f). Thus

—{k2 +2(u — 1) }p*> !
(b= 1= ki + ko)p?2 2 + (2k1 — ko)p2Hlys — (k1 + p = 1)y3
~agp”s
Bz’
where, if the step is not yet done by induction, by the observations we may
assume, as before, that

Ag =

V3 = 21/2 + 17

a<—az=ky+2(p—1)<2pu—-1)+a,

ged(ag, a3) =1,

(p—1D)ptt < By = (u—1—ky + k2)p?2T2 + (2k1 — ko)p”2Hys
— (k1 +p—1)ys < ppstt.

Proceeding in the same manner and disregarding the cases where the
conclusion can be settled by induction through the observations or the de-
nominator falls inside the previous inductive range, in general, we consider
(18) Ay o= G2 Rz (022 )

ﬁnfl ﬁnfl
kot (0-2(-1)
(b= Dprn=ttt + 2y
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pl/n—l
- anfl‘f‘l — Yn—1
_pynl{ kn2t+(n—=2)(p—1) 1 }
(/’I’ — 1)pl/n71+1 —+ Tp_1 pl’n71+1 — Yn—1
pllnfl

anfl‘f‘l — Yn—1
n
Akt (=D (=13 o —{kn—2+(n = 2)(p=1) }yn1 o
(p=1)p?n=124{xn 1 — (1 — Dyp-1}p"n 1T —2p_1yn—1
an—l

with pt Zp—1yn—1, (p — Dp" 1 < B1 < pp—1*F and
0<Zp 1,Yn1 <P a<—ap 1< (n—2)(p—1)+ .

By the algorithm, p*»~1! | {z, 1 — (ky—2 + (n —2)(p — 1))yn_1} and since
Tn—1,Yn—1 € Dy, _,, we must have
Tn-1— (kn—2 + (n = 2)(p — 1))yn—1
€ {~(kn-2+(n=2)(n—1) = p"+ . —p"+l o)

Here

{hn2t+(n—2)(p—1)+1}(p—1)
W

Kkn_2+(n—2)(u—1),u - > (n - 1)(:“’ - 1)

Substituting
Tt = {kn—a + (0= 2)(p = D}yn-1 = —(kn—2 — kp1)p" 1!
into (18), where, by observation (f), we need only consider

p=1< Ky oym-2)pu-1u— (n=2)(p—1) <kn1 <kp2<a,

we get

(19) A, = kit (n-1)(r-1) pRraeitl Ofn_pl/"7
B Bn

where

B = (= 1) + k1 — kp_o)p?n—1+2
+ {an_Q +(n-=3)(p—1)— kn—l}pun_lJrlyn_l
—{kpo+ (n—2)(u—1)}y2_,.

As noted earlier, from the observations, we need only consider the possibility
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where
Vp = 2Up_1+ 1,
a<—op=k1+n-1k-1)<n-1)(r-1)+«,
ged(an—1,an) =1,
(n = Dp*n 172 < B, = B = Bua (P = ya) < pp™ R
Going back to the old notation, we get
kot + (= D=1

n

(20) A, :=—

Bn
Y (kn1+(n—1)(u—1) 1 >
Tty p 3, Pt — gy
N ' . Un {kn—l +(n—1)(p— 1)}(py"+1 —Yn) + B
pretl — oy, b 5n(pyn+1 — Yn)
Y « 1
- pz/nfl—_yn + p" ! ﬁz—i =: o + Ant1,

where a,, = b, /p"",b,, = p"~*t! —y,. Again from the observations, we need
only consider the possibility where, in the second term on the right-hand
side of (20), the numerator has no extra power of p, there is no cancellation
of the numerator and the denominator, the numerator is relatively prime to
«n, and the denominator does not fall inside the previous inductive range.
This leads, in particular, to v,+1 = 2v, + 1, and

Bt = by, Bn = =by, by, S = (T —y1) - (P — ) B
Thus, (7) reduces to
(21) Qg 1P = by, gy — B
Next, we establish some intermediate claims.

CLAIM 1. If there exists ¢ € (0,1) such that b, /p"»T1 < c for infinitely
many n, then B, < (u— 1)p» 1 for some sufficiently large n.

Proof. From (8) and (10), for n sufficiently large we have
ﬁn—l—l = bl/n .. 'blqﬁl < CNan+..A+V1+nﬁ < ('u B l)pV”+1+1,
where N is the number of indices i € {1,...,n} for which b, /p"i*! <c < 1.

From Claim 1, we may further assume that for each ¢ € (0,1), there
exists N, € N such that b, /p*»*! > ¢ whenever n > N,; in particular,
by, — 00 as n — oo.

CLAIM 2. limy, o0 P |ty |/ Brn = 0.
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Proof. This follows immediately from the recurrence (7), i.e.,

o1 v (‘an’ 1 > v lom| 1
an+1 — p n + - > p n + —,
ﬁn—f—l /Bn bl’n

CLAIM 3. If there is a subsequence {n;} C N such that the sequence of
a-parts {|an, |} is bounded, then B, < (u— 1)p» 1 for some sufficiently
large n.

Proof. If the sequence (|ap, |)x is bounded, then by Claim 2 the subse-
quence ([, /p"" )i converges to 0 and the claim follows.

CLAM 4. ||ap| — |an-1]| < a forn > 1.

Proof. Since

lan| =kn—1+(n—1)(p—1) and |an_1]| =kpo+ (n—2)(u—1),
it follows that

’an‘ - ‘an—ﬂ =kp1—kpotpu—-1<p-1<a
and

|an—l| - |an’ =kpo—kpn1— (,u - 1) <kpn2<a
and the claim follows.

From Claim 3, we may further assume that the sequence of a-parts,
(|an])n, has no bounded subsequences; in particular, it is never periodic. Tt
follows that if the procedure does not end by induction after a sufficiently
large number of operations, by (19), (20) and Claim 4, all a-parts must be of
the form (pu—1)m+i with large m € Nand i € {1,...,a}. Let P be the finite,
possibly empty, set of all prime factors of u — 1. If there are infinitely many
n such that all prime factors of 3, belong to P, then since B,+1 = Bnby,,,
it follows that the prime divisors of all 3,, and of all b,,, come only from P.
Thus, there exists a prime py € P, pg # p, such that pg | 8, and pg | by, and so

Po | Brn+1. But from (21), po | apt1, which contradicts ged(a41, Bnt1) = 1;
this shows in particular that for the process to continue, we must have

ged(by,,, Bn) = 1.

Hence, there are infinitely many primes ¢ (# p) such that ¢ | 3, for all large n
but gt (u—1). Let qo, q1,- - ., ga be a+1 such ¢’s. By the Chinese remainder
theorem, the system of a4 1 linear congruences

(N - 1)m =0 (HlOd QO))
(p—1)m= -1 (modq1),

(b—1)m = —a (modgqq),
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has a solution mg sufficiently large, i.e.,

gi|[{lpg—1)mo+i} (i=0,1,...,a).
This implies that for n sufficiently large, there is a cancellation of the nu-
merator and the denominator of A, 1, and we are done by observation (c).
This finishes the proof of Lemma 6 and completes the proof of the the-
oremnl. m
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