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1. Introduction. In [2] and [3], A. Knopfmacher and J. Knopfmacher
introduce a general algorithm which leads to series expansions of p-adic
numbers as sums of rational numbers. The problem of characterizing rational
numbers by such expansions is of interest here. The Knopfmachers in [3] are
able to establish a proposition which implies that, subject to a restriction

on the so-called digit set, two particular classes of their series expansions,
namely, the p-adic Sylvester and the p-adic Engel expansions are finite if
and only if they represent rational numbers. Subsequently in [1], a complete
characterization of rational numbers, without the restriction on the digit set,
via their p-adic Engel series expansions is proved, while the one via p-adic
Sylvester series expansions is still open. In another direction, a complete
characterization of rational numbers via their p-adic Lüroth series expansion
was established in [4]. The objective of this article is to complement these
earlier works and fill a gap by establishing a complete characterization of
rational numbers via their p-adic Sylvester series expansions. We mention
in passing that the situation in function fields, i.e., fields of formal Laurent
series over a finite filed, is simpler: it is shown in [5] that an element in a
function field is rational if and only if its Sylvester series expansion is finite.

Let us recall Knopfmachers’ algorithm for constructing series expansion
in the p-adic number field. Let p be a fixed prime, Qp the field of p-adic
numbers equipped with the p-adic valuation | · |p, normalized so that |p|p =
p−1, and let Zp be the ring of p-adic integers. For A ∈ Qp, define the order

vp(A) of A by |A|p = p−vp(A), and vp(0) = +∞. Each A ∈ Qp \ {0} is
uniquely representable in the form
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A =
∞

∑

n=vp(A)

cnpn, cn ∈ {0, 1, . . . , p − 1}, cvp(A) 6= 0.

The fractional part, 〈A〉, of A is defined as the finite series

〈A〉 =











0
∑

n=vp(A)

cnpn if vp(A) ≤ 0,

0 if vp(A) > 0.

Denote the set of all fractional parts by

Sp := {〈A〉; A ∈ Qp} ⊂ Q.

The Knopfmachers’ series expansion algorithm proceeds as follows: for A
in Qp, let a0 := 〈A〉 ∈ Sp. Define A1 := A− a0. If An 6= 0 (n ≥ 1) is already
defined, put

an =

〈

1

An

〉

∈ Sp,

and

(1) An+1 =

(

An −
1

an

)

sn

rn

if an 6= 0, where rn, sn are non-zero rational numbers which may depend on
a1, . . . , an. Then

A = a0 + A1 = a0 +
1

a1
+

r1

s1
A2 = · · ·

= a0 +
1

a1
+

r1

s1

1

a2
+ · · · +

r1 · · · rn−1

s1 · · · sn−1

1

an
+

r1 · · · rn

s1 · · · sn
An+1.

The process ends in a finite expansion if some An+1 = 0. If some an = 0,
then An+1 is not defined. This is ruled out by imposing the condition

vp(sn) − vp(rn) ≥ 2vp(an) − 1.

Thus

A = a0 +
1

a1
+

∞
∑

n=1

r1 · · · rn

s1 · · · sn

1

an+1
.

We are interested here in the case where rn = sn = 1. In this case, the
algorithm yields a well-defined (with respect to the p-adic valuation) and
unique series expansion, termed p-adic Sylvester series expansion or S-series

for short, of the form

A = a0 +

∞
∑

n=1

1

an
,

where the digits an are, by the algorithm, subject to the restrictions

(2) a0 = 〈A〉,
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(3) an =
cνn

pνn
+ · · · +

c1

p
+ c0 ∈ Sp;

νn := −vp(an), ci ∈ {0, 1, . . . , p − 1}, cνn 6= 0 (n ≥ 1).

For An 6= 0, writing 1/An = an +
∑

r≥1 c′rp
r, say, we get

vp(anAn − 1) = vp

(

An

∑

r≥1

c′rp
r
)

≥ vp(An) + 1

and, with νn = −vp(an) ∈ N, it is easily checked by induction that

(4) νn ≥ 2n − 1 and νn+1 ≥ 2νn + 1 (n ≥ 1).

This last inequality shows that the digits an are of strictly decreasing order
and so an infinite S-series can never be periodic. For r ∈ N, define

Dr := {br := cr + cr−1p + · · · + c0p
r;

ci ∈ {0, 1, . . . , p − 1} (i = 0, 1, . . . , r), cr 6= 0}.

Note that each br ∈ Dr is bounded below and above by

(5) 1 ≤ br ≤ (p − 1)(1 + p + · · · + pr) = pr+1 − 1 < pr+1.

To derive a characterization of rational numbers via their S-series, it
clearly suffices to consider only those numbers belonging to pZp \ {0}. Our
characterization reads:

Theorem 1. Let A ∈ pZp \ {0}. Then A ∈ Q if and only if its S-series

is either finite, or of the form

A =
1

a1
+ · · · +

1

an
−

pνn+1

βn+1
(n ∈ N),

where βn+1 ∈ N, p ∤ βn+1, βn+1 < pνn+1+1, and the tail of A is of the form

−
pr

β
=

pr(1)

br(1)
+ · · · +

pr(i)

br(i)
−

pr(i+1)

βbr(1) · · · br(i)
=

∞
∑

i=1

pr(i)

br(i)
,

where β ∈ N, p ∤ β, β < pr+1, r(1) = r ∈ N, r(i + 1) = 2r(i) + 1,

br = pr+1 − β, br(i+1) = pr(i+1)+1 − βbr(1) · · · br(i) (i ≥ 1).

2. Proof of the theorem. That A having an S-series finite or of the
form as stated in the theorem implies that A is rational is easily checked.

It remains to show the converse, i.e., starting with any A =: A1 ∈ Q, we
show that its S-series expansion must either be finite or infinite with tail as
stated in the theorem. Keeping the notation of the last section, note that
A1 ∈ Q implies that An ∈ Q for all n ≥ 2, and write

An = pνn
αn

βn
,

where αn ∈ Z, βn ∈ N, gcd(αn, βn) = 1 and p ∤ αnβn.
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Since the remaining proof is quite involved, we proceed stepwise by es-
tablishing several lemmas and begin with a simplification.

Lemma 2. If αn and αn+1 are both > 0, then αn+1 < αn. Moreover , if

αn < 0, then αn+1 < 0.

Proof. From the recurrence relation (1), we have An+1 = An−1/an, i.e.,

(6) pνn+1−νn
αn+1

βn+1
=

αnbνn − βn

bνnβn
.

Since the left-hand fraction is in lowest terms, we get

pνn+1−νnαn+1 ≤ αnbνn − βn < αnbνn ,

so αn+1 < αn, and the first assertion is proved. The second assertion follows
at once from (6).

From Lemma 2 and the recurrence relation (1), if we start off with A =
A1 = pν1α1/β1 > 0, then α1 > 0, and since A is a rational integer, eventually
for some m ∈ N we must have either αm = 0, which yields a terminating
expansion, or αm < 0, which yields αk < 0 for all k ≥ m, resulting in an
infinite expansion.

Henceforth, without loss of generality, we assume that all the numerators

are negative, i.e., αn < 0 (n ≥ 1).

Our next lemma shows that certain negative rational numbers have in-
finite S-series of a specific form which will be typical for what follows.

Lemma 3. Let r, β ∈ N with p ∤ β and β < pr+1. Then we have the

following unique S-series representation:

−
pr

β
=

pr(1)

br(1)
+ · · · +

pr(i)

br(i)
−

pr(i+1)

βbr(1) · · · br(i)
=

∞
∑

i=1

pr(i)

br(i)
,

where r(1) = r, r(i + 1) = 2r(i) + 1, br = pr+1 − β, and

br(i+1) = pr(i+1)+1 − βbr(1) · · · br(i) (i ≥ 1).

Proof. Observe first that all br are in Dr. The result follows easily from
the following chain of relations:

−
pr

β
=

pr(1)

br(1)
− pr(1)

(

1

β
+

1

br(1)

)

=
pr(1)

br(1)
−

pr(2)

βbr(1)

=
pr(1)

br(1)
+

pr(2)

br(2)
− pr(2)

(

1

βbr(1)
+

1

br(2)

)

=
pr(1)

br(1)
+

pr(2)

br(2)
−

pr(3)

βbr(1)br(2)

= · · · ,

upon noting that βbr(1) · · · br(i) < pr(i+1)+1. The uniqueness is immediate by
construction.
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The next lemma yields a complete characterization for the case where
the denominator, β, belongs to our starting range.

Lemma 4. If A = −pνα/β < 0; ν, α, β ∈ N; p ∤ αβ; gcd(α, β) = 1 and

β < pν+1, then A has an S-series expansion of the form

A =
1

a1
+ · · · +

1

an
−

pνn+1

βn+1
(n ∈ N),

where βn+1 ∈ N, p ∤ βn+1, βn+1 < pνn+1+1, and so the tail of A is as specified

in Lemma 3.

Proof. Let −pνα/β = A =: A1 = pν1α1/β1 < 0. The recurrence relation
(1) is An+1 = An − 1/an, implying that An < 0 for all n ≥ 2 and so the
S-series of A must be infinite. Observe that for each an ∈ Sp, we have

0 < an <
∞

∑

k=0

p − 1

pk
= p,

and so we can write an = bνn/pνn , where bνn ∈ Dνn . Thus,

0 < bνn ≤ pνn+1 − 1 < pνn+1.

Substituting An = pνnαn/βn into the recurrence relation (1), we get

(7) bνnαn+1p
νn+1−νnβn = (bνnαn − βn)βn+1.

Since gcd(αn+1p
νn+1−νn , βn+1) = 1, we have βn+1 | bνnβn and so

|αn+1p
νn+1−νn | ≤

∣

∣

∣

∣

bνnαn+1p
νn+1−νnβn

βn+1

∣

∣

∣

∣

= |bνnαn − βn| ≤ |bνnαn| + βn.

Here and throughout, | · | denotes the usual absolute value. Since

(8) νn+1 ≥ 2νn + 1 ≥ νn + 2νn−1 + 2 ≥ · · · ≥ νn + νn−1 + · · · + 2ν1 + n,

we get

(9) |αn+1| < |αn| +
βn

pνn+1−νn
.

From βn+1 | bnβn, we deduce that

(10) 0 < βn+1 ≤ bνnβn ≤ · · · ≤ bνnbνn−1
· · · bν1

β1 < pνn+νn−1+···+ν1+nβ1.

Thus, by (8) and β1 < pν1+1,

(11)
βn

pνn+1−νn
≤

βn

pνn+1
<

pνn−1+···+ν1+n−1β1

pνn+1
< 1,

and so

(12) |αn+1| ≤ |αn|.

It follows that for all n sufficiently large, −αn = α ∈ N and the relation (7)
becomes

−bνnαpνn+1−νnβn = (−bνnα − βn)βn+1.
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Since gcd(α, βn) = gcd(α, βn+1) = 1, this implies α = 1. Consequently, for
all large n we must have αn = −1, and the desired result follows.

The next lemma will ensure that the construction of S-series does not
technically enlarge the denominator.

Lemma 5. Let M, N (≥ 0), α (≥ 2), ν (≥ 1) be integers satisfying 0 <
(α + M)/2(α + N) < 1. Let x, y ∈ Dν , and define

B(y) := (α + M)pν+1y − (α + N)y2 (y ∈ Dν).

Assume that

(13) x − (α + N)y = −(α − k)pν+1,

where k ∈ {−N + 1, . . . , α − 1, α}. Then

max
y∈Dν

B(y) =
(M + k)(α − k)

α + N
p2ν+2 −

α − 2k − M

α + N
pν+1x −

x2

α + N
.

Proof. Since B(y) represents a concave parabola, the sought-after max-
imum, with y ∈ Z, must occur at

y =

[

α + M

2(α + N)
pν+1

]

+ {0 or 1},

where [x] denotes the integer part of x ∈ R. Write

y =
α + M

2(α + N)
pν+1 + ε.

Direct computation yields

(14) max
y∈Dν

B(y) =
(α + M)2

4(α + N)
p2ν+2 − ε2(α + N).

Using the assumption (13), we get

ε =
α − 2k − M

2(α + N)
pν+1 +

x

α + N
.

Substituting into (14) and using x ∈ Dν , we get the desired result.

The final step now is to enlarge the denominator, β, by induction on its
range.

Lemma 6.

(i) If A = −pν/β < 0; ν, β, µ (≥ 2) are positive integers; p ∤ β and

0 < β < µpν+1, then A has an infinite S-series expansion with tail

as in Lemma 3.
(ii) If A = −αpν/β < 0; ν, α (≥ 2), β, µ (≥ 2) are positive integers;

p ∤ αµβ, gcd(α, β) = 1 and 0 < β < µpν+1, then A has an infinite

S-series expansion with tail as in Lemma 3.
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Proof. We proceed by induction on µ ∈ N assuming that (i)–(ii) hold for
0 < β < (µ− 1)pν+1, with the starting cases, µ = 1, already settled in Lem-
ma 4. It suffices then to consider the case where (µ − 1)pν+1 < β < µpν+1,
µ ≥ 2, from which we write

β = (µ − 1)pν+1 + x1 with 0 < x1 < pν+1.

(i) We note the identity

−
pν

β
= −

pν

(µ − 1)pν+1 + x1

=
pν

pν+1 − x1
− pν

(

1

(µ − 1)pν+1 + x1
+

1

pν+1 − x1

)

=
pν

pν+1 − x1
−

µp2ν+1

(µ − 1)p2ν+2 − (µ − 2)x1pν+1 − x2
1

=
pν

pν+1 − x1
+

pν2α2

β2
,

where pν2α2/β2, with ν2 ≥ 2ν + 1, is in reduced fraction form. Since µ ≥ 2,
we have

β2 ≤ (µ − 1)p2ν+2 − (µ − 2)x1p
ν+1 − x2

1 < (µ − 1)p2ν+2,

and invoking the induction hypothesis we finish the proof of (i).

(ii) In this part, we assume in addition that the result holds for all smaller
α-parts, which are the absolute values of the numerators, with the starting
case α = 1 being confirmed in (i) and the denominator in the range in
question.

Write ν := ν1, β := β1. The construction gives

(15) A =: A1 = −
αpν1

β1
=: −

αpν1

(µ − 1)pν1+1 + x1

=
pν1

pν1+1 − y1
− pν1

{

α

(µ − 1)pν1+1 + x1
+

1

pν1+1 − y1

}

=
pν1

pν1+1 − y1
− pν1

{

(α + µ − 1)pν1+1 + x1 − αy1

(µ − 1)p2(ν1+1) + {x1 − (µ − 1)y1}pν1+1 − x1y1

}

=:
pν1

pν1+1 − y1
+ A2.

By the algorithm, pν1+1 | (x1 − αy1), and since x1, y1 ∈ Dν1
, we must have

x1 − αy1 ∈ {−(α − 1)pν1+1,−(α − 2)pν1+1, . . . ,−pν1+1, 0}.

Substituting

x1 − αy1 = −(α − k1)p
ν1+1, k1 ∈ {1, . . . , α},
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into (15), we get

A2 =
−(k1 + µ − 1)p2ν1+1

(µ + k1 − α − 1)p2ν1+2 + (2α − µ − k1 + 1)pν1+1y1 − αy2
1

(16)

=:
α2p

ν2

β2
.

At this point, we pause to make some important observations.

(a) If 2α − µ − k1 + 1 ≤ 0, then

β2 ≤ (µ+k1−α−1)p2ν1+2 +(2α−µ−k1 +1)pν1+1y1−αy2
1 < (µ−1)p2ν1+2,

i.e., β2 falls inside the previous range, and we are done by induction. We
thus assume that 2α − µ − k1 + 1 > 0. By Lemma 5, we have

β2 <

{

µ + k1 − α − 1 +
(α − µ + 1)(α − k1)

α

}

p2ν1+2 −
µ − k1 − 1

α
pν1+1x1

=
k1(µ − 1)

α
p2ν1+2 −

µ − 1 − k1

α
pν1+1x1.

If k1 ≤ µ − 1, then

β2 <
k1(µ − 1)

α
p2ν1+2 ≤ (µ − 1)p2ν1+2.

Thus, β2 falls inside the previous inductive range and the induction hypoth-
esis ends this case. If k1 ≥ µ, then

(17) β2 <
k1(µ − 1)

α
p2ν1+2 +

k1 − µ + 1

α
p2ν1+2 =

k1µ − µ + 1

α
p2ν1+2,

which is ≤ (µ− 1)p2ν1+2 if and only if k1 ≤ (α + 1)(µ − 1)/µ. These consid-
erations show that, without loss of generality, we may assume α ≥ µ.

(b) If p | (k1 + µ− 1), then the power of the prime p in the numerator of
(16) is larger, i.e., ν2 ≥ 2ν1 + 2, which forces β2 to fall inside the previous
range because, by (17),

β2 <
k1µ − µ + 1

α
p2ν1+2 ≤ (µ − 1)p2ν1+2,

and we are done by induction.
(c) If the numerator and denominator in (16) are not relatively prime,

i.e.,

gcd(k1 +µ− 1, (µ+ k1 −α− 1)p2ν1+2 +(2α−µ− k1 +1)pν1+1y1 −αy2
1) > 1,

then there is a cancellation between the numerator and the denominator in
(16) and, using also (17), the new denominator is less than

k1µ − µ + 1

2α
p2ν1+2 ≤ (µ − 1)p2ν1+2,

and we are done again by induction.
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(d) The range of the new denominator β2 is not technically enlarged
because for µ ≥ 2, we always have by (17),

β2 <
k1µ − µ + 1

α
p2ν1+2 ≤ µp2ν1+2.

(e) From observations (b) and (c), it suffices to consider only those A2

whose corresponding k1 satisfies both gcd(k1 + µ − 1, p) = 1 and

gcd(k1 +µ− 1, (µ+ k1 −α− 1)p2ν1+2 +(2α−µ− k1 +1)pν1+1y1 −αy2
1) = 1.

This being so, we must have ν2 = 2ν1 + 1, α2 = −(k1 + µ − 1) and

β2 = (µ + k1 − α − 1)p2ν1+2 + (2α − µ − k1 + 1)pν1+1y1 − αy2
1

= β(pν1+1 − y1),

and (7) reduces to α2p
ν2−ν1 = bν1

α1 − β1. Since gcd(α1, β1) = 1, we must
have gcd(α2, α1) = 1. By induction, we may assume in general that

gcd(αn+1, αn) = 1.

(f) For k1 ∈ {1, . . . , α − µ}, the numerator in (16) has the α-part < α,
so we are done by induction on the α-part. In addition, by the remark right
after (17), we need only consider those k1 for which, using also observa-
tion (a),

k1 > Kα,µ :=
(α + 1)(µ − 1)

µ
≥ (µ − 1)

(

1 +
1

µ

)

.

Returning to the proof, from (16), we have

A2 =
−(k1 + µ − 1)p2ν1+1

(µ + k1 − α − 1)p2ν1+2 + (2α − µ − k1 + 1)pν1+1y1 − αy2
1

=:
α2p

ν2

β2
,

where, if the step is not yet done by induction, by the above observations
we may assume that

• α ≥ µ,
• the numerator k1 + µ − 1 has no extra power of p,
• there is no cancellation of the numerator and the denominator,
• gcd(α, k1 + µ − 1) = 1,
• the denominator belongs to the range ((µ − 1)p2ν1+2, µp2ν1+2).

This implies in particular that ν2 = 2ν1 + 1 and

α < −α2 = k1 + µ − 1 ≤ (µ − 1) + α, gcd(α, α2) = 1,

(µ − 1)pν2+1 < β2 = (µ + k1 − α − 1)p2ν1+2

+ (2α − µ − k1 + 1)pν1+1y1 − αy2
1 < µpν2+1.
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Proceeding with the construction, we get

A2 =
−(k1 + µ − 1)pν2

(µ − 1)pν2+1 + x2

=
pν2

pν2+1 − y2
− pν2

(

k1 + µ − 1

(µ − 1)pν2+1 + x2
+

1

pν2+1 − y2

)

=
pν2

pν2+1 − y2
− pν2

{

{k1 + 2(µ − 1)}pν2+1 + x2 − (k1 + µ − 1)y2

(µ − 1)p2ν2+2 + {x2 − (µ − 1)y2}pν2+1 − x2y2

}

=:
pν2

pν2+1 − y2
+ A3.

Now, pν2+1 | {x2 − (k1 + µ − 1)y2} and since x2, y2 ∈ Dν2
, we have

x2−(k1+µ−1)y2 =: −(k1−k2)p
ν2+1∈{−(k1+µ − 2)pν2+1, . . . ,−pν2+1, 0},

k2 ∈ {−µ + 2, . . . , k1},

Kk1+µ−1,µ =
(k1 + µ)(µ − 1)

µ
> (µ − 1)

(

2 −
1

µ2

)

.

The cases 1 ≤ k1 + µ− 1 ≤ Kk1+µ−1,µ are handled by observation (f). Thus

A3 =
−{k2 + 2(µ − 1)}p2ν2+1

(µ − 1 − k1 + k2)p2ν2+2 + (2k1 − k2)pν2+1y2 − (k1 + µ − 1)y2
2

=:
α3p

ν3

β3
,

where, if the step is not yet done by induction, by the observations we may
assume, as before, that

• ν3 = 2ν2 + 1,
• α < −α3 = k2 + 2(µ − 1) ≤ 2(µ − 1) + α,
• gcd(α2, α3) = 1,
• (µ − 1)pν3+1 < β3 = (µ − 1 − k1 + k2)p

2ν2+2 + (2k1 − k2)p
ν2+1y2

− (k1 + µ − 1)y2
2 < µpν3+1.

Proceeding in the same manner and disregarding the cases where the
conclusion can be settled by induction through the observations or the de-
nominator falls inside the previous inductive range, in general, we consider

An−1 :=
αn−1p

νn−1

βn−1
= −

kn−2 + (n − 2)(µ − 1)

βn−1
pνn−1(18)

= −
kn−2 + (n − 2)(µ − 1)

(µ − 1)pνn−1+1 + xn−1
pνn−1
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=
pνn−1

pνn−1+1 − yn−1

− pνn−1

{

kn−2 + (n − 2)(µ − 1)

(µ − 1)pνn−1+1 + xn−1
+

1

pνn−1+1 − yn−1

}

=
pνn−1

pνn−1+1 − yn−1

−
{kn−2+(n−1)(µ−1)}pνn−1+1+xn−1−{kn−2+(n − 2)(µ−1)}yn−1

(µ−1)p2νn−1+2+{xn−1 − (µ − 1)yn−1}pνn−1+1−xn−1yn−1
pνn−1

=:
pνn−1

pνn−1+1 − yn−1
+ An,

with p ∤ xn−1yn−1, (µ − 1)pνn−1+1 < βn−1 < µpνn−1+1 and

0 < xn−1, yn−1 < pνn−1+1, α < −αn−1 ≤ (n − 2)(µ − 1) + α.

By the algorithm, pνn−1+1 | {xn−1 − (kn−2 + (n − 2)(µ − 1))yn−1} and since
xn−1, yn−1 ∈ Dνn−1

, we must have

xn−1 − (kn−2 + (n − 2)(µ − 1))yn−1

∈ {−(kn−2 + (n − 2)(µ − 1) − 1)pνn−1+1, . . . ,−pνn−1+1, 0}.

Here

Kkn−2+(n−2)(µ−1),µ =
{kn−2 + (n − 2)(µ − 1) + 1}(µ − 1)

µ
≥ (n − 1)(µ − 1).

Substituting

xn−1 − {kn−2 + (n − 2)(µ − 1)}yn−1 = −(kn−2 − kn−1)p
νn−1+1

into (18), where, by observation (f), we need only consider

µ − 1 ≤ Kkn−2+(n−2)(µ−1),µ − (n − 2)(µ − 1) < kn−1 ≤ kn−2 ≤ α,

we get

(19) An = −
kn−1 + (n − 1)(µ − 1)

β′
n

p2νn−1+1 =:
αnpνn

βn
,

where

β′
n = ((µ − 1) + kn−1 − kn−2)p

2νn−1+2

+ {2kn−2 + (n − 3)(µ − 1) − kn−1}p
νn−1+1yn−1

− {kn−2 + (n − 2)(µ − 1)}y2
n−1.

As noted earlier, from the observations, we need only consider the possibility
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where

νn = 2νn−1 + 1,

α < −αn = kn−1 + (n − 1)(µ − 1) ≤ (n − 1)(µ − 1) + α,

gcd(αn−1, αn) = 1,

(µ − 1)p2νn−1+2 < β′
n = βn = βn−1(p

νn−1+1 − yn−1) < µp2νn−1+2.

Going back to the old notation, we get

An := −
kn−1 + (n − 1)(µ − 1)

βn
pνn(20)

=
pνn

pνn+1 − yn
− pνn

(

kn−1 + (n − 1)(µ − 1)

βn
+

1

pνn+1 − yn

)

=
pνn

pνn+1 − yn
− pνn

{kn−1 + (n − 1)(µ − 1)}(pνn+1 − yn) + βn

βn(pνn+1 − yn)

=
pνn

pνn+1 − yn
+ pνn+1

αn+1

βn+1
=:

1

an
+ An+1,

where an = bνn/pνn , bνn = pνn+1−yn. Again from the observations, we need
only consider the possibility where, in the second term on the right-hand
side of (20), the numerator has no extra power of p, there is no cancellation
of the numerator and the denominator, the numerator is relatively prime to
αn, and the denominator does not fall inside the previous inductive range.
This leads, in particular, to νn+1 = 2νn + 1, and

βn+1 = bνnβn = · · · = bνn · · · bν1
β1 = (pν1+1 − y1) · · · (p

νn+1 − yn)β1.

Thus, (7) reduces to

(21) αn+1p
νn+1−νn = bνnαn − βn.

Next, we establish some intermediate claims.

Claim 1. If there exists c ∈ (0, 1) such that bνn/pνn+1 ≤ c for infinitely

many n, then βn < (µ − 1)pνn+1 for some sufficiently large n.

Proof. From (8) and (10), for n sufficiently large we have

βn+1 = bνn · · · bν1
β1 < cNpνn+···+ν1+nβ < (µ − 1)pνn+1+1,

where N is the number of indices i ∈ {1, . . . , n} for which bνi
/pνi+1 ≤ c < 1.

From Claim 1, we may further assume that for each c ∈ (0, 1), there
exists Nc ∈ N such that bνn/pνn+1 > c whenever n ≥ Nc; in particular,
bνn → ∞ as n → ∞.

Claim 2. limn→∞ pνn |αn|/βn = ∞.
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Proof. This follows immediately from the recurrence (7), i.e.,

pνn+1
|αn+1|

βn+1
= pνn

(

|αn|

βn
+

1

bνn

)

> pνn
|αn|

βn
+

1

p
.

Claim 3. If there is a subsequence {nk} ⊂ N such that the sequence of

α-parts {|αnk
|} is bounded , then βn < (µ − 1)pνn+1 for some sufficiently

large n.

Proof. If the sequence (|αnk
|)k is bounded, then by Claim 2 the subse-

quence (βnk
/pνnk )k converges to 0 and the claim follows.

Claim 4. | |αn| − |αn−1| | < α for n ≥ 1.

Proof. Since

|αn| = kn−1 + (n − 1)(µ − 1) and |αn−1| = kn−2 + (n − 2)(µ − 1),

it follows that

|αn| − |αn−1| = kn−1 − kn−2 + µ − 1 ≤ µ − 1 < α

and

|αn−1| − |αn| = kn−2 − kn−1 − (µ − 1) < kn−2 ≤ α

and the claim follows.

From Claim 3, we may further assume that the sequence of α-parts,
(|αn|)n, has no bounded subsequences; in particular, it is never periodic. It
follows that if the procedure does not end by induction after a sufficiently
large number of operations, by (19), (20) and Claim 4, all α-parts must be of
the form (µ−1)m+i with large m ∈ N and i ∈ {1, . . . , α}. Let P be the finite,
possibly empty, set of all prime factors of µ− 1. If there are infinitely many
n such that all prime factors of βn belong to P , then since βn+1 = βnbνn ,
it follows that the prime divisors of all βn and of all bνn come only from P .
Thus, there exists a prime p0 ∈ P, p0 6= p, such that p0 |βn and p0 | bνn and so
p0 |βn+1. But from (21), p0 |αn+1, which contradicts gcd(αn+1, βn+1) = 1;
this shows in particular that for the process to continue, we must have

gcd(bνn , βn) = 1.

Hence, there are infinitely many primes q ( 6= p) such that q |βn for all large n
but q ∤ (µ−1). Let q0, q1, . . . , qα be α+1 such q’s. By the Chinese remainder
theorem, the system of α + 1 linear congruences

(µ − 1)m ≡ 0 (mod q0),

(µ − 1)m ≡ −1 (mod q1),

...

(µ − 1)m ≡ −α (mod qα),
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has a solution m0 sufficiently large, i.e.,

qi | {(µ − 1)m0 + i} (i = 0, 1, . . . , α).

This implies that for n sufficiently large, there is a cancellation of the nu-
merator and the denominator of An+1, and we are done by observation (c).

This finishes the proof of Lemma 6 and completes the proof of the the-
orem.
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