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On the class number of some real abelian
number fields of prime conductors
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1. Introduction. The aim of this paper is to prove two theorems on
the class number hK .

Theorem 1. Let p = 4l+ 1 and l be odd primes. Let K ⊂ Q(ζp + ζ−1
p ),

[K : Q] = l and let hK be the class number of the field K. Let q be an odd
prime with 3 < q <

√
p. If q is a primitive root modulo l then q does not

divide hK .

Theorem 2. Let p = 6l+ 1 and l be odd primes. Let K ⊂ Q(ζp + ζ−1
p ),

[K : Q] = l and let hK be the class number of the field K. Let q be an odd
prime with 3 < q <

√
p/2. If q is a primitive root modulo l then q does not

divide hK .

Using Schinzel’s conjecture for linear polynomials (see [5] and [4, p. 56])
we prove that for each prime q there exist infinitely many prime numbers p
satisfying the assumptions of Theorems 1 and 2.

Proposition. Assume that Schinzel’s conjecture for linear polynomials
holds true. Then, for any given prime q > 3, there are infinitely many pairs
of primes (l, p) of the form p = 4l+ 1 (respectively, of the form p = 6l+ 1),
for which q is a primitive root modulo l.

Proof. Let l = 2r + 1 where r is an odd prime. Then q is a primitive
root modulo l if and only if q 6≡ 0,±1 (mod l) and the Legendre symbol

( q
l

)
equals −1.

Because l ≡ 3 (mod 4), by the quadratic reciprocity law we have(
q

l

)
=
(
−1
q

)(
l

q

)
.

2010 Mathematics Subject Classification: Primary 11R29.
Key words and phrases: class number.

DOI: 10.4064/aa145-4-1 [315] c© Instytut Matematyczny PAN, 2010



316 S. Jakubec

Let the residues modulo q be represented by odd numbers {1, 3, . . . ,
2q − 1}. Let z ∈ {1, 3, . . . , 2q − 1}, z 6= q, z 6= 1, z 6= (q − 1)/4. Put

r = f1(X) = qX+
z − 1

2
, l = f2(X) = 2qX+ z, p = f3(X) = 8qX+ 4z+ 1,

where
(−1

q

)(
z
q

)
= −1.

If z 6= 1, z 6= q, z 6= (q − 1)/4 then the linear polynomials f1(X), f2(X),
f3(X) satisfy the assumptions of Schinzel’s conjecture and consequently the
prime numbers q, l, p satisfy the assumptions of Theorem 1. In the case of
Theorem 2 we consider the polynomials

r = f1(X) = qX+
z − 1

2
, l = f2(X) = 2qX+z, p = f3(X) = 12qX+6z+1.

Our approach is based on the results [1] and [2] (see also [3]). Let q be
an odd prime. Let j 7→ A(j) be the q-periodic function defined by

A(0) = 0, A(j) =
j∑

i=1

1
i

for j = 1, . . . , q − 1.

Let s be a rational q-integer. Put A(s) = A(j) where j is an integer, 0 ≤
j < q, and s ≡ j (mod q).

For i = 1, . . . , q− 1 we have the congruence A(i− 1) ≡ A(q− i) (mod q).
This implies that

A

(
−i
p

)
≡ A

(
−(p− i)

p

)
(mod q) for i = 1, . . . , p− 1.

From [1]–[3], we have

Proposition 1. Let l, p, q be primes, p ≡ 1 (mod l), q 6= 2, q 6= l,
q < p. Suppose that q is a primitive root modulo l. If q divides hK , and
[K : Q] = l, then ∑

j∈X

A

(
−j
p

)
≡
∑
j∈Y

A

(
−j
p

)
(mod q)

for any cosets X,Y ⊂ {1, . . . , p−1} of the subgroup H of index l in (Z/pZ)∗.

Proof of Theorem 1. Let H = {1,−1, a/b,−a/b} be the subgroup of
order four of (Z/pZ)∗ where p = a2 + b2, a, b > 0. Then bH = {a, p − a,
b, p − b} and xbH = {ax, p − ax, b, p − bx}. By Proposition 1 and since
A(−i/p) ≡ A(−(p− i)/p) (mod q), the following congruence holds if q |hK ,
for x = 1, . . . , [

√
p]:

A

(
−a
p

)
+A

(
−b
p

)
≡ A

(
−ax
p

)
+A

(
−bx
p

)
(mod q).

Further let Bn and Bn(X) denote the Bernoulli numbers and Bernoulli
polynomials (see [4]).
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Let −a/p ≡ k (mod q) for an integer k, 0 ≤ k < q, hence A(−a/p) ≡
A(k) (mod q), so

A

(
−a
p

)
≡

k∑
i=1

iq−2 ≡ 1
q − 1

(Bq−1 (k + 1)−Bq−1) (mod q).

Since Bn(1− x) = (−1)nBn(x) we have

A

(
−a
p

)
≡ 1
q − 1

(
Bq−1

(
−a
p

+ 1
)
−Bq−1

)
≡ 1
q − 1

(
Bq−1

(
a

p

)
−Bq−1

)
(mod q).

Let F (x) be the polynomial

F (x) = Bq−1

(
ax

p

)
+Bq−1

(
bx

p

)
−Bq−1

(
a

p

)
−Bq−1

(
b

p

)
.

The numbers x = 1, . . . , [
√
p] are roots of F (x) modulo q. As degF (x) < q

we see that F (x) has more roots modulo q than its degree. However, we will
prove that F (x) is not identically zero modulo q. The coefficient of xq−3 in
F (x) is equal to

cq−3 =
(
q − 1

2

)
B2

1
pq−3

(aq−3 + bq−3).

We will prove that cq−3 6≡ 0 (mod q). This is so if ab ≡ 0 (mod q), since
a2 + b2 = p 6≡ 0 (mod q). If ab 6≡ 0 (mod q), then

a2b2(aq−3 + bq−3) ≡ a2 + b2 ≡ p 6≡ 0 (mod q),

hence cq−3 6≡ 0 (mod q).

Proof of Theorem 2. Let H be the subgroup of (Z/pZ)∗ of order six,
4p = a2 + 3b2, a, b > 0, hence a2/b2 ≡ −3 (mod p). It follows that

1
2

(
−1 +

a

b

)
,
1
2

(
−1− a

b

)
∈ H.

This implies that{
b,
−b+ a

2
,
a+ b

2

}
⊂ bH and

{
b,
b− a

2
,
a+ b

2

}
⊂ bH.

Let us consider the case when all three numbers are positive, for example in
the first triple. Since a2 + 3b2 = 4p, we have a < 2

√
p, b < 2

√
p, (−b+ a)/2

< 2
√
p, (b+ a)/2 < 2

√
p. Just as in the proof of Theorem 1, if q |hK , then
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the polynomial

F (x) = Bq−1

(
bx

p

)
+Bq−1

( −b+a
2 x

p

)
+Bq−1

( b+a
2 x

p

)
−Bq−1

(
b

p

)
−Bq−1

( −b+a
2

p

)
−Bq−1

( b+a
2

p

)
has modulo q the roots x = 1, . . . , [

√
p/2]. However, we will prove that F (x)

is not identically zero modulo q.
The coefficient of xq−3 in F (x) is equal to

cq−3 =
(
q − 1

2

)
B2

1
pq−3

(
bq−3 +

(
a− b

2

)q−3

+
(
a+ b

2

)q−3)
.

We will prove that cq−3 6≡ 0 (mod q). This is so if ba−b
2

a+b
2 ≡ 0 (mod q),

since a2 + 3b2 = 4p 6≡ 0 (mod q). If ba−b
2

a+b
2 6≡ 0 (mod q), then

b2(a− b)2(a+ b)2
(
bq−3 +

(
a− b

2

)q−3

+
(
a+ b

2

)q−3)
≡ (a−b)2(a+b)2+4b2(a−b)2+4b2(a+b)2 ≡ (a2+3b2)2 ≡ 16p2 6≡ 0 (mod q),

hence cq−3 6≡ 0 (mod q).
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