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Dimensions of spaces of modular forms for ΓH(N)

by

Jordi Quer (Barcelona)

1. Introduction. All the basic facts and results about modular forms
used in this paper can be found in Chapters 1 and 2 of Shimura’s book [6].

Let Γ ′ be any subgroup of finite index of the group Γ = SL2(Z), or more
generally any Fuchsian group of the first kind Γ ′ ⊂ SL2(R). Let X(Γ ′) =
Γ ′\H∗ be the set of orbits endowed with the usual structure of compact
Riemann surface, where H∗ denotes the union of the Poincaré upper half
plane H and the set of cusps of Γ ′ in P1(R) (for subgroups of SL2(Z) the set
of cusps is P1(Q)).

In this situation, applying the Riemann–Roch theorem one obtains a
formula for the dimensions of the spaces of modular and cuspidal forms of
integer weight k ≥ 2 for the group Γ ′ in terms of the following invariants: the
genus g of the curve, the number νm of Γ ′-orbits of elliptic points of every
order m of the group Γ ′, and the number ν∞ = νreg

∞ + νirr
∞ of its Γ ′-orbits of

regular and irregular cusps (cf. Theorems 2.23–2.25 in [6]).
In addition, in the case of a subgroup of SL2(Z), the genus of the curve

X(Γ ′) can be obtained by applying the Riemann–Hurwitz formula to the
covering X(Γ ′) → X(Γ ). Since the ramification of this covering is concen-
trated in the elliptic points and the cusps, the genus is a function of the
degree ν0 of the covering and the numbers of elliptic points and cusps.

Hence, for subgroups Γ ′ ⊆ Γ , the computation of the genus of the corre-
sponding modular curve and of the dimensions of the spaces of modular and
cuspidal forms is reduced to the computation of the following invariants:

• ν0(Γ ′), the degree of the covering X(Γ ′)→ X(Γ );
• ν2(Γ ′) and ν3(Γ ′), the numbers of Γ ′-orbits of elliptic points of orders

2 and 3 of Γ ′;
• ν∞(Γ ′) = νreg

∞ (Γ ′) + νirr
∞ (Γ ′), the numbers of Γ ′-orbits of regular and

irregular cusps of Γ ′.
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Explicit formulas for these invariants for the congruence subgroups Γ (N),
Γ1(N) and Γ0(N) are a standard topic of the theory of modular forms, and
can be found in many textbooks on the subject (e.g. in [6, 3, 5, 8] and many
others). Using them, the computation of genera and dimensions has been
implemented in several computer packages, including PARI, Magma and
Sage.

The main objective of this paper is to give analogous formulas for all
congruence subgroups ΓH(N) sitting between Γ1(N) and Γ0(N). Our in-
terest (and need) for such formulas comes from work of the author and of
William Stein towards the implementation of modular symbols computa-
tions for these groups in Sage and Magma. We remark that the values of
the formulas can be easily computed in practice from the number N and the
group H; the computations have been implemented by the author in Sage,
Magma and Mathematica.

Formulas for the dimensions of the spaces of modular forms for Γ0(N)
with Nebentypus character were given by Cohen and Oesterlé in their 1976
paper [1]. The paper does not contain proofs, and the authors say that these
formulas “sont connues de beaucoup de gens et il existe plusieurs méthodes
permettant de les obtenir (théorème de Riemann–Roch, application des for-
mules de trace données par Shimura dans [7]).” These formulas are also
implemented as standard functions in some computer packages. In spite of
the considerable literature on the subject published in the last three decades,
including several textbooks containing detailed proofs of the formulas for the
groups Γ1 and Γ0, and also the development of simplified formulas for the
dimensions of newform subspaces (cf. [4]), no proof of the formula for the
spaces with character seems to have been published. In this paper we obtain
the same formula by a different procedure: we first deduce an expression
for the dimensions of these spaces in terms of the dimensions of spaces for
congruence subgroups ΓH(N), and then we use the formulas we obtained for
these dimensions to transform this expression into the one given by Cohen
and Oesterlé.

In Section 2 we recall some basic facts about congruence subgroups that
will be used, especially those related to elliptic points and cusps, and we
introduce some notation; in Section 3 we give explicit formulas for the in-
variants ν0, ν2, ν3, ν∞ and νreg

∞ for all congruence subgroups ΓH(N); in
Section 4 we obtain an expression for the dimensions of spaces of forms
with character in terms of those invariants, and transform it to arrive at the
Cohen–Oesterlé formulas.

2. The dimension formulas. From now on, let Γ ′ ⊆ Γ = SL2(Z) be a
subgroup of finite index (for instance, a congruence subgroup). This group
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acts on H∗ = H ∪ P1(Q) by linear fractional transformations

γ(z) =
az + b

cz + d
, γ =

(
a b

c d

)
∈ Γ ′, z ∈ H∗.

We will denote by Γ ′± the group {±1}·Γ ′ and by Γ ′ the group Γ ′±/{±1} ⊆
PSL2(Z) of linear fractional transformations of H∗ induced by elements of Γ ′.
We will denote by ν0(Γ ′) the degree of the covering of Riemann surfaces
X(Γ ′)→ X(Γ ); it is given by the index of the subgroup Γ ′± in Γ :

ν0(Γ ′) = [Γ : Γ ′] = [Γ : Γ ′±].

We recall that a point z ∈ H is an elliptic point of Γ ′ if the isotropy
subgroup Γ ′z = {γ ∈ Γ ′ | γ(z) = z} contains non-scalar elements; in that
case Γ ′±z is a cyclic group of order 4 or 6, and the elliptic point is said to be
of order 2 or 3, respectively (in general, the order of an elliptic point z is
defined as the order of the group Γ ′z). The set of elliptic points is the union of
a finite set of orbits for the action of Γ ′ on H, each of which corresponds to a
point on the curve X(Γ ′), also called an elliptic point. Let ν2(Γ ′) and ν3(Γ ′)
denote the numbers of elliptic points of each order in the curve X(Γ ′). For
example, the curve X(Γ ) has two elliptic points: the orbit of i =

√
−1, of

order 2, and the orbit of ρ = e2πi/3, of order 3, and hence ν2(Γ ) = ν3(Γ ) = 1.
The points of P1(Q) are the cusps of Γ ′, and they are the union of a

finite set of orbits for that group: the cusps of the curve X(Γ ′). For every
cusp z ∈ P1(Q) the isotropy subgroup Γ ′±z is of the form {±Wm | m ∈ Z}
for some matrix W ∈ Γ ′± of trace 2. If −1 /∈ Γ ′ then the isotropy subgroup
Γ ′z is an infinite cyclic subgroup of index 2 in Γ ′±z , and the cusp z is said to
be irregular or regular depending on whether or not this subgroup contains
(⇔ is generated by) a matrix of trace −2. The condition of regularity is an
invariant of the Γ ′-orbit, and hence one may speak of regular and irregular
cusps of the curveX(Γ ′). Let ν∞(Γ ′) = νreg

∞ (Γ ′)+νirr
∞ (Γ ′) denote the number

of cusps of the curve X(Γ ′), given as the sum of the number of regular and
irregular ones for groups with −1 /∈ Γ ′.

Now, in terms of the invariants just described, the genus of the curve
X(Γ ′) and the dimensions of the spaces Mk(Γ ′) of modular forms and Sk(Γ ′)
of cuspidal modular forms of weight k ≥ 2 for the group Γ ′ are given in
the following theorems (for proofs see for example Proposition 1.40 and
Theorems 2.23, 2.24 and 2.25 of Shimura [6], or Theorems 3.1.1, 3.5.1 and
3.6.1 of Diamond–Shurman [3]).

Theorem 2.1. The genus of the curve X(Γ ′) is

g(X(Γ ′)) = 1 +
ν0(Γ ′)

12
− ν2(Γ ′)

4
− ν3(Γ ′)

3
− ν∞(Γ ′)

2
.
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Theorem 2.2. If k ≥ 2 is even, then

dimSk(Γ ′) = δ2,k +
k − 1

12
ν0(Γ ′) +

(⌊
k

4

⌋
− k − 1

4

)
ν2(Γ ′)

+
(⌊

k

3

⌋
− k − 1

3

)
ν3(Γ ′)− ν∞(Γ ′)

2
,

dimMk(Γ ′) = −δ2,k + dimSk(Γ ′) + ν∞(Γ ′).

If k ≥ 3 is odd and −1 /∈ Γ ′, then

dimSk(Γ ′) =
k − 1

12
ν0(Γ ′) +

(⌊
k

3

⌋
− k − 1

3

)
ν3(Γ ′)− νreg

∞ (Γ ′)
2

,

dimMk(Γ ′) = dimSk(Γ ′) + νreg
∞ (Γ ′),

and the spaces Mk(Γ ′) are trivial for k odd when −1 ∈ Γ ′.
In the formulas of this theorem bxc denotes the integral part of a rational

number and δi,j is the Kronecker delta. Moreover, the coefficients of ν2(Γ ′)
and ν3(Γ ′) are often replaced by the following expressions in the literature:

(2.1)

γ4(k) =


−1/4 if k ≡ 2 (mod 4),
1/4 if k ≡ 0 (mod 4),
0 if k ≡ 1 (mod 2),

γ3(k) =


−1/3 if k ≡ 2 (mod 3),
1/3 if k ≡ 0 (mod 3),
0 if k ≡ 1 (mod 3).

The value of γ3(k) is always equal to bk/3c− (k − 1)/3, and γ4(k) coincides
with bk/4c − (k − 1)/4 for k even (for k odd the number ν2(Γ ′) does not
appear in the dimension formula because the groups Γ ′ with −1 /∈ Γ ′ cannot
have elliptic points of order 2); the need to define γ4(k) also for odd weights
is because this coefficient appears in the formula of Theorem 2.3 below for
all weights, but we remark that the value 0 assigned to it is completely
irrelevant, since in that formula γ4(k) is the coefficient of ν2(ε), which is
equal to zero when k is odd.

We remark that even though the irregular cusps do appear in the for-
mulas for odd weights given in Theorem 2.25 of [6] and Theorem 3.6.1 of
[3], they are canceled when one replaces in those formulas the genus of the
curve by its value as given by Theorem 2.1. For the groups Γ0 and Γ1 the
distinction between regular and irregular cusps is almost never necessary
because −1 ∈ Γ0(N), and even though −1 /∈ Γ1(N) for N > 2, the unique
group Γ1(N) having an irregular cusp is Γ1(4) (cf. Exercise 3.8.7 of [3]). On
the contrary, many of the groups ΓH(N) that will be studied in the next
section do have irregular cusps; in fact, for every N divisible by 4 there exist
subgroups H ⊂ (Z/NZ)∗ for which some of the cusps are irregular.
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Dimensions of spaces of forms with character. We now recall the
formula for the dimensions of spaces of modular forms of integral weight
k ≥ 2 with Nebentypus character, as given by Cohen and Oesterlé in [1,
Théorème 1] (notice that in that paper they also give formulas for forms of
half integral weight). We first introduce some notation and slightly adapt
the formula of [1] to our notation and needs.

Let N ≥ 1. We denote

ψ(N) = N
∏
p|N

(
1 +

1
p

)
= |P1(Z/NZ)|.

Let A4(N) and A3(N) be the sets of zeros modulo N of the 4th and the 3rd
cyclotomic polynomials:

A4(N) = {a ∈ (Z/NZ)∗ | a2 + 1 ≡ 0 (mod N)},
A3(N) = {a ∈ (Z/NZ)∗ | a2 + a+ 1 ≡ 0 (mod N)}.

Let k ≥ 2, and let ε : (Z/NZ)∗ → C∗ be a Dirichlet character of the same
parity as k, i.e. with ε(−1) = (−1)k. Let f |N be the conductor of ε. We
denote ν0(ε) = ψ(N),

(2.2) ν2(ε) =
∑

a∈A4(N)

ε(a) and ν3(ε) =
∑

a∈A3(N)

ε(a),

and set
ν∞(ε) =

∑
d|N

(d,N/d)|N/f

ϕ((d,N/d)).

Then the formula given in [1] reads

Theorem 2.3 ([1, Théorème 1]). Under the previous assumptions and
notation,

dimSk(N, ε) = δ2,kf +
k − 1

12
ν0(ε) + γ4(k)ν2(ε) + γ3(k)ν3(ε)− ν∞(ε)

2
,

dimMk(N, ε) = −δ2,kf + dimSk(N, ε) + ν∞(ε),

with γ4 and γ3 given in (2.1) and δi,j the Kronecker delta.

For the computation of ν∞(ε) in practice the following multiplicative
expression is very useful (also given in [1]):

(2.3) ν∞(ε) =
∏
p|N

λ(vp(N), vp(f), p),

with

(2.4) λ(r, s, p) =


pr
′
+ pr

′−1 if 2s ≤ r = 2r′,
2pr

′
if 2s ≤ r = 2r′ + 1,

2pr−s if 2s > r,

for integers r ≥ 1, s ≥ 0, and r ≥ s, and a prime number p.
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In Lemma 4.4 of Section 4 we shall give an expression for the values of
ν2(ε) and ν3(ε) that is much better for practical computation than using
(2.2) directly.

3. Computation of invariants for the groups ΓH(N). From now
on we focus on the congruence subgroups Γ ′ ⊆ Γ = SL2(Z) defined by

Γ ′ = ΓH(N) =
{(

a b

c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 (mod N), a, d ∈ H
}

for H a subgroup of the multiplicative group (Z/NZ)∗. This includes the two
extreme cases Γ1(N) and Γ0(N) corresponding to the subgroups H = {1}
and H = (Z/NZ)∗. We observe that the group ΓH(N)± = {±1} · ΓH(N)
is just ΓH±(N) for the subgroup H± ⊆ (Z/NZ)∗ defined in the analogous
way, i.e. H± = {±1} ·H.

We denote X = X(Γ ) and XH(N) = X(Γ ′).
For a fixed N the modular curves XH(N) are in bijective correspondence

with the subcovers of the Galois cover X1(N) → X0(N). If f ∈ S2(N, ε) is
a newform for Γ0(N) with Nebentypus ε, then the abelian variety Af at-
tached to it by Shimura (cf. [6, Theorem 7.14]) is isogenous to a factor of
the Jacobian variety JH(N) = Jac(XH(N)) for all subgroups H ⊆ (Z/NZ)∗

contained in ker ε. A package for explicit computations with these varieties,
based on modular symbols for Γ0(N) with Nebentypus, was implemented
by William Stein in Magma, and he has also been implementing this kind of
computations in Sage. For many purposes it is desirable to have a descrip-
tion of Af as a subvariety or a quotient of a Jacobian of a curve, and in this
respect the curves XH(N) are of great interest, because if one restricts to
work only with the family of Jacobians J1(N), which in some sense would
be enough since all Af are quotients of some of them, one major drawback is
that the dimensions of these Jacobians grow very fast and the computations
become unfeasible even for relatively small values of N (a few hundred).
On the contrary, if one works with the subcovers XH(N) then the varieties
Af for forms with Nebentypus character having large kernel (i.e. small or-
der) can be handled in practice for very large values of N (up to several
thousand).

The need to do explicit computations with modular symbols for congru-
ence groups ΓH(N) and with modular curves XH(N) was our motivation to
develop the genus and dimension formulas that will be given in this section.

The rest of the section is devoted to obtaining formulas for the invariants
ν0, ν2, ν3, ν∞ and νreg

∞ for the groups ΓH(N).

Degree of the covering. For a subgroup H ⊆ (Z/NZ)∗ let

PH(N) = {(c, d) ∈ (Z/NZ)2 | (c, d,N) = 1}/∼
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where

(c, d) ∼ (c′, d′) ⇔ c′ = hc and d′ = hd for some h ∈ H.
We remark that for H = (Z/NZ)∗ this set is the projective line P1(Z/NZ),
and that |PH(N)| = ψ(N)ϕ(N)/|H| with ϕ being the Euler totient function.

Lemma 3.1. The map γ =
(
a b
c d

)
7→ (c, d) induces a well defined bijection

between the set of right cosets ΓH(N)γ ∈ ΓH(N)\Γ and the set PH(N).

Proof. The proof is straightforward. Cf. also Proposition 2.2.1 of [2],
where an equivalent formulation of this lemma is proved for the group
Γ0(N).

As an immediate consequence we obtain

Proposition 3.2. The degree of the covering XH(N)→ X(Γ ) is

ν0(ΓH(N)) = [Γ : ΓH±(N)] = ψ(N)ϕ(N)/|H±|.

Number of elliptic points. The counting of elliptic points on the
curves X0(N) is performed in [6] and in [3] by counting ideals in the orders
Z[i] and Z[ρ]. Instead, we use a simpler argument inspired by Proposition
14 of [5]. Let S and U be the matrices

S =
(

0 −1
1 0

)
, U =

(
0 1
−1 −1

)
.

The isotropy subgroups of the elliptic points i =
√
−1 and ρ = e2πi/3 in the

group Γ are Γi = 〈S〉 = {±1,±S} and Γρ = 〈−U〉 = {±1,±U,±U2}. We
have

Lemma 3.3. Let Γ ′⊆SL2(Z) be any finite index subgroup. Let {γ1, . . . , γν}
be a full set of representatives of the right cosets of Γ ′± in Γ . Then the map
γj 7→ γj(i) (resp. γj 7→ γj(ρ)) is a bijection between the set of γj such that
γjSγ

−1
j ∈ Γ ′ (resp. γjUγ−1

j ∈ Γ ′) and the set of elliptic points of order 2
(resp. order 3) for Γ ′.

Proof. The elliptic points in H of order 2 (resp. order 3) for Γ ′ belong
to the Γ -orbit of i (resp. of ρ = e2πi/3). Let γ ∈ Γ . The condition that
the isotropy subgroup of γ(i) (resp. γ(ρ)) with respect to Γ ′ contains a
non-scalar matrix is that γSγ−1 ∈ Γ ′ (resp. γUγ−1 ∈ Γ ′), and two such
elements belong to the same Γ ′-orbit if, and only if, the corresponding γ
belong to the same right coset with respect to Γ ′±.

Proposition 3.4. The numbers of elliptic points of order 2 and 3 in the
curve XH(N) are given by

ν2(ΓH(N)) =
ϕ(N)
|H±|

|A4(N) ∩H±|, ν3(ΓH(N)) =
ϕ(N)
|H±|

|A3(N) ∩H±|.
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Proof. We apply the previous lemma to our group ΓH(N). Let γ =(
a b
c d

)
∈ SL2(Z). Then the matrix

γ

(
0 −1
1 0

)
γ−1 =

(
ac+ bd −(a2 + b2)
c2 + d2 −(ac+ bd)

)
belongs to ΓH(N) if, and only if, the following two conditions are satisfied:

c2 + d2 ≡ 0 (mod N) and ac+ bd ∈ H.
Notice that these conditions only depend on the entries of the matrix viewed
modulo N . The congruence c2+d2 ≡ 0 (mod N) implies (c,N) = (d,N) = 1.
On the set PH(N) representing the cosets of the group ΓH(N), a full set
of representatives for the pairs (c, d) corresponding to matrices such that
the congruence is satisfied is constructed in the following way. Fix elements
cj ∈ (Z/NZ)∗ that are a set of representatives of the quotient (Z/NZ)∗/H±,
with j = 1, . . . , ϕ(N)/|H±|, and then take all pairs (cj , d) for d ∈ Z/NZ such
that (cj , d) = (d,N) = 1. Then, among these (cj , d), the pairs satisfying the
congruence are those with (d/cj)2 ≡ −1 (mod N) ⇔ d = acj for some
s ∈ (Z/NZ)∗ with s2 ≡ −1 (mod N). Hence, a full set of representatives of
the (c, d) ∈ PH(N) satisfying c2 + d2 ≡ 0 (mod N) is

(cj , scj) for j = 1, . . . , ϕ(N)/|H±| and s ∈ A4(N).

Now a short computation using the fact that ad− bc = 1 shows that for the
matrices corresponding to these pairs we have ad+ bc ≡ s (mod N), so that
those for which γ(i) is an elliptic point are the ones having s ∈ H = H±.

The argument for cusps of order 3 is analogous: for a matrix γ ∈ SL2(Z)
as before one has

γ

(
0 1
−1 −1

)
γ−1 = γ

(
bc− bd− ac a2 − ab+ b2

−(c2 − cd+ d2) ac− ad+ bd

)
and again the condition c2 − cd + d2 ≡ 0 (mod N) implies that (c,N) =
(d,N) = 1. Let the pairs (cj , d) be as before; they satisfy the congruence
when (cj/d)2 − cd + 1 ≡ 0 (mod N). A full set of representatives of these
pairs is

(cj ,−scj) for j = 1, . . . , ϕ(N)/|H±| and s ∈ A3(N),

and among them one has bc− bd−ac ≡ s2 (mod N). Hence we also obtain a
full set of representatives as in the previous lemma by taking the pairs with
s ∈ H±.

Number of cusps. In order to simplify many expressions, from now
on we will use the following notation. For every divisor d |N we denote
Nd = [d,N/d] the least common multiple of d and N/d (notice that N/Nd =
(d,N/d) and that Nd is divisible by all prime factors of N) and we denote
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by Hd = {a (mod Nd) | a ∈ H} the subgroup of (Z/NdZ)∗ that is the image
of the subgroup H ⊆ (Z/NZ)∗ under reduction modulo Nd.

Set
SH(N, d) = {(p, q) ∈ (Z/dZ)∗ × (Z/(N/d)Z)∗}/∼

where

(p, q) ∼ (p′, q′) ⇔ p′ = hp and q′ = h−1q for some h ∈ H
(notice that the reduction of elements of H modulo d and modulo N/d is
well defined), and let SH(N) =

⋃
d|N SH(N, d) be the union of all these sets.

We observe that the elements h ∈ H for which hp = p and h−1q = q are the
h ≡ 1 (mod Nd), and this implies that the number of elements in each set
SH(N, d) is ϕ(d)ϕ(N/d)/|Hd|.

Proposition 3.5. For cusps p/q ∈ P1(Q) with (p, q) = 1, the map
p/q 7→ (p, q/(q,N)) induces a well defined bijection between the set of cusps
on the curve XH(N) and the set SH±(N). If −1 /∈ H then under this bijec-
tion the regular and irregular cusps correspond, respectively, to the subsets⋃

d|N
−1/∈Hd

SH±(N, d) and
⋃
d|N
−1∈Hd

SH±(N, d).

Proof. The proof of the first statement is easily obtained following the
same arguments as in Proposition 2.2.3 of [2], where an equivalent statement
for the group Γ0(N) is proved.

Assume −1 /∈ H. Let s = p/qd be a cusp, given as a quotient of integers
with (s, qd) = 1, d |N and (q,N/d) = 1. The isotropy subgroup of s in Γ is

Γs =
{
±
(

1 + pqdt −p2t

q2d2t 1− pqdt

) ∣∣∣∣ t ∈ Z
}
,

and ΓH(N)s = Γs ∩ ΓH(N). This group contains a matrix of trace −2 if,
and only if, there is an integer t ∈ Z such that

q2d2t ≡ 0 (mod N) and −1− pqdt ∈ H.
The first congruence is equivalent to t being divisible by (N/d)/(d,N/d) =
Nd/d; if we put t = t0Nd/d, the second condition becomes −1−pqNdt0 ∈ H
for some t0 ∈ Z. If this condition is satisfied then −1 ∈ Hd. Conversely,
assume that −1 ∈ Hd; then there exists an integer m ∈ Z such that −1 +
Ndm ∈ H. For any given cusp corresponding to an element of SH±(N, d)
there are representatives of the form p/qd with p and q relatively prime to
any given number, and in particular we may assume that they are odd; then,
since N2

d ≡ 0 (mod N), the integer (−1 +Ndm)pq is congruent modulo N to
−1+Ndpqm. By the previous criterion it follows that the cusp is irregular.

As an immediate consequence we obtain
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Proposition 3.6. The number of cusps in the curve XH(N) is

ν∞(ΓH(N)) =
∑
d|N

ϕ(d)ϕ(N/d)
|H±d |

.

If −1 /∈ H the number of regular and irregular ones is given by the sums
over the divisors d for which −1 /∈ Hd and −1 ∈ Hd, respectively.

Concerning the existence of irregular cusps, the following information
can be useful.

Proposition 3.7. Assume −1 /∈ H. Then for every divisor d |N with
(d,N/d) odd one has −1 /∈ Hd. It follows that if 4 - N then all the cusps for
the group ΓH(N) are regular.

Proof. Assume that −1 ∈ Hd and (d,N/d) is odd. Then −1 +Ndm ∈ H
for some integer m and −1 ≡ (−1 + Ndm)(d,N/d) (mod N), which is a
contradiction. The congruence may be deduced from the binomial theorem,
by noticing that (d,N/d)Nd = N and that N2

d ≡ 0 (mod N).
The greatest common divisor (d,N/d) is even for some divisor d |N if,

and only if, 4 |N .

A practical formula for the number of cusps. To use the formula of
Proposition 3.6 in practice would require to compute the number of elements
of each group Hd for all divisors d of N . We will see that in fact this number
of elements can be obtained if we just know the number of elements of the
reduction H0 of the group H modulo a single divisor N0 of N , and then
derive from this fact a formula for the number of cusps depending on a
multiplicative expression as a product of terms similar to (2.4), which we
introduce now: for integers r ≥ 1, s ≥ 0, and r ≥ s, and a prime number p,
we define
(3.1)

`(r, s, p) =


p3r′−s−2(p2 − 1) if 2s ≥ r = 2r′,
2p3r′−s(p− 1) if 2s ≥ r = 2r′ + 1,
pr−2(p− 1)(2p+ (p− 1)(r − 2s− 1)) if 2s < r.

For every integer N ≥ 1 we define the integer N0 to be

(3.2) N0 =

{∏
p|N p if 8 - N,

2
∏
p|N p if 8 |N.

It is essentially the radical of N , except that when N is divisible by 8 then
it has the prime 2 twice. For any subgroup H ⊆ (Z/NZ)∗ we denote by
H0 the subgroup of (Z/N0Z)∗ obtained by reduction of the elements of H
modulo N0. We have an exact sequence

1→ K0 → H → H0 → 1
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with K0 = {h ∈ H | h ≡ 1 (mod N0)}, the kernel of the reduction map. For
every divisor d |N we have an analogous exact sequence 1 → Kd → H →
Hd → 1 corresponding to the reduction map modulo Nd, and one has

Lemma 3.8. Let k = |K0| = |H|/|H0|. Then for every d |N one has
|Hd| = |H0|k/(k, N/Nd); moreover,

(3.3)
∑
d|N

ϕ(d)ϕ(N/d)
|Hd|

=
1
|H0|

∏
p|N

`(vp(N), vp(k), p).

Proof. Consider the exact sequence corresponding to the reduction mod-
ulo N0 map,

1→ C0 → (Z/NZ)∗ → (Z/N0Z)∗ → 1.

Then, from the definition of N0, and taking into account the structure of
the multiplicative group (Z/NZ)∗ as the product of the groups (Z/peZ)∗

for the prime-power factors of N , it follows that the group C0 is cyclic of
order ϕ(N)/ϕ(N0) = N/N0. Let g be a generator of it. For every d |N
reduction modulo Nd gives an analogous exact sequence with kernel Cd
being a subgroup of C0 of order ϕ(N)/ϕ(Nd) = N/Nd, hence generated by
the (Nd/N0)th power of g.

The group K0 = C0 ∩ H is generated by the smallest power of g be-
longing to H, which by the definition of k is (N/N0)/k. For every divisor
Nd of N (in fact, for every divisor of N that is divisible by N0), the group
Kd = Cd ∩ H is the subgroup of C generated by the smallest power of g
that belongs to H and Cd, and hence its exponent must be a multiple of
the least common divisor [Nd/N0, N/(kN0)]. Thus, the group Kd has order
(N/N0)/[Nd/N0, N/(kN0)]. A short computation shows that this number is
equal to (k, N/Nd). The identity relating |Hd| and |H0| in the statement of
the lemma is then obtained by just expressing the numbers of elements of
the groups Hd and H0 in terms of |H| and of |Kd| and |K0|.

Now we observe that the factor (k, N/N0) = (k, d,N/d) of |Hd| is multi-
plicative, in the sense that for every decompositionN = N1N2 into a product
of relatively prime factors one has (k, d,N/d) = (k1, d1, N1/d1)(k2, d2, N2/d2)
with ki = (k, Ni) and di = (d,Ni). Taking out the common factor 1/|N0| in
the sum on the left of (3.3), we get a sum over the divisors of N of an expres-
sion that is multiplicative with respect to factorizations of N as a product
of coprime factors. Then an easy but tedious computation of the sums for
prime-power divisors, similar to the one needed to obtain (2.3), gives us the
expression of this sum as a product of the `(r, s, p).

We obtain the following formula that essentially reduces the practical
computation of the number of cusps to the knowledge of the number of
elements of the group H0, and of whether or not the condition −1 ∈ H0 is
satisfied for the distinction between regular and irregular ones.
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Corollary 3.9. For every subgroup ΓH(N), let k = |H±|/|H±0 |. Then
the number of cusps of XH(N) is given by

ν∞(ΓH(N)) =
1
|H±0 |

∏
p|N

`(vp(N), vp(k), p).

Assume that −1 /∈ H. Then if −1 /∈ H0 all the cusps are regular, and if
−1 ∈ H0 the number of regular cusps of XH(N) is

νreg
∞ (ΓH(N))

=
`(v2(N), v2(k)− 1, 2)− `(v2(N), v2(k), 2)

|H±0 |
∏
p|N
p 6=2

`(vp(N), vp(k), p).

Proof. Indeed, the first formula is simply obtained by applying the for-
mula of Proposition 3.6 and the expression obtained in Lemma 3.8.

Assume that −1 /∈ H, which is equivalent to |H±| = 2|H|. The regular
cusps are obtained as the sum of Proposition 3.6 restricted to the divisors
d |N for which −1 /∈ Hd. As N0 divides Nd for all d, we see that −1 /∈ H0

⇒ −1 /∈ Hd for all d and all cusps are regular. Assume that −1 ∈ H0. Then,
for every divisor d |N , one has

−1 ∈ Hd ⇔ |H±d | = |Hd| and − 1 /∈ Hd ⇔ |H±d | = 2|Hd|.
It follows that the number of regular cusps is∑

d|N
−1/∈Hd

ϕ(d)ϕ(N/d)
|H±d |

=
1
2

∑
d|N
−1/∈Hd

ϕ(d)ϕ(N/d)
|Hd|

(3.4)

=
∑
d|N

ϕ(d)ϕ(N/d)
|Hd|

−
∑
d|N

ϕ(d)ϕ(N/d)
|H±d |

,

and the formula in the statement of the lemma is obtained by just applying
Lemma 3.8 to the two sums in this last expression.

4. Dimensions of spaces of modular forms with Nebentypus. Let
ε : (Z/NZ)∗ → C∗ be a Dirichlet character, and let Mk(N, ε) and Sk(N, ε) be
the spaces of modular and cuspidal forms for Γ0(N) with Nebentypus char-
acter ε. An application of the Möbius inversion formula gives the following
expression for the dimensions of these spaces in terms of the dimensions of
spaces of modular forms for congruence subgroups ΓH(N).

Theorem 4.1. Let ε be a Dirichlet character of order n. Then

dimSk(N, ε) =
1

ϕ(n)

∑
δ|n

µ(δ) dimSk(Γker(εδ)(N)),



Dimensions of spaces of modular forms 385

where µ is the Möbius function, and the analogous formula holds for the
spaces Mk.

Proof. The standard decomposition of Sk(Γ1(N)) into spaces of forms
with Nebentypus,

Sk(Γ1(N)) '
⊕

ε:(Z/NZ)∗→C∗
Sk(N, ε),

induced by the action of the diamond operators 〈a〉 for all a ∈ (Z/NZ)∗ yields
analogous decompositions of the spaces of modular forms for congruence
subgroups ΓH(N): the action of the diamond operator 〈a〉 on Sk(ΓH(N))
depends only on a ∈ (Z/NZ)∗/H, and one obtains a decomposition involving
only the Dirichlet characters with kernel containing the group H,

Sk(ΓH(N)) '
⊕

ε:(Z/NZ)∗→C∗
H⊆ker ε

Sk(N, ε).

Consider the case H = ker ε. For this subgroup of (Z/NZ)∗ of cyclic co-
kernel the characters whose kernels contain it are the powers of ε. Grouping
them by conjugacy classes, and observing that the dimensions of Sk(N, σε)
are the same for every σ ∈ Gal(Q/Q), we have

dimSk(Γker(ε)(N)) =
n−1∑
m=0

dimSk(N, εm) =
∑
δ|n

ϕ(δ) dimSk(N, εn/δ).

Applying the Möbius inversion formula to the functions defined for divisors
δ of n by

f(δ) = ϕ(δ) dimSk(N, εn/δ) and g(δ) = dimSk(Γker(εn/δ)(N)),

we obtain

ϕ(n) dimSk(N, ε) =
∑
δ|n

µ(δ) dimSk(Γker(εδ)(N)),

and we deduce the formula in the statement.

Now, a proof of the formula by Cohen and Oesterlé is provided by the
following

Theorem 4.2. For every N, k and ε the formulas of Theorems 2.3 and
4.1 give the same value.

The rest of this section is devoted to a proof of Theorem 4.2. The proof
will be obtained by showing the identity between each “ν-component” of the
formula of Theorem 4.1 with the dimensions dimSk(Γker(εδ)(N)) replaced by
their expression in Theorem 2.2, and the corresponding ν-component of the
formula of Theorem 2.3; specifically, in Propositions 4.3, 4.6 and 4.8 we will
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see that ∑
δ|n

µ(δ)ν(Γker(εδ)(N)) = ϕ(n)ν(ε) for ν = ν0, ν2, ν3, ν∞,

with the appropriate interpretation for each ν and taking into account the
following remark: the case of odd character corresponds to odd weight, and
in this case the dimensions of the spaces Sk(Γker(εδ)(N)) are zero when −1 ∈
ker(εδ) and are given by the formula of Theorem 2.2 when −1 /∈ ker(εδ);
since this last condition is equivalent to δ being odd, only the odd divisors
of n must be taken into account for odd characters ε.

There is also a zero-or-one summand δ2,k and δ2,kf in the formulas of
Theorems 2.2 and 2.3 that needs to be considered (only for the even weight
formulas). The corresponding identity is obtained as an immediate conse-
quence of the basic property of the Möbius function saying that

∑
δ|n µ(n)

is the characteristic function of the set containing only the number one:∑
δ|n

µ(δ)δ2,k = δ2,k
∑
δ|n

µ(δ)

=
{

1 if k = 2 and n = 1 (⇔ ε is trivial)
0 otherwise.

}
= ϕ(n)δ2,kf.

Here the double use of δ to denote a divisor of n and the Kronecker delta
should not lead to confusion.

Proposition 4.3 (Equality for ν0). If ε is even, then∑
δ|n

µ(δ)ν0(Γker(εδ)(N)) = ϕ(n)ν0(ε),

and if ε is odd, then∑
δ|n
δ odd

µ(δ)ν0(Γker(εδ)(N)) = ϕ(n)ν0(ε).

Proof. Recall that ν0(ε) = ψ(N). Assume first that ε is even. Then −1 ∈
ker(εδ) for all δ, hence ker(εδ)± = ker(εδ), and since εδ has order n/δ, which
is the order of the image εδ((Z/NZ)∗) ⊂ C∗, we have |ker(εδ)| = ϕ(N)/(n/δ)
and using the formula of Proposition 3.2 and the Möbius inversion formula,
we obtain∑

δ|n

µ(δ)ν0(Γker(εδ)(N)) =
∑
δ|n

µ(δ)ψ(N)
ϕ(N)
|ker(εδ)|

= ψ(N)
∑
δ|n

µ(δ)
n

δ
= ψ(N)ϕ(n).
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Let now ε be an odd character. In this case we have to prove that∑
δ|n
δ odd

µ(δ)ν0(Γker(εδ)(N)) = ϕ(n)ν0(ε).

Since ε(−1) = −1 the order n must be even. Let n = 2vn0 for an odd integer
n0 and exponent v ≥ 1. In this case |ker(εδ)±| = 2|ker(εδ)| for odd divisors
δ |n and we have∑
δ|n
δ odd

µ(δ)ν0(Γker(εδ)(N)) =
∑
δ|n0

µ(δ)ν0(Γker(εδ)(N))

=
∑
δ|n0

µ(δ)ψ(N)
ϕ(N)

2|ker(εδ)|
= ψ(N)

∑
δ|n0

µ(δ)
n

2δ

= ψ(N)
n

2n0

∑
δ|n0

µ(δ)
n0

δ
= ψ(N)2v−1ϕ(n0) = ψ(N)ϕ(n).

A formula for ν2(ε) and ν3(ε). We now give a formula for the values
ν2(ε) and ν3(ε); apart from it being useful for the computation of these
numbers in practice, the formula will be needed in the proof of the identity
corresponding to the numbers of elliptic points.

For a Dirichlet character ε modulo N and a prime number p |N , we will
denote by εp the “local component” of N at p corresponding to the decom-
position of (Z/NZ)∗ into the product of groups (Z/peZ)∗. These characters
correspond, under the identification between primitive Dirichlet characters
and characters of the absolute Galois group Gal(Q/Q) provided by class
field theory, to the restrictions to decomposition groups.

The set A4(N) is non-empty exactly when 4 - N and all odd prime
factors of N are ≡ 1 (mod 4), in which case it contains 2t elements, with t
the number of odd prime factors; the set A3(N) is non-empty exactly when
9 - N and all prime factors of N different from 3 are ≡ 1 (mod 3), in which
case it contains 2t elements, with t the number of prime divisors p 6= 3.
When these sets are non-empty, we have

Lemma 4.4. Assume that |A4(N)| = 2t > 0. Then

ν2(ε) =
{
ε0(−1)2t ∈ {±2t} if ε = ε20,
0 otherwise.

Assume that |A3(N)| = 2t > 0. Then

ν3(ε) = (−1)t02t1

where t1 (resp. t0) is the number of local components εpi that are cubes (resp.
non-cubes) of Dirichlet characters modulo peii , for the prime factors pi ≡ 1
(mod 3) of N .
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Proof. Fix a0 ∈ A4(N). Let N = 2r0pr11 · · · p
rt
t be the factorization of

N , with r0 ∈ {0, 1} and pi ≡ 1 (mod 4) for all i = 1, . . . , t. Then there
are 2t zeros of X2 + 1 modulo N , and they form a coset of the 2-torsion
subgroup (Z/NZ)∗[2] = {ζ ∈ (Z/NZ)∗ | ζ2 = 1}. Since this subgroup is
the product of all the 2-torsion subgroups (Z/prii Z)∗[2], which are contained
in the kernel of εpi if and only if this character is a square, and from the
observation that ε is a square if and only if all its local components are
squares, we deduce that (Z/NZ)∗[2] ⊆ ker ε exactly when ε is the square of
some Dirichlet character ε0.

If ε is not a square (this includes the case where ε(−1) = −1) then
ker(ε)[2] = (Z/NZ)∗[2]∩ker(ε) is a subgroup of index 2 of the full 2-torsion.
Let ζ0 be a representative of the non-trivial coset, for which necessarily
ε(ζ0) = −1. Then∑

a∈A4(N)

ε(a) = ε(a0)
∑

ζ∈(Z/NZ)∗[2]

ε(ζ) =
∑

ζ∈ker(ε)[2]

(ε(ζ) + ε(ζ0ζ)) = 0.

Suppose now that ε = ε20. Then (Z/NZ)∗[2] ⊆ ker(ε) and∑
a∈A4(N)

ε(a) = ε(a0)
∑

ζ∈(Z/NZ)∗[2]

ε(ζ) = ε20(a0)2t = ε0(−1)2t.

Now consider the case A3(N) 6= ∅. Let N = 3r0pr11 · · · p
rt
t with pi ≡ 1

(mod 3). The 3-torsion (Z/NZ)∗[3] decomposes as the product of the 3-
torsions for the (cyclic) multiplicative groups modulo prii for 1 ≤ i ≤ t
and, under this decomposition, the elements of A3(N) correspond to the
t-tuples of elements of order 3 modulo prii for every i. Let a = (ai) with
ai ∈ (Z/prii Z)∗ be one of such elements. Then∑

a∈A3(N)

ε(a) =
∑

ei∈{1,2}

t∏
i=1

εpi(a
ei
i ) =

t∏
i=1

(εpi(ai) + εpi(a
2
i )).

The group of Dirichlet characters modulo prii is cyclic generated by some
character that on the order 3 element ai takes the value e2πi/3. Hence, for
every character εpi , the value εpi(ai) is 1 or e±2πi/3 depending on whether the
character is the cube of some character or not, and the sum εpi(ai)+εpi(ai)

2

is 2 or −1 depending on whether the character is a cube or a non-cube.

Lemma 4.5. Let χ be a Dirichlet character modulo N . If A4(N) 6= ∅,
then

|A4(N) ∩ ker(χ)| =


0 if χ(−1) = −1,
1
2 |A4(N)| if χ 6= χ2

0 and χ(−1) = 1,
|A4(N)| if χ = χ2

0 and χ0(−1) = 1,
0, if χ = χ2

0 and χ0(−1) = −1.
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If A3(N) 6= ∅ and t0, t1 are as in the previous lemma, then

|A3(N) ∩ ker(χ)| = 2
3

(2t0−1 − (−1)t0−1)2t1 .

Proof. Let a0 ∈ A4(N) be any fixed element, so that A4(N) = {a0ζ |
ζ ∈ (Z/NZ)∗[2]}. If χ(−1) = −1 then χ(a) 6= 1 for all a ∈ A4(N) and the
first case follows. The condition of χ being a square is equivalent to the
inclusion (Z/NZ)∗[2] ⊆ ker(χ). Consider the case χ 6= χ0 but χ(−1) = 1.
Then χ(a) ∈ {±1} for all a ∈ A4(N) and ker(χ)∩ (Z/NZ)∗[2] is a subgroup
of index two of the 2-torsion (Z/NZ)∗[2]; if ζ0 is a representative of the non-
trivial coset one has χ(a0ζ0ζ) = −χ(a0ζ) for all ζ ∈ ker(χ) ∩ (Z/NZ)∗[2],
and hence χ(a) = 1 for exactly half of the elements of A4(N). Assume now
that χ = χ2

0. Then, for every a ∈ A4(N), χ(a) = χ(a0) = χ2
0(a0) = χ0(−1),

from which the last two cases follow.
Let t = t0 +t1 be the number of prime factors of N different from 3, with

t0 (resp. t1) being the number of local characters χp that are cubes (resp.
non-cubes). Then t0 = 0 is equivalent to χ being a cube, and in this case one
checks that the formula gives the correct value 2t. Let p1, . . . , pt0 , pt0+1, . . . , pt
be the list of prime divisors of N different from 3, the first t0 being those
for which the local character χpi is a non-cube. Let ζi ∈ (Z/NZ)∗ be an
element of order 3 modulo the largest power of pi dividing N and congru-
ent to one modulo all other prime power factors. Then (Z/NZ)∗[3] is the
cyclic group of order 3t generated by the ζi, and the elements of A3(N)
are the ζ =

∏t
i=1 ζ

xi
i with all exponents relatively prime to 3. The char-

acter χ sends such an element to the power of e2πi/3 with exponent given
by a linear form

∑t
i=1 aixi, with ai integers such that a1, . . . , at0 are not

divisible by 3 and the remaining at0+1, . . . , at are divisible by 3. Hence
the elements ζ =

∏
ζxii ∈ A3(N) with χ(ζ) = 1 can have arbitrary ex-

ponents on the last t1 factors while the first t0 exponents must satisfy∑t0
i=1 aixi ≡ 0 (mod 3). We see that |A3(N) ∩ ker(χ)| is 2r1 times the

number of vectors (x1, . . . , xm) ∈ Fm3 in the F3-vector space of dimension
m = t0 with all xi 6= 0 and with

∑
aixi = 0. This number, call it wm,

can be computed recursively by reducing the problem in Fm+1 to the m-
dimensional subspace of vectors with zero first coordinate. We find that
w1 = 0 and wm+1 = 2m − wm for m ≥ 1, and hence the numbers wi sat-
isfy wm+2 = wm+1 + 2wm; solving the corresponding recurrence equation
we obtain the expression wm = 2

3(2m−1 − (−1)m−1) and the formula fol-
lows.

Proposition 4.6 (Equality for ν2 and ν3). If ε is even, then∑
δ|n

µ(δ)νi(Γker(εδ)(N)) = ϕ(n)νi(ε) for i = 2, 3,
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and if ε is odd, then∑
δ|n
δ odd

µ(δ)ν2(Γker(εδ)(N)) = ϕ(n)ν2(ε) for i = 2, 3.

Proof. We begin by considering the identities corresponding to ν2. As-
sume that A4(N) 6= ∅ since otherwise the identities are obvious because
everything is zero on both sides.

Consider first the case of an even Dirichlet character ε. Then all its
powers are even and ker(εδ)± = ker(εδ) for all δ |N . For every odd value
of δ, the character εδ is a square if, and only if, ε is a square. Assume that
ε is not a square. Then its order is even and we can write n = 2vn0 with
n0 odd and v ≥ 1. Discarding the divisors δ that are multiples of four and
using the previous lemma we obtain∑
δ|n

µ(δ)ν2(Γker(εδ)(N)) =
∑
δ|n0

µ(δ)ν2(Γker(εδ)(N))+
∑
δ|n0

µ(2δ)ν2(Γker(ε2δ)(N))

=
∑
δ|n0

µ(δ)
ϕ(N)
|ker(εδ)|

· 1
2
|A4(N)|+

∑
δ|n0

µ(2δ)
ϕ(N)
|ker(ε2δ)|

· |A4(N)| = 0.

Assume now that ε = ε20. If ε0(−1) = 1 then εδ is always the square of an
even character and∑

δ|n

µ(δ)ν(Γker(εδ)(N)) =
∑
δ|n

µ(δ)
ϕ(N)
|ker(εδ)|

· |A4(N)|

= |A4(N)|
∑
δ|n

µ(δ)
n

δ
= ϕ(n)|A4(N)|.

If ε0 is odd, then its order must be a multiple of 4 because ε0(a0) is a 4th
root of unity. Hence ε has even order, say n = 2vn0. Each power εδ is the
square of the character εδ0, which has the same parity of δ. Discarding the
divisors that are multiples of 4 we obtain∑
δ|n0

µ(δ)ν2(Γker(εδ)(N)) +
∑
δ|n0

µ(2δ)ν2(Γker(ε2δ)(N))

= 0 +
∑
δ|n0

µ(2δ)
ϕ(N)
|ker(ε2δ)|

· |A4(N)| = −|A4(N)|
∑
δ|n0

µ(δ)
n

2δ

= −|A4(N)| n
2n0

∑
δ|n0

µ(δ)
n0

δ
= −|A4(N)|2v−1ϕ(n0) = −ϕ(n)|A4(N)|.

Consider finally the case of an odd character ε, when we have ν2(ε) = 0.
Since every power εδ with odd exponent is also an odd character we have
always |A4(N) ∩ ker(εδ)| = 0 and the identity follows.
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Let us now consider the equalities corresponding to ν3, and assume that
A3(N) 6= ∅ since otherwise the identities are trivially true. Let t = t0 + t1 be
the numbers of local factors of the character that are cubes and non-cubes
as before.

Given a Dirichlet character ε, all powers εδ are cubes if 3 | δ and have
the same number of local factors that are cubes and non-cubes as ε for all
exponents prime to 3. Consider first the case of an even character; then
all its powers are even and ker(εδ)± = ker(εδ). Assume first that ε is a
cube, i.e. r0 = 0. Then |A3(N) ∩ ker(εδ)| = 2t for all δ and the equality of
the statement follows immediately. Assume that r0 ≥ 1. Then n must be
divisible by 3 and we write n = 3vn0 with v ≥ 1 and 3 - n0. Discarding the
divisors divisible by 9 and summing separately over the divisors prime to 3
and divisible by 3 we obtain∑
δ|n0

µ(δ)ν3(Γker(εδ)(N)) +
∑
δ|n0

µ(3δ)ν3(Γker(ε3δ)(N))

=
∑
δ|n0

µ(δ)
n

δ
|A3(N) ∩ ker(εδ)| −

∑
δ|n0

µ(δ)
n

3δ
2t

=
n

n0
ϕ(n0)

2
3

(2t0−1 − (−1)r0−1)2r1 − n

3n0
ϕ(n0)2t

= ϕ(n)2t1(2t0−1 − (−1)t0−1 − 2t0−1) = ϕ(n)2t1(−1)t0 = ϕ(n)ν3(ε).

Let now ε be an odd character. Let n = 2un0 with u > 0 and n0 odd.
Then all powers εδ with odd exponent are odd and since ker(εδ)± = ker(ε2δ)
one has |A3∩ker(εδ)±| = |A3∩ker(εδ)|. After these remarks, the identity can
be checked exactly as in the case of even characters by considering separately
the cases of ε being a cube or not.

Before proving the identity corresponding to ν∞ we state a technical
result that will be used there.

Lemma 4.7. Let N = 2rM with M odd and r ≥ 4. For every odd Dirich-
let character χ modulo N of conductor f divisible by 4 there exists an element
a ∈ (Z/NZ)∗ such that

a ≡ −1 (mod 2v2(f)−1M) and a ∈ ker(χ).

Proof. Let χ = χ2χ
′ with χ′ the product of the local components of χ

at the odd prime divisors of N . A Dirichlet character χ2 modulo a power
of 2 is determined by its values at −1 and 5, since these numbers generate
(Z/2rZ)∗. Moreover, if χ2 has conductor f2 > 4 then the image of 5 is a
primitive 2f2/4th root of unity, and hence χ2(5)f2/8 = −1.

If v2(f) = 2 then χ2 is the unique non-trivial character modulo 4, which
is odd, and this implies that χ′ must be even. Then an integer a ≡ 1 (mod 4)
and a ≡ −1 (mod M) satisfies the conditions.
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If v2(f) > 2 then an integer a ≡ −5v2(f)−3 (mod 2v2(f)) and a ≡ −1
(mod M) satisfies the conditions because −5v2(f)−3 ≡ −1 (mod 2v2(f)−1) and

χ(a) = χ2(a)χ′(a) = χ2(−5v2(f)−3)χ′(−1)

= χ2(5)v2(f)−3χ2(−1)χ′(−1) = −χ(−1) = 1.

Proposition 4.8 (Equalities for ν∞). If ε is even, then∑
δ|n

µ(δ)ν∞(Γker(εδ)(N)) = ϕ(n)ν∞(ε),

and if ε is odd, then∑
δ|n
δ odd

µ(δ)νreg
∞ (Γker(εδ)(N)) = ϕ(n)ν∞(ε).

Proof. Consider first the case of ε even. In this case, the identity to prove
is ∑

δ|n

µ(δ)
∑
d|N

ϕ(d)ϕ(N/d)
|ker(εδ)±d |

= ϕ(n)
∑
d|N

(d,N/d)|N/f

ϕ((d,N/d)),

and it will be obtained as a consequence of the equality between the sum-
mands corresponding to each divisor d |N on both sides. Since all powers
of ε are also even, always ker(εδ)±d = ker(εδ)d. The condition (d,N/d) |N/f
is equivalent to f | [d,N/d] = Nd, and in the sum on the right only these
divisors d contribute a non-zero value. Hence we must show that for every
d |N , ∑

δ|n

µ(δ)
ϕ(d)ϕ(N/d)
|ker(εδ)d|

=
{
ϕ(n)ϕ((d,N/d)) if f |Nd,

0 otherwise.

Consider first the summands with f |Nd. In this case, since the character ε
takes the same values of a character defined modulo Nd (which has the same
order n), say ε0, then ker(ε)d = ker(ε0) and hence |ker(ε)d| = (1/n)ϕ(Nd).
For every δ one has also εδ = εδ0 and in the same way |ker(εδ)d|=(δ/n)ϕ(Nd).
Then∑

δ|n

µ(δ)
ϕ(d)ϕ(N/d)
|ker(εδ)d|

=
∑
δ|n

µ(δ)
n

δ

ϕ(d)ϕ(N/d)
ϕ(Nd)

= ϕ(n)ϕ((d,N/d)).

Now we consider the summands corresponding to the case f - Nd. Con-
sider the exact sequence

1→ Kd(ε)→ ker(ε)→ ker(ε)d → 1,

which is the case H = ker(ε) of the sequence already considered in the
arguments of the end of the previous section, with cyclic kernel Kd(ε) =
{a ∈ ker(ε) | a ≡ 1 (mod Nd)}.
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Take a prime p with vp(f) > vp(Nd). Then the analogous cyclic group

Kd(εp) = {a ∈ ker(εp) | a ≡ 1 (mod Nd)}
has elements of order p. Indeed, assume for simplicity that p is odd (the case
p = 2 is analogous) and let g be an integer that is a generator of (Z/prZ)∗

for all exponents e and that is congruent to 1 modulo all other prime powers
dividing N . Let a0 = g(p−1)pvp(f)−2

. Then ε(a0) 6= 1 and a0 ≡ 1 (mod Nd),
so if a = ap

e

0 is the largest power such that ε(a) 6= 1, the element a is of
order p in the group Kd(εp). Since the groups Kd(ε) ⊂ Kd(εp) are cyclic
and Kd(εp)p ⊆ Kd(ε), we deduce that |Kd(εp)| = p|Kd(ε)|. The fact that
ordp(f) ≥ 2 also implies that the order of ε is divisible by p and hence

|ker(εp)| = ϕ(N)
n/p

= p
ϕ(N)
n

= |ker(ε)|.

Combining the two identities it follows that

|ker(ε)d| = |ker(εp)d|.
Now we observe that all the previous arguments only depend on the condi-
tion vp(f) ≤ vp(Nd). When the p-factor of the conductor of a character has
valuation vp(f) ≥ 2, this valuation does not change by raising the character
to a prime-to-p power; this implies that the equality

|ker(εδ)d| = |ker(εδp)d|
is also true for all integers δ prime to p. So, if n0 = rad(n) is the product of
the prime divisors of n, summing over the squarefree divisors of n we obtain∑
δ|n

µ(δ)
ϕ(d)ϕ(N/d)
|ker(εδ)d|

=
∑
δ|n0

µ(δ)
ϕ(d)ϕ(N/d)
|ker(εδ)d|

=
∑

δ|(n0/p)

µ(δ)
ϕ(d)ϕ(N/d)
|ker(εδ)d|

+
∑
δ|n0/p

µ(pδ)
ϕ(d)ϕ(N/d)
|ker(εpδ)d|

=
∑
δ|n0/p

(µ(δ)− µ(δ))
ϕ(d)ϕ(N/d)
|ker(εδ)d|

= 0.

For odd characters we have to prove the identity∑
δ|n
δ odd

µ(δ)
∑
d|N

−1/∈ker(εδ)d

ϕ(d)ϕ(N/d)
|ker(εδ)±d |

= ϕ(n)
∑
d|N

(d,N/d)|N/f

ϕ((d,N/d)).

We remark that since we sum only over odd δ, all the characters εδ in-
volved in the formula are odd, and for all odd characters one has ker(εδ)± =
ker(ε2δ). Let n = 2tn0 with n0 odd and t ≥ 1. Let N0 be the divisor of N
defined in (3.2). In order to sum over the regular cusps, we will consider two
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cases as in the proof of Corollary 3.9. We have

−1 ∈ ker(ε)0 ⇔ −1 ∈ ker(εδ)0 for all δ.

If this condition is not satisfied, then all the cusps for all groups Γker(εδ)(N)
are regular and the identity to be proved becomes∑

δ|n0

µ(δ)
∑
d|N

ϕ(d)ϕ(N/d)
|ker(ε2δ)d|

= ϕ(n)
∑
d|N

(d,N/d)|N/f

ϕ((d,N/d)),

and is proved by showing that for every d |N ,∑
δ|n0

µ(δ)
ϕ(d)ϕ(N/d)
|ker(ε2δ)d|

=
{
ϕ(n)ϕ((d,N/d)) if f |Nd,

0 otherwise.

For the divisors d such that f |Nd the identity is proven exactly in the same
way as in the previous case. If there is an odd prime p with vp(f) > vp(Nd)
then also the same proof given before shows that the sum on the left is
zero. This completes the proof by observing that if v2(f) > v2(Nd) but
vp(f) ≤ vp(Nd) for all other primes then the previous lemma would imply
that −1 ∈ ker(ε)d, in contradiction with our assumption that −1 /∈ ker(ε)0.

Suppose now that −1 ∈ ker(εδ)0. In this case the number of regular cusps
for all groups Γker(εδ)(N) can be obtained using the formula (3.4), and the
identity to be proved becomes∑
δ|n0

µ(δ)
(∑
d|N

ϕ(d)ϕ(N/d)
|ker(εδ)d|

−
∑
d|N

ϕ(d)ϕ(N/d)
|ker(ε2δ)d|

)
=ϕ(n)

∑
d|N

(d,N/d)|N/f

ϕ((d,N/d)),

and is proved by showing that for every d |N ,∑
δ|n0

µ(δ)
ϕ(d)ϕ(N/d)
|ker(εδ)d|

−
∑
δ|n0

µ(δ)
ϕ(d)ϕ(N/d)
|ker(ε2δ)d|

=
{
ϕ(n)ϕ((d,N/d)) if f |Nd,

0 otherwise.

Now again in the case f |Nd the identity is proven with the same computation
as in the previous cases. Also if there is an odd prime p with vp(f) > vp(Nd)
then one sees that the two sums on the left of the equality are both zero
with the same argument as before. Finally assume that v2(f) > v2(Nd).
Observing that this condition will also be satisfied by the conductors of all
characters εδ, the previous lemma ensures that −1 ∈ ker(εδ)d and hence the
terms of each sum on the left of the equality corresponding to the same δ
are equal, which implies that the difference is zero.
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