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1. Introduction. Mean-values of the type

Ik(T ) :=
T�

0

|ζ(1/2 + it)|2k dt,

with positive non-integral values of k, have been investigated by a number of
authors, including Ramachandra [5], [6], Conrey and Ghosh [1] and Heath-
Brown [3]. In particular the above papers by Ramachandra show, under the
Riemann Hypothesis, that

Ik(T )�k T (log T )k
2

(T ≥ 2)

for all real k ≥ 0, and that

Ik(T )�k T (log T )k
2

(T ≥ 2)

for all real k ∈ [0, 2].
It is natural to ask about the corresponding problem for Dirichlet L-

functions in q-aspect, that is, to investigate

Mk(q) :=
∑

χ (mod q)
χ 6=χ0

|L(1/2, χ)|2k

for positive real k. However rather little is known about this in general. The
method of Rudnick and Soundararajan [7] enables one to show uncondition-
ally that

Mk(q)�k φ(q)(log q)k
2

for rational k ≥ 1, at least when q is prime. The method does not immedi-
ately apply to the case 0 < k < 1 and it would be interesting to establish
lower bounds in this range.
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In the reverse direction, Soundararajan [9, Section 4] shows under the
Generalized Riemann Hypothesis that

Mk(q)�k,ε φ(q)(log q)k
2+ε

for any real k ≥ 0 and any fixed ε > 0. One would conjecture that the true
order of magnitude for Mk(q) should be φ(q)(log q)k

2
. The present paper will

prove upper bound results of exactly this order, motivated by the author’s
work [3]. We establish the following theorems.

Theorem 1. Assuming the Generalized Riemann Hypothesis we have

Mk(q)�k φ(q)(log q)k
2

for all k ∈ (0, 2).

Theorem 2. Unconditionally we have

Mk(q)�k φ(q)(log q)k
2

for any k of the form k = 1/v with v ∈ N.

Thus taking v = 2 we have∑
χ (mod q)

|L(1/2, χ)| � φ(q)(log q)1/4

in particular.
The approach in [3] is based on a convexity theorem for mean-value in-

tegrals, which appears to have no analogue for character sums. We therefore
work with integrals, and extract the sum Mk(q) at the end. While we can
give lower bounds for the integrals that occur, as well as upper bounds, it
is not clear how to give a lower bound for Mk(q) in terms of an integral.

It seems plausible that our approach might apply to other families of
L-functions. One interesting case would be the fractional moments of L-
functions with quadratic characters, in the form∑

q≤Q
µ(2q)2

∣∣∣∣L(1
2
,

(
∗
q

))∣∣∣∣k �k Q(logQ)k(k+1)/2,

for example. However the estimation of the sum corresponding to K(σ) will
be more difficult than in the present paper, although the techniques used
by Soundararajan [8, Section 5] seem likely to suffice. In addition, with the
argument in its current form, a crude bound for the analogue of J∗(σ) will
need to be found.

This work arose from a number of conversations with Dr H. M. Bui, and
would not have been undertaken without his prompting. It is a pleasure to
acknowledge his contribution.
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2. Mean-value integrals. Throughout our argument we will write
v = 1 for the proof of Theorem 1, and v = k−1 in handling Theorem 2.
In both cases the primary mean-value integral we will work with is

J(σ, χ) :=
∞�

−∞
|L(σ + it, χ)|2k|W (σ + it)|6 dt,

where the weight function W (s) is defined by

W (s) :=
qδ(s−1/2) − 1

(s− 1/2) log q
,

with δ > 0 to be specified later, see (6) and (7). We emphasize that, for the
rest of this paper, all constants implied by the Vinogradov � symbol will
be uniform in σ for the ranges specified. However they will be allowed to
depend on the values of k and δ, so that the symbol � should be read as
�k,δ throughout.

In addition to the integral J(σ, χ) we will use

K(σ, χ) :=
∞�

−∞
|S(σ + it, χ)|2|W (σ + it)|6 dt,

where
S(s) :=

∑
n≤q

dk(n)χ(n)n−s.

Notice here that a little care is needed in defining dk(n) when k is not an
integer (see [3, §2]).

When χ is a non-principal character the function L(s, χ) is entire. More-
over, if we assume the Generalized Riemann Hypothesis then there are
no zeros for σ > 1/2, so that one can define a holomorphic extension
of

L(s, χ)k =
∞∑
m=1

dk(m)χ(m)m−s (σ > 1)

in the half-plane σ > 1/2. Having defined L(s, χ)k in this way we now
set

G(σ, χ) :=
∞�

−∞
|L(σ + it, χ)k − S(σ + it, χ)|2|W (σ + it)|6 dt (σ > 1/2).

This integral will be used in the proof of Theorem 1, while for the uncondi-
tional Theorem 2 we will employ

H(σ, χ) :=
∞�

−∞
|L(σ + it, χ)− S(σ + it, χ)v|2/v|W (σ + it)|6 dt.
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In addition to J(σ, χ), K(σ, χ), G(σ, χ) and H(σ, χ) we will consider
their averages over non-principal characters,

J(σ) :=
∑

χ (mod q)
χ 6=χ0

J(σ, χ), K(σ) :=
∑

χ (mod q)
χ 6=χ0

K(σ, χ),

G(σ) :=
∑

χ (mod q)
χ 6=χ0

G(σ, χ), H(σ) :=
∑

χ (mod q)
χ 6=χ0

H(σ, χ).

To derive estimates relating values of these integrals we begin with the
following convexity estimate of Gabriel [2, Theorem 2].

Lemma 1. Let F be a complex-valued function which is regular in the
strip α < <(z) < β, and continuous for α ≤ <(z) ≤ β. Suppose that |F (z)|
tends to zero as |=(z)| → ∞, uniformly for α ≤ <(z) ≤ β. Then for any
γ ∈ [α, β] and any a > 0 we have

I(γ) ≤ I(α)(β−γ)/(β−α)I(β)(γ−α)/(β−α)

where

I(η) :=
∞�

−∞
|F (η + it)|a dt.

The inequality should be interpreted appropriately if any of the integrals
diverge. From Lemma 1 we will deduce the following variant.

Lemma 2. Let f and g be complex-valued functions which are regular in
the strip α < <(z) < β, and continuous for α ≤ <(z) ≤ β. Let b and c be
positive real numbers. Suppose that |f(z)|b|g(z)|c and |g(z)| tend to zero as
|=(z)| → ∞, uniformly for α ≤ <(z) ≤ β. Set

I(η) :=
∞�

−∞
|f(η + it)|b|g(η + it)|c dt.

Then for any γ ∈ [α, β] we have

(1) I(γ) ≤ I(α)(β−γ)/(β−α)I(β)(γ−α)/(β−α).

To deduce Lemma 2 from Lemma 1 we choose a rational number p/q >
c/b, and apply Lemma 1 with F = f qgp and a = b/q. Since

|F | = (|f |b|g|c)q/b|g|p−cq/b

with p−cq/b > 0, we deduce that |F | tends to zero as |=(z)| → ∞, uniformly
for α ≤ <(z) ≤ β. We then obtain an inequality of the same shape as (1),
but with the exponent c replaced by bp/q. Lemma 2 then follows on choosing
a sequence of rationals pn/qn tending downwards to c/b.

We now apply Lemma 2 to J(σ, χ). When σ = 3/2 we have

W (s)� qδ/(1 + |t|)
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whence we trivially obtain

J(3/2, χ)� q6δ.

An immediate application of Lemma 2 therefore yields

J(σ, χ)� J(1/2, χ)3/2−σq6δ(σ−1/2)

for 1/2 ≤ σ ≤ 3/2, whence we trivially deduce that

J(σ)� J(1/2)3/2−σq6δ(σ−1/2),

by Hölder’s inequality. Since

(2) Jf ≤
(

log q
q

)1−f( q

log q
+ J

)
� q−(1−δ)(1−f)

(
q

log q
+ J

)
for any J ≥ 0 and any f ∈ [0, 1], we conclude as follows.

Lemma 3. We have

J(σ)� q−(1−7δ)(σ−1/2)

(
q

log q
+ J

(
1
2

))
for 1/2 ≤ σ ≤ 3/2.

To obtain a second estimate involving J(σ, χ) we use Lemma 2 to show
that if 1/2 ≤ σ ≤ 3/4 and 1− σ ≤ γ ≤ σ then

J(γ, χ) ≤ J(σ, χ)(γ−1+σ)/(2σ−1)J(1− σ, χ)(σ−γ)/(2σ−1).

An application of Hölder’s inequality then shows that

J(γ) ≤ J(σ)(γ−1+σ)/(2σ−1)J(1− σ)(σ−γ)/(2σ−1).

To handle J(1− σ, χ) we will use the functional equation for L(s, χ). If ψ is
primitive, with conductor q1, this yields

L(1− σ + it, ψ)� (1 + |t|)σ−1/2q
σ−1/2
1 |L(σ + it, ψ)|

for 1/2 ≤ σ ≤ 3/4 say. Thus if ψ induces a character χ modulo q we will
have

L(1− σ + it, χ)� (1 + |t|)σ−1/2q
σ−1/2
1 ρ|L(σ + it, χ)|

with

ρ =
∏
p|q2

|1− ψ(p)p−σ−it|
|1− ψ(p)pσ−1−it|

,

where q2 = q/q1. Thus

log ρ ≤ (2σ − 1)
∑
p|q2

log p
p1−σ − 1

.

However ∑
p|m

log p
p1/4 − 1

≤ 1
2 logm
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for all sufficiently large m, whence ρ� q
σ−1/2
2 . We therefore conclude that

L(1− σ + it, χ)� (1 + |t|)σ−1/2qσ−1/2|L(σ + it, χ)|
when 1/2 ≤ σ ≤ 3/4, for any character χ modulo q, whether primitive or
not.

We now deduce that

J(1−σ, χ)� q2k(σ−1/2)
∞�

−∞
|L(σ+it, χ)|2k(1+|t|)2k(σ−1/2)|W (1−σ+it)|6 dt.

The presence of the factor (1 + |t|)2k(σ−1/2) is inconvenient. However, since
0 < k < 2 we have

(1 + |t|)2k(σ−1/2)|W (1− σ + it)|6 � (log q)−6|t|−2

for |t| ≥ 1 and 1/2 ≤ σ ≤ 1. It follows that

J(1− σ, χ)� q2k(σ−1/2)(J(σ, χ) + (log q)−6J∗(σ, χ)),

where

J∗(σ, χ) :=
∞�

−∞
|L(σ + it, χ)|2k dt

1 + t2
.

Thus
J(1− σ)� q2k(σ−1/2)(J(σ) + (log q)−6J∗(σ))

with

J∗(σ) :=
∑

χ (mod q)
χ 6=χ0

∞�

−∞
|L(σ + it, χ)|2k dt

1 + t2
.

Finally we observe that

J(σ)(γ−1+σ)/(2σ−1){J(σ) + (log q)−6J∗(σ)}(σ−γ)/(2σ−1)

≤ J(σ) + (log q)−6J∗(σ).

On comparing our results we therefore conclude that

(3) J(γ)� qk(σ−γ)(J(σ) + (log q)−6J∗(σ)).

We now have to consider J∗(σ). It was shown by Montgomery [4, Theo-
rem 10.1] that ∑∗

χ (mod q)

T�

−T
|L(1/2 + it, χ)|4 dt� φ(q)T (log qT )4

for T ≥ 2, where
∑∗ indicates that only primitive characters are to be

considered. (It should be noted that there is a misprint in the statement of
[4, Theorem 10.1], in that L(1/2 + it, χ) should be replaced by L(σ+ it, χ).
However we are only interested in the case σ = 1/2. Moreover, in the proof
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of [4, Theorem 10.1], at the top of page 83, the reference to Theorem 6.3
should be to Theorem 6.5.)

If χ is an imprimitive character modulo q, induced by a primitive char-
acter ψ with conductor q1, then

|L(1/2 + it, χ)|4 ≤ |L(1/2 + it, ψ)|4
∏

p|q, p-q1

(1 + p−1/2)4.

Thus if
∑(1) indicates summation over all characters χ modulo q for which

the conductor has a given value q1, we will have∑
χ

(1)
T�

−T
|L(1/2 + it, χ)|4 dt� φ(q1)T (log q1T )4

∏
p|q, p-q1

(1 + p−1/2)4.

If we now sum for q1 | q we obtain∑
χ (mod q)

T�

−T
|L(1/2 + it, χ)|4 dt� T (log qT )4f(q),

where
f(q) =

∑
q1|q

φ(q1)
∏

p|q, p-q1

(1 + p−1/2)4.

The function f is multiplicative, with

f(pe) = (1 + p−1/2)4 + φ(p) + φ(p2) + · · ·+ φ(pe) = pe(1 +O(p−3/2)).

Thus f(q)� q and we conclude that∑
χ (mod q)

T�

−T
|L(1/2 + it, χ)|4 dt� qT (log qT )4.

We may now deduce that if f(s) = L(s, χ)2s−1 then∑
χ (mod q)

∞�

−∞
|f(1/2 + it)|2 dt� q(log q)4.

Moreover the trivial bound L(s, χ)� 1 for σ = 3/2 shows that∑
χ (mod q)

∞�

−∞
|f(3/2 + it)|2 dt� q.

We can therefore apply Lemma 1, together with Hölder’s inequality, to de-
duce that ∑

χ (mod q)

∞�

−∞
|f(σ + it)|2 dt� q(log q)4
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uniformly for 1/2 ≤ σ ≤ 3/2. A final application of Hölder’s inequality then
implies that

J∗(σ)� q(log q)4.

We can now insert this into (3) and deduce

Lemma 4. We have

J(γ)� qk(σ−γ)
(

q

log q
+ J(σ)

)
for 1/2 ≤ σ ≤ 1 and 1− σ ≤ γ ≤ σ.

We now turn our attention to G(σ, χ) and H(σ, χ). By Lemma 2 we have

G(σ, χ) ≤ G(1/2, χ)3/2−σG(3/2, χ)σ−1/2 (1/2 ≤ σ ≤ 3/2)

for non-principal characters χ modulo q. We then find via Hölder’s inequality
that

(4) G(σ) ≤ G(1/2)3/2−σG(3/2)σ−1/2.

Since
W (3/2 + it)� qδ(1 + |t|)−1

we see that

G(3/2, χ)� q6δ
∞�

−∞
|L(3/2 + it, χ)k − S(3/2 + it, χ)|2 dt

1 + |t|2
.

However

L(3/2 + it, χ)k − S(3/2 + it, χ) =
∑
n>q

dk(n)χ(n)n−3/2−it

whence
∞�

−∞
|L(3/2 + it, χ)k − S(3/2 + it, χ)|2 dt

1 + |t|2

= π
∑
m,n>q

dk(m)dk(n)χ(m)χ(n) min(m−1/2n−5/2, n−1/2m−5/2).

It follows that∑
χ (mod q)

∞�

−∞
|L(3/2 + it, χ)k − S(3/2 + it, χ)|2 dt

1 + |t|2

= πφ(q)
∑
m,n>q

q|m−n, (mn,q)=1

dk(m)dk(n) min(m−1/2n−5/2, n−1/2m−5/2).
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To estimate this double sum we use the fact that dk(n)�ε n
ε for any fixed

ε > 0. This leads to the bound∑
m,n>q
q|m−n

dk(m)dk(n) min(m−1/2n−5/2, n−1/2m−5/2)�ε q
2ε−2.

It therefore follows that∑
χ (mod q)

∞�

−∞
|L(3/2 + it, χ)k − S(3/2 + it, χ)|2 dt

1 + |t|2
�ε q

2ε−1.

Inserting this bound into (4) we obtain

G(σ)�ε G(1/2)3/2−σq(σ−1/2)(6δ+2ε−1).

Using (2) again, we see that

G(σ)�ε q
1−2σ+(7δ+2ε)(σ−1/2)

(
q

log q
+G(1/2)

)
for σ ∈ [1/2, 3/2]. The positive number ε is at our disposal, and we choose
it to be ε = δ/2, whence

G(σ)� q−(1−4δ)(2σ−1)

(
q

log q
+G(1/2)

)
.

The treatment of H(σ, χ) is similar. This time, since k = 1/v, we have

H(3/2, χ) ≤
{ ∞�
−∞
|W (3/2 + it)|6 dt

}1−k

×
{ ∞�
−∞
|L(3/2 + it, χ)− S(3/2 + it, χ)v|2|W (3/2 + it)|6 dt

}k
by Hölder’s inequality. The first integral on the right is trivially O(q6δ).
Moreover

L(3/2 + it, χ)− S(3/2 + it, χ)v =
∑
n>q

ak(n)χ(n)n−3/2−it

with certain coefficients ak(n)�ε n
ε. The argument then proceeds as before,

on noting that∑
m,n>q
q|m−n

ak(m)ak(n) min(m−1/2n−5/2, n−1/2m−5/2)�ε q
2ε−2.

It follows that∑
χ (mod q)

∞�

−∞
|L(3/2 + it, χ)− S(3/2 + it, χ)v|2|W (3/2 + it)|6 dt� q6δ+2ε−1.
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We then deduce, by the same line of argument as before, that

H(σ)� q−(k−4δ)(2σ−1)

(
q

log q
+H(1/2)

)
for σ ∈ [1/2, 3/2].

We record these results formally in the following lemma.

Lemma 5. For σ ∈ [1/2, 3/2] we have

G(σ)� q−(1−4δ)(2σ−1)

(
q

log q
+G(1/2)

)
,

H(σ)� q−(k−4δ)(2σ−1)

(
q

log q
+H(1/2)

)
.

We end this section by considering K(σ). We have

K(σ) ≤
∑

χ (mod q)

K(σ, χ) =
∑
m,n≤q

dk(m)dk(n)
(mn)σ

S(m,n)I(m,n),

where

S(m,n) =
∑

χ (mod q)

χ(m)χ(n), I(m,n) =
∞�

−∞

(
n

m

)it
|W (σ + it)|6 dt.

Evaluating the sum S(m,n) we find that∑
m,n≤q

dk(m)dk(n)
(mn)σ

S(m,n)I(m,n) = φ(q)
∑
m,n≤q

q|m−n, (mn,q)=1

dk(m)dk(n)
(mn)σ

I(m,n)

= φ(q)
∑
n≤q

(n,q)=1

dk(n)2

n2σ

∞�

−∞
|W (σ + it)|6 dt.

We then observe that∑
n≤q

(n,q)=1

dk(n)2

n2σ
≤
∑
n≤q

dk(n)2

n
� (log q)k

2
,

and that
∞�

−∞
|W (σ + it)|6 dt� q3δ(2σ−1)(log q)−1.

These bounds allow us to conclude as follows.

Lemma 6. For 1/2 ≤ σ ≤ 3/2 we have

K(σ)� φ(q)q3δ(2σ−1)(log q)k
2−1.
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3. Proof of the theorems. By definition of G(σ, χ) and H(σ, χ) we
have

J(σ)� K(σ) +G(σ)

under the Generalized Riemann Hypothesis, and

J(σ)� K(σ) +H(σ)

unconditionally. In view of Lemma 5 these produce

J(σ)� K(σ) + q−(1−4δ)(2σ−1)

(
q

log q
+G(1/2)

)
and

J(σ)� K(σ) + q−(k−4δ)(2σ−1)

(
q

log q
+H(1/2)

)
respectively. However we also have

G(1/2)� K(1/2) + J(1/2) and H(1/2)� K(1/2) + J(1/2)

from the definitions again, so that

J(σ)� K(σ) + q−(1−4δ)(2σ−1)

(
q

log q
+K(1/2) + J(1/2)

)
and

J(σ)� K(σ) + q−(k−4δ)(2σ−1)

(
q

log q
+K(1/2) + J(1/2)

)
in the two cases respectively.

If we now call on Lemma 6 then we find that

J(σ)� φ(q)q3δ(2σ−1)(log q)k
2−1 + q−(1−4δ)(2σ−1)

(
q

log q
+ J(1/2)

)
� q4δ(2σ−1)(φ(q)(log q)k

2−1 + q1−2σJ(1/2))

under the Generalized Riemann Hypothesis, since

(5)
q

log q
� φ(q)(log q)k

2−1

for 0 < k < 2. Similarly we have

J(σ)� q4δ(2σ−1)(φ(q)(log q)k
2−1 + qk(1−2σ)J(1/2))

unconditionally.
Finally we apply Lemma 4 with γ = 1

2 and use (5) again to deduce that

J(σ)� q4δ(2σ−1)(φ(q)(log q)k
2−1 + q−(2−k)(σ−1/2)J(σ))

under the Generalized Riemann Hypothesis. Similarly we may derive the
unconditional bound

J(σ)� q4δ(2σ−1)(φ(q)(log q)k
2−1 + q−k(σ−1/2)J(σ)).
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We are now ready to choose our value of δ. For Theorem 1 we take

(6) δ = (2− k)/10,

and for Theorem 2 we choose

(7) δ = k/10.

Then in either case we will have

J(σ)� q4δ(2σ−1)φ(q)(log q)k
2−1 + q−δ(2σ−1)J(σ).

We write ck for the implied constant in this last estimate, and note that ck
depends only on k. We then take

σ = σ0 :=
1
2

+
κ

log q

with
κ = (2δ)−1 max(1, log 2ck).

These choices ensure that

ckq
−δ(2σ0−1) ≤ 1/2,

and hence imply that

J(σ0)� q4δ(2σ0−1)φ(q)(log q)k
2−1 � φ(q)(log q)k

2−1.

Finally, we may apply Lemma 4 to deduce the following

Lemma 7. With σ0 as above we have

J(γ)� φ(q)(log q)k
2−1

uniformly for 1− σ0 ≤ γ ≤ σ0.

All that remains is to bound Mk(q) from above, using averages of J(γ).
Since |L(s, χ)|2k is subharmonic we have

|L(1/2, χ)|2k ≤ 1
2π

2π�

0

|L(1/2 + reiθ, χ)|2k dθ.

We now multiply by r and integrate for 0 ≤ r ≤ R to show that

|L(1/2, χ)|2k ≤ 1
Meas(D)

�

D

|L(1/2 + z, χ)|2k dA,

where D = D(0, R) is the disc of radius R about the origin, and dA is the
measure of area. We take

R =
min(κ, δ−1)

log q
,
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so that if z ∈ D then 1 − σ0 ≤ <(1/2 + z) ≤ σ0 and |W (1/2 + z)| � 1. It
follows that �

D

|L(1/2 + z, χ)|2k dA�
σ0�

1−σ0

J(γ, χ) dγ

whence

Mk(q)�
1

Meas(D)

σ0�

1−σ0

J(γ) dγ.

Since Meas(D)� (log q)−2 we now deduce from Lemma 7 that

Mk(q)� φ(q)(log q)k
2
,

as required.
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