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Duality for digital nets and its applications
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Harald Niederreiter and Gottlieb Pirsic (Wien)

1. Introduction. The theory of (t,m, s)-nets provides powerful tools
for the construction of low-discrepancy point sets in the s-dimensional unit
cube. We refer to the monograph [7] and to the recent survey [8] for a general
background on (t,m, s)-nets. Throughout this paper, we assume that the
dimension s ≥ 1 is fixed and we follow the usual convention in the area that
a point set is a multiset in the sense of combinatorics, i.e., that multiplicity
of elements is allowed and taken into account.

Definition 1. For integers b ≥ 2 and 0 ≤ t ≤ m, a (t,m, s)-net in base
b is a point set P consisting of bm points in [0, 1)s such that every subinterval
of [0, 1)s of the form

s∏

i=1

[aib−di , (ai + 1)b−di)

with integers di ≥ 0 and 0 ≤ ai < bdi for 1 ≤ i ≤ s and of volume bt−m

contains exactly bt points of P. Furthermore, P is a strict (t,m, s)-net in
base b if t is the least value u such that P is a (u,m, s)-net in base b.

Remark 1. The uniformity properties of a (t,m, s)-net in base b are the
better the smaller the value of the parameter t. For this reason, t is often
called the quality parameter of the net. The term b-ary box is used for the
subintervals of [0, 1)s considered in Definition 1.

In this paper we focus on a special family of nets, namely digital nets
(see Definition 4 below). Most known constructions of nets actually yield
digital nets, and digital nets have a particularly nice theory. The leitmotif
of the present work is an analogy between digital nets and linear codes
that was already observed in [5, Remark 7.13] and further exploited among
others by Adams and Shader [1], Lawrence et al. [2], and Niederreiter and
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Xing [10]; see also the references in Section 6 of the last paper. We show
that the concept of duality for linear codes can be applied to digital nets and
that this leads to a new approach to various fundamental issues concerning
digital nets. We use [3] as the basic reference for coding theory.

In Section 2 we recall the notion of the dual space (or, what amounts to
the same thing, of the dual linear code) and we introduce concepts of weight
and minimum distance that are appropriate for digital nets. In Section 3 we
apply duality theory to the determination of the quality parameter for digital
nets and to the analysis of the distribution of the points of digital nets in
small intervals. In the last section we show that the tools of duality theory
can lead to new construction principles for digital nets.

2. Dual space and minimum distance. Let s and m be positive
integers and let Fb be the finite field of prime-power order b. Let N be
an arbitrary linear subspace of Fsmb . Let H be a matrix over Fb with sm
columns such that the row space of H is equal to N . Define the dual space
N⊥ ⊆ Fsmb of N to be the null space of H. It is easy to see that N⊥ depends
only on N and not on the specific choice of H. Also

(1) dim(N⊥) = sm− dim(N )

and (N⊥)⊥ = N .
Let G be a matrix over Fb with sm columns such that the row space of

G is equal to N⊥. Then
HG> = 0.

This is an analog of the relationship between a generator matrix and a
parity-check matrix of a linear code.

For a = (a1, . . . , am) ∈ Fmb we introduce the weight v(a) by v(a) = 0 if
a = 0, v(a) = max{j : aj 6= 0} if a 6= 0. We extend this definition to Fsmb
by writing a vector A ∈ Fsmb as the concatenation of s vectors of length m,
i.e.,

A = (a(1), . . . ,a(s)) ∈ Fsmb with a(i) ∈ Fmb for 1 ≤ i ≤ s,
and putting

Vm(A) =
s∑

i=1

v(a(i)).

Remark 2. In the case m = 1 the weight Vm reduces to the classi-
cal Hamming weight of a vector. If we define the distance dm(A,B) of
A,B ∈ Fsmb by dm(A,B) = Vm(A−B), then Fsmb turns into a metric space,
which for m = 1 is the Hamming space. In the context of low-discrepancy
point sets and pseudorandom numbers, the weight Vm was first used by
Niederreiter [4], [6]; see also Skriganov [11] for a recent application.
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Definition 2. For any nonzero linear subspace N of Fsmb we define the
minimum distance

δm(N ) = min
A∈N\{0}

Vm(A).

Furthermore, we put δm({0}) = sm+ 1.

It is trivial that δm(N ) ≥ 1 for any linear subspace N of Fsmb . The
following is a generalization of the Singleton bound in coding theory. The
Singleton bound corresponds to the case m = 1.

Proposition 1. For any linear subspace N of Fsmb we have

δm(N ) ≤ sm− dim(N ) + 1.

Proof. Put h = dim(N ) and note that the result is trivial for h = 0. For
h ≥ 1 let π : N → Fhb be the linear transformation which maps A ∈ N
to the h-tuple of the last h coordinates of A. If π is surjective, then there
exists a nonzero A1 ∈ N with

π(A1) = (1, 0, . . . , 0) ∈ Fhb .
Then

Vm(A1) ≤ sm− h+ 1.

If π is not surjective, then for any nonzero A2 in the kernel of π we have

Vm(A2) ≤ sm− h.
In both cases we get the result of the proposition.

Definition 3. Let k,m, s be positive integers and let d be an integer
with 0 ≤ d ≤ min(k, sm). The system {c(i)

j ∈ Fkb : 1 ≤ j ≤ m, 1 ≤ i ≤ s} is
called a (d, k,m, s)-system over Fb if for any integers d1, . . . , ds with 0 ≤ di ≤
m for 1≤ i≤s and

∑s
i=1 di=d the system {c(i)

j ∈ Fkb : 1≤j≤di, 1≤ i ≤ s}
is linearly independent over Fb (the empty system is considered linearly
independent). A (d,m,m, s)-system over Fb is also called a (d,m, s)-system
over Fb.

For a given system {c(i)
j ∈ Fkb : 1 ≤ j ≤ m, 1 ≤ i ≤ s} let Ci, 1 ≤ i ≤ s,

be the k ×m matrix with the column vectors c(i)
1 , . . . , c(i)

m . Combine these
matrices into the matrix

C = (C1|C2| . . . |Cs) ∈ Fk×smb ,

so that C1, . . . , Cs are submatrices of C. Let C be the row space of C.

Theorem 1. The system {c(i)
j ∈ Fkb : 1 ≤ j ≤ m, 1 ≤ i ≤ s} is a

(d, k,m, s)-system over Fb if and only if the dual space C⊥ of the row space
C satisfies δm(C⊥) ≥ d+ 1.



176 H. Niederreiter and G. Pirsic

Proof. The result is trivial if C = Fsmb . So we can assume that C is a
proper subspace of Fsmb . For A = (a(1), . . . ,a(s))> ∈ Fsmb with

a(i) = (a(i)
1 , . . . , a(i)

m ) ∈ Fmb for 1 ≤ i ≤ s
we have

s∑

i=1

m∑

j=1

a
(i)
j c(i)

j = 0 ∈ Fkb

if and only if
CA = 0 ∈ Fkb ,

i.e., if and only if A ∈ C⊥.
Now let the given system be a (d, k,m, s)-system over Fb and consider

any nonzero A ∈ C⊥. Then from the above we get
s∑

i=1

m∑

j=1

a
(i)
j c(i)

j = 0 ∈ Fkb .

Put v(a(i)) = vi for 1 ≤ i ≤ s, then
s∑

i=1

vi∑

j=1

a
(i)
j c(i)

j = 0 ∈ Fkb .

Since not all coefficients in this linear relation are 0, the system {c(i)
j ∈ Fkb :

1 ≤ j ≤ vi, 1 ≤ i ≤ s} is linearly dependent over Fb. Thus, the definition of
a (d, k,m, s)-system over Fb implies that

∑s
i=1 vi ≥ d+ 1. Therefore

Vm(A) =
s∑

i=1

v(a(i)) =
s∑

i=1

vi ≥ d+ 1,

and so δm(C⊥) ≥ d+ 1.
Conversely, assume that δm(C⊥) ≥ d + 1. We have to show that any

system {c(i)
j ∈ Fkb : 1 ≤ j ≤ di, 1 ≤ i ≤ s} with 0 ≤ di ≤ m for 1 ≤ i ≤ s

and
∑s
i=1 di = d is linearly independent over Fb. Suppose, on the contrary,

that such a system were linearly dependent over Fb, i.e., that there exist
coefficients a(i)

j ∈ Fb, not all 0, such that

s∑

i=1

di∑

j=1

a
(i)
j c(i)

j = 0 ∈ Fkb .

Define a(i)
j = 0 for di < j ≤ m, 1 ≤ i ≤ s, then

s∑

i=1

m∑

j=1

a
(i)
j c(i)

j = 0 ∈ Fkb .
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By what we have shown at the beginning of the proof, we get A ∈ C⊥, and
so Vm(A) ≥ d+ 1. On the other hand, v(a(i)) ≤ di for 1 ≤ i ≤ s, and so

Vm(A) =
s∑

i=1

v(a(i)) ≤
s∑

i=1

di = d,

which is a contradiction.

3. Digital nets. We consider digital (t,m, s)-nets constructed over the
finite field Fb. Such a digital net is determined by a system {c(i)

j ∈ Fmb :
1 ≤ j ≤ m, 1 ≤ i ≤ s} of vectors, where m and s are positive integers. For
1 ≤ i ≤ s let Ci be the m×m matrix with column vectors c(i)

1 , . . . , c(i)
m . The

matrices C1, . . . , Cs are called the generating matrices of the digital net.
The points x0, . . . ,xbm−1 of the digital net are constructed in the follow-

ing way. In order to obtain the nth point xn, consider the b-ary expansion
of n, given by n =

∑m
j=1 aj(n)bj−1. Choosing fixed bijections aj 7→ aj from

Zb := {0, 1, . . . , b − 1} to Fb for each j, 1 ≤ j ≤ m, we identify n with the
row vector

n = (a1(n), . . . , am(n)) ∈ Fmb .

Then, using fixed bijections x(i)
n,j 7→ x

(i)
n,j from Fb to Zb for each i, j, 1 ≤ i ≤ s,

1 ≤ j ≤ m, we map the vectors

(x(i)
n,1, . . . , x

(i)
n,m) := nCi ∈ Fmb

to the real numbers

x(i)
n =

m∑

j=1

x
(i)
n,jb
−j

to obtain the point

xn = (x(1)
n , . . . , x(s)

n ) ∈ [0, 1)s.

Definition 4. If the point set P = {x0, . . . ,xbm−1} constructed above
forms a (strict) (t,m, s)-net in base b, then we call P a digital (strict)
(t,m, s)-net constructed over Fb.

We set up the overall generating matrix

C = (C1|C2| . . . |Cs) ∈ Fm×smb

of the digital net and let C be its row space. We call C a row space of the
digital net.

Theorem 2. Let 0 ≤ t ≤ m. Then the system {c(i)
j ∈ Fmb : 1≤ j ≤m,

1 ≤ i ≤ s} generates a digital (t,m, s)-net constructed over Fb if and only
if δm(C⊥) ≥ m− t+ 1.
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Proof. We know that the given system generates a digital (t,m, s)-net
constructed over Fb if and only if it is an (m− t,m, s)-system over Fb (see
e.g. [10, Lemma 3]). The rest follows from Theorem 1.

Corollary 1. The system {c(i)
j ∈ Fmb : 1 ≤ j ≤ m, 1 ≤ i ≤ s}

generates a digital strict (t,m, s)-net constructed over Fb with t = m −
δm(C⊥) + 1.

Proof. By Theorem 2 we have t ≥ m − δm(C⊥) + 1. Also dim(C) ≤ m,
and so dim(C⊥) ≥ sm−m by (1). Thus, δm(C⊥) ≤ m+ 1 by Proposition 1,
and so m− δm(C⊥) + 1 lies in the interval [0,m]. Hence m− δm(C⊥) + 1 is
a possible value of t.

A further application of dual spaces for digital (t,m, s)-nets is the count-
ing of points of a net P in a (“small”) b-ary box J . This problem is of interest,
e.g., in the investigation of integration error variation (see [9]).

Theorem 3. Let a digital (t,m, s)-net P constructed over Fb and a b-
ary box

J =
s∏

i=1

[ni/bdi , (ni + 1)/bdi) ⊆ [0, 1)s, di, ni ∈ Z, 0 ≤ di ≤ m, 1 ≤ i ≤ s,

be given. The maximum number of points of P in J for any choice of
0 ≤ ni < bdi , 1 ≤ i ≤ s, is

bm−(d1+...+ds)|L(d)|,
where d = (d1, . . . , ds) and

L(d) := {(a(1), . . . ,a(s)) ∈ C⊥ : v(a(i)) ≤ di for 1 ≤ i ≤ s}.
Proof. Let d =

∑s
i=1 di. We know by [9, Theorem 3.2] that the maximum

number of points of P in J is bm−rank(Cd), where

Cd = (c(1)
1 . . . c(1)

d1
. . . c(s)

1 . . . c(s)
ds

) ∈ Fm×db .

Consider the system of linear equations CdÂ = 0 ∈ Fmb , Â ∈ Fdb . The
solution space S of this system is of dimension d− rank(Cd). For any

Â = (a(1)
1 , . . . , a

(1)
d1
, . . . , a

(s)
1 , . . . , a

(s)
ds

)> ∈ S
build the vector

A = (a(1), . . . ,a(s))> = (a(1)
1 , . . . , a(1)

m , . . . , a
(s)
1 , . . . , a(s)

m )> ∈ Fsmb
by setting a

(i)
di+1 = . . . = a

(i)
m = 0 for all 1 ≤ i ≤ s. Then v(a(i)) ≤ di for

1 ≤ i ≤ s and CA = 0 ∈ Fmb , so A ∈ L(d).
On the other hand, for any vector A ∈ L(d) the vector Â ∈ Fdb obtained

by omitting the entries a(i)
di+1, . . . , a

(i)
m , 1 ≤ i ≤ s, is a solution to CdÂ = 0

and therefore in S.
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So |S| = |L(d)| and

bm−d|L(d)| = bm−d|S| = bm−rank(Cd)

is the maximum number of points of P in J .

Note that by the definition of a (t,m, s)-net in base b, the number of
points of P in J is exactly bm−(d1+...+ds) for d1 + . . . + ds ≤ m − t, so the
size of L(d) is indicative of the excess of points in smaller intervals.

The vector spaces L(d) may also be used for the characterization of
(d, k,m, s)-systems.

Theorem 4. The system {c(i)
j ∈ Fkb : 1 ≤ j ≤ m, 1 ≤ i ≤ s} is

a (d, k,m, s)-system over Fb if and only if dim(L(d)) = 0 for all d =
(d1, . . . , ds) ∈ {0, 1, . . . ,m}s with d1 + . . .+ ds = d.

Proof. We show that the condition is equivalent to δm(C⊥) ≥ d + 1, so
that the result follows from Theorem 1.

If d ≤ δm(C⊥) − 1, then for any d = (d1, . . . , ds) ∈ {0, 1, . . . ,m}s with
d1 + . . . + ds = d and any vector A = (a(1), . . . ,a(s)) ∈ C⊥ \ {0} we have
Vm(A) ≥ d+1, therefore for at least one i we have v(a(i)) > di, so A 6∈ L(d)
and dim(L(d)) = dim({0}) = 0.

On the other hand, suppose that L(d) = {0} for all d as in the theorem.
If we had δm(C⊥) ≤ d, then there exists a vector A = (a(1), . . . ,a(s)) ∈
C⊥ \ {0} with Vm(A) ≤ d. Put v(a(i)) = ei for 1 ≤ i ≤ s, then

∑s
i=1 ei ≤ d.

Choose integers d1, . . . , ds with ei ≤ di ≤ m for 1 ≤ i ≤ s and
∑s
i=1 di = d.

With d0 = (d1, . . . , ds) we get A ∈ L(d0), which is a contradiction.

4. An application to the construction of digital nets. We show
that duality theory leads to new construction principles for digital nets.
We start from a digital (t1,m, s)-net and a digital (t2,m, s)-net constructed
over Fb and let C1 ⊆ Fsmb and C2 ⊆ Fsmb be corresponding row spaces. Let
C⊥1 ⊆ Fsmb and C⊥2 ⊆ Fsmb be the dual spaces of C1 and C2, respectively. We
have

dim(C⊥1 ) ≥ (s− 1)m, dim(C⊥2 ) ≥ (s− 1)m.

The following method of obtaining a digital (t, 2m, s)-net constructed over
Fb may be viewed as an analog of a construction in coding theory (see
[3, Section 2.9]). We first construct a linear subspace N of F2sm

b by certain
concatenations of vectors. Let

A = (a(1), . . . ,a(s)) ∈ C⊥1 , a(i) ∈ Fmb for 1 ≤ i ≤ s,
B = (b(1), . . . ,b(s)) ∈ C⊥2 , b(i) ∈ Fmb for 1 ≤ i ≤ s,

be the generic vectors of C⊥1 and C⊥2 , respectively. Then the generic vector
of N is

N = (a(1),a(1) + b(1), . . . ,a(s),a(s) + b(s)) ∈ F2sm
b .
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We have
dim(N ) = dim(C⊥1 ) + dim(C⊥2 ) ≥ 2(s− 1)m,

and so
dim(N⊥) = 2sm− dim(N ) ≤ 2m

by (1). Put C = N⊥ ⊆ F2sm
b and let the matrix C ∈ F2m×2sm

b be such
that its row space is C. Then C is the overall generating matrix of a digital
(t, 2m, s)-net P constructed over Fb and C is a row space of P (see the
beginning of Section 3).

In order to bound the quality parameter t for the net P, we define (x)+ =
max(x, 0) for real x and

D(C⊥1 , C⊥2 ) = max
1≤i≤s

max
Ri

(v(a(i))− v(a(i) + b(i)))+,

where Ri is the set of all ordered pairs (A,B) with A = (a(1), . . . ,a(s)) ∈
C⊥1 \ {0}, B = (b(1), . . . ,b(s)) ∈ C⊥2 \ {0}, a(k) + b(k) = 0 for k 6= i and
a(i) +b(i) 6= 0. The maximum over Ri is defined to be 0 if Ri is empty. Note
that we have 0 ≤ D(C⊥1 , C⊥2 ) ≤ m− 1.

Theorem 5. The point set P defined above is a digital (t, 2m, s)-net
constructed over Fb with

t ≤ max(t1 +D(C⊥1 , C⊥2 ), t2)

if C⊥1 ∩ C⊥2 = {0} and

t ≤ max(t1 +D(C⊥1 , C⊥2 ), t2, 2m+ 1− δm(C⊥1 ∩ C⊥2 ))

if C⊥1 ∩ C⊥2 6= {0}.
Proof. By Corollary 1, P is a digital strict (t, 2m, s)-net constructed over

Fb with

(2) t = 2m− δ2m(N ) + 1.

Thus, we have to find a lower bound for δ2m(N ), and so for V2m(N) for all
nonzero N ∈ N . By the construction we have

V2m(N) =
s∑

i=1

v(a(i),a(i) + b(i)).

We now distinguish several cases. If A = 0, then B 6= 0 and

V2m(N) =
s∑

i=1
b(i) 6=0

(m+ v(b(i))) ≥ m+ Vm(B) ≥ 2m− t2 + 1,

where we used that δm(C⊥2 ) ≥ m − t2 + 1 by Theorem 2. If B = 0, then
A 6= 0 and analogously

V2m(N) ≥ 2m− t1 + 1.
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If A 6= 0, B 6= 0, but A + B = 0, then A ∈ C⊥1 ∩ C⊥2 . If C⊥1 ∩ C⊥2 = {0},
then this case is not possible. If C⊥1 ∩ C⊥2 6= {0}, then

V2m(N) = Vm(A) ≥ δm(C⊥1 ∩ C⊥2 ).

Finally, if A 6= 0, B 6= 0, and A + B 6= 0, then

V2m(N) =
s∑

i=1
a(i)+b(i) 6=0

(m+ v(a(i) + b(i))) +
s∑

i=1
a(i)+b(i)=0

v(a(i)).

If the first sum in the last expression has at least two terms, then V2m(N) ≥
2m+ 2. Otherwise, it has exactly one term, say for i = i0, and then

V2m(N) = m+ v(a(i0) + b(i0)) +
s∑

i=1, i6=i0
v(a(i))

= m+ Vm(A) + v(a(i0) + b(i0))− v(a(i0))

≥ 2m− t1 + 1− (v(a(i0))− v(a(i0) + b(i0)))+

≥ 2m− t1 + 1−D(C⊥1 , C⊥2 ).

Altogether, this yields

δ2m(N ) ≥ min(2m− t1 + 1−D(C⊥1 , C⊥2 ), 2m− t2 + 1)

if C⊥1 ∩ C⊥2 = {0} and

δ2m(N ) ≥ min(2m− t1 + 1−D(C⊥1 , C⊥2 ), 2m− t2 + 1, δm(C⊥1 ∩ C⊥2 ))

if C⊥1 ∩ C⊥2 6= {0}, and thus the result of the theorem in view of (2).

Theorem 5 should just serve as an illustration of the new construction
principles for digital nets that we believe are possible with the duality
method. The extensively developed theory of linear codes can be used as
a source of analogies that may lead to further construction principles for
digital nets on the basis of duality.
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