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Introduction. In this paper, we study roots of irreducible polynomials
to prime moduli. We think of Z/pZ as the set 0, 1, 2, . . . , p− 1 and hence we
think of the root of our polynomial as a number in that set. When the root
z is divided by p, we naturally have a number in (0, 1). If we fix a polyno-
mial f(x) of degree n ≥ 2 which is irreducible in Z[x], we can consider the
set

Af =
⋃
p

{z/p : f(z) ≡ 0 mod p, 1 ≤ z ≤ p− 1}.

The aim of this paper is to prove that if a certain conjecture called the
Bouniakowsky conjecture is true, then the set Af is dense in (0, 1). We
stress that our result is conditional. Results that are not dependent on
open conjectures have been proven about roots of polynomials to various
moduli. Hooley [H] proved that the roots of an irreducible polynomial, con-
sidered over the ring Z/nZ, n not necessarily prime, when suitably nor-
malized by dividing by n and considered over all n, are in fact equidis-
tributed in (0, 1). Duke, Friedlander and Iwaniec [DFI] proved equidistri-
bution for quadratic polynomials of negative discriminant, to prime mod-
uli. Toth [T] proved equidistribution for quadratic polynomials of positive
discriminant, to prime moduli. We now state the main theorem of our pa-
per.

Theorem. If the Bouniakowsky conjecture is true, the set Af =
⋃

p{z/p :
f(z) ≡ 0 mod p, 1 ≤ z ≤ p− 1} is dense in (0, 1).

The Bouniakowsky conjecture. We now discuss the Bouniakowsky
conjecture to give some background.
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Bouniakowsky Conjecture. Let f(x) be a polynomial that is irre-
ducible in Z[x]. Let rf = gcd({f(x) : x ∈ Z}). Then f(x)/rf is prime
infinitely often.

It is easy to construct polynomials which are always divisible by a given
prime q. We know by Fermat’s little theorem that the prime q always divides
xq − x. Therefore, all we have to do is choose a value k so that xq − x + qk
is irreducible in Z[x]. It then follows that q divides all the values of this
polynomial.

The result. We first begin by considering a subset of (0, 1) which we
will prove to be dense. We are then going to use this set to help prove
the density of Af . Here, we let n be the degree of f , and c be the leading
coefficient of f .

Let Bf = {a/b : 1 ≤ a < b, b odd prime, (crf , b) = 1, acxn−1 ≡
−rf mod b has a solution}.

Lemma 1. Bf is dense in (0, 1).

Proof. Case 1: n is even. Consider the map x 7→ xn−1 on (Z/bZ)∗. This
map is injective and surjective if (n−1, b−1) = 1. For such b, we can in fact
solve acxn−1 ≡ −rf mod b for all a ∈ (Z/bZ)∗. Since b is prime, we can pick
b larger than crf to ensure (b, crf ) = 1. We can also pick infinitely many
such b with (n− 1, b− 1) = 1. It thus follows that Bf is dense in this case.

Case 2: n is odd. Since n − 1 is even, let n − 1 = 2eh, h odd. The
map x 7→ xn−1 on (Z/bZ)∗ is therefore a composition of the maps x 7→ x2

applied e times and x 7→ xh. Now, x 7→ xh is a permutation of (Z/bZ)∗ if
(b− 1, h) = 1. Also, if b ≡ 3 mod 4, x 7→ x2 is a permutation of the squares
in (Z/bZ)∗, so by choosing b ≡ 3 mod 4 and (b − 1, h) = 1, we can ensure
that the image of x 7→ xn−1 is the squares. We also want (b, crf ) = 1. We
have infinitely many primes b satisfying these conditions, and for such b,
the numerator of the fractions a/b ranges over either only the squares or
only the nonsquares in (Z/bZ)∗. By a result of Brauer [B], the maximum
number of consecutive squares or nonsquares in (Z/bZ)∗ is less than b0.5

when b ≡ 3 mod 4. This ensures that Bf is dense in this case.
We will now show how z/p is related to the values in Bf . To do this, first

consider the original polynomial f . From f =
∑

i cix
i, we can construct a

polynomial g(x, y) =
∑

i cix
iyn−i. Now for any prime b with (b, crf ) = 1 we

have a polynomial in one variable g(bw + t, b) where w is the variable and
t ∈ (Z/bZ)∗. Since we can vary b and t, we have many such polynomials asso-
ciated to f . We will show that the gcd of the values of all these polynomials
is also rf and that they are also irreducible in Z[w]. It is these polynomials
that we apply the Bouniakowsky conjecture to. If the Bouniakowsky conjec-
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ture is true, then there are infinitely many primes p with rfp = g(bw+t, b) as
w →∞. Moreover, for these primes p, we can construct a root z of f mod p
such that z/p is “close” to a/b where a is chosen so that (ap + bw + t)/b is
an integer and a/b ∈ (0, 1). This is the same as choosing 1 ≤ a < b and a
such that actn−1 ≡ −rf mod b. We thus see the relation to the set Bf . We
then let z = (ap + bw + t)/b and show that z is a root of f mod p.

Lemma 2. The polynomial g(bw + t, b), where w is the variable, b is
prime, (b, crf ) = 1, 1 ≤ t < b, is irreducible in Z[w].

Proof. The polynomial g(bw + t, b) is related in a simple way to the
original polynomial f :

g(bw + t, b) =
∑

i

ci(bw + t)ibn−i = bn
∑

i

ci(w + t/b)i = bng(w + t/b, 1)

= bnf(w + t/b).

Since a polynomial is irreducible in Z[x] if and only if it is irreducible in
Q[x], the lemma follows.

Lemma 3. Let b be prime, (b, crf ) = 1, and 1 ≤ t < b. Then

gcd({g(bw + t, b) : w ∈ Z}) = rf .

Proof. Let r = rf . Since f has integer coefficients, we can think of f
as a polynomial in (Z/rZ)[x]. But since r divides all the values of f , it
follows that f(x) = 0 in (Z/rZ)[x]. We showed in the proof of Lemma 2
that g(bw + t, b) = bnf(w + t/b) in Q[x]. Since (b, rf ) = 1, b has an inverse
mod r and hence the rational number t/b can be thought of as an element
in Z/rZ. Hence g(bw + t, b) = bnf(w + t/b) = 0 in (Z/rZ)[x]. Therefore, for
each such b and t, we find that r divides gcd({g(bw + t, b) : w ∈ Z}).

Conversely, let rb,t = gcd({g(bw+t, b) : w ∈ Z}). We have g(bw+t, b) = 0
in (Z/rb,tZ)[w]. But f(w) = (bn)−1g(b(w − t/b) + t, b), so f(w) = 0 in
(Z/rb,tZ)[w]. Therefore rb,t divides r for each such b and t. It follows that
the polynomials g(bw + t, b) have the same gcd as f .

Lemma 4. If a is chosen such that z = (ap + bw + t)/b is an integer,
then z is a root of the polynomial f mod p.

Proof. We have

bnf(z) = bnf

(
ap + bw + t

b

)
= bn

∑
i

ci

(
ap + bw + t

b

)i

=
∑

i

ci(ap + bw + t)ibn−i ≡
∑

i

ci(bw + t)ibn−i = g(bw + t, b)

= rfp ≡ 0 mod p.

Since (b, p) = 1, the lemma is proven.
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Having proven these lemmas, we know that z/p is close to a/b. Assuming
the Bouniakowsky conjecture, we can let w →∞ and obtain infinitely many
primes p and a root z for each prime. As w → ∞, z/p is arbitrarily close
to a/b, since n ≥ 2. Since we showed in Lemma 1 that Bf is dense in (0, 1),
the theorem is now proved.
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