The Bouniakowsky conjecture and the density of polynomial roots to prime moduli

by
Timothy Foo (Singapore)

Introduction. In this paper, we study roots of irreducible polynomials to prime moduli. We think of $\mathbb{Z} / p \mathbb{Z}$ as the set $0,1,2, \ldots, p-1$ and hence we think of the root of our polynomial as a number in that set. When the root z is divided by p, we naturally have a number in $(0,1)$. If we fix a polynomial $f(x)$ of degree $n \geq 2$ which is irreducible in $\mathbb{Z}[x]$, we can consider the set

$$
A_{f}=\bigcup_{p}\{z / p: f(z) \equiv 0 \bmod p, 1 \leq z \leq p-1\} .
$$

The aim of this paper is to prove that if a certain conjecture called the Bouniakowsky conjecture is true, then the set A_{f} is dense in $(0,1)$. We stress that our result is conditional. Results that are not dependent on open conjectures have been proven about roots of polynomials to various moduli. Hooley $[\mathrm{H}]$ proved that the roots of an irreducible polynomial, considered over the ring $\mathbb{Z} / n \mathbb{Z}$, n not necessarily prime, when suitably normalized by dividing by n and considered over all n, are in fact equidistributed in $(0,1)$. Duke, Friedlander and Iwaniec [DFI] proved equidistribution for quadratic polynomials of negative discriminant, to prime moduli. Toth T] proved equidistribution for quadratic polynomials of positive discriminant, to prime moduli. We now state the main theorem of our paper.

Theorem. If the Bouniakowsky conjecture is true, the set $A_{f}=\bigcup_{p}\{z / p$: $f(z) \equiv 0 \bmod p, 1 \leq z \leq p-1\}$ is dense in $(0,1)$.

The Bouniakowsky conjecture. We now discuss the Bouniakowsky conjecture to give some background.

[^0]Bouniakowsky Conjecture. Let $f(x)$ be a polynomial that is irreducible in $\mathbb{Z}[x]$. Let $r_{f}=\operatorname{gcd}(\{f(x): x \in \mathbb{Z}\})$. Then $f(x) / r_{f}$ is prime infinitely often.

It is easy to construct polynomials which are always divisible by a given prime q. We know by Fermat's little theorem that the prime q always divides $x^{q}-x$. Therefore, all we have to do is choose a value k so that $x^{q}-x+q k$ is irreducible in $\mathbb{Z}[x]$. It then follows that q divides all the values of this polynomial.

The result. We first begin by considering a subset of $(0,1)$ which we will prove to be dense. We are then going to use this set to help prove the density of A_{f}. Here, we let n be the degree of f, and c be the leading coefficient of f.

Let $B_{f}=\left\{a / b: 1 \leq a<b, b\right.$ odd prime, $\left(c r_{f}, b\right)=1, a c x^{n-1} \equiv$ $-r_{f} \bmod b$ has a solution $\}$.

Lemma 1. B_{f} is dense in $(0,1)$.
Proof. Case 1: n is even. Consider the map $x \mapsto x^{n-1}$ on $(\mathbb{Z} / b \mathbb{Z})^{*}$. This map is injective and surjective if $(n-1, b-1)=1$. For such b, we can in fact solve $a c x^{n-1} \equiv-r_{f} \bmod b$ for all $a \in(\mathbb{Z} / b \mathbb{Z})^{*}$. Since b is prime, we can pick b larger than $c r_{f}$ to ensure $\left(b, c r_{f}\right)=1$. We can also pick infinitely many such b with $(n-1, b-1)=1$. It thus follows that B_{f} is dense in this case.

Case 2: n is odd. Since $n-1$ is even, let $n-1=2^{e} h, h$ odd. The map $x \mapsto x^{n-1}$ on $(\mathbb{Z} / b \mathbb{Z})^{*}$ is therefore a composition of the maps $x \mapsto x^{2}$ applied e times and $x \mapsto x^{h}$. Now, $x \mapsto x^{h}$ is a permutation of $(\mathbb{Z} / b \mathbb{Z})^{*}$ if $(b-1, h)=1$. Also, if $b \equiv 3 \bmod 4, x \mapsto x^{2}$ is a permutation of the squares in $(\mathbb{Z} / b \mathbb{Z})^{*}$, so by choosing $b \equiv 3 \bmod 4$ and $(b-1, h)=1$, we can ensure that the image of $x \mapsto x^{n-1}$ is the squares. We also want $\left(b, c r_{f}\right)=1$. We have infinitely many primes b satisfying these conditions, and for such b, the numerator of the fractions a / b ranges over either only the squares or only the nonsquares in $(\mathbb{Z} / b \mathbb{Z})^{*}$. By a result of Brauer $[\mathrm{B}]$, the maximum number of consecutive squares or nonsquares in $(\mathbb{Z} / b \mathbb{Z})^{*}$ is less than $b^{0.5}$ when $b \equiv 3 \bmod 4$. This ensures that B_{f} is dense in this case.

We will now show how z / p is related to the values in B_{f}. To do this, first consider the original polynomial f. From $f=\sum_{i} c_{i} x^{i}$, we can construct a polynomial $g(x, y)=\sum_{i} c_{i} x^{i} y^{n-i}$. Now for any prime b with $\left(b, c r_{f}\right)=1$ we have a polynomial in one variable $g(b w+t, b)$ where w is the variable and $t \in(\mathbb{Z} / b \mathbb{Z})^{*}$. Since we can vary b and t, we have many such polynomials associated to f. We will show that the gcd of the values of all these polynomials is also r_{f} and that they are also irreducible in $\mathbb{Z}[w]$. It is these polynomials that we apply the Bouniakowsky conjecture to. If the Bouniakowsky conjec-
ture is true, then there are infinitely many primes p with $r_{f} p=g(b w+t, b)$ as $w \rightarrow \infty$. Moreover, for these primes p, we can construct a root z of $f \bmod p$ such that z / p is "close" to a / b where a is chosen so that $(a p+b w+t) / b$ is an integer and $a / b \in(0,1)$. This is the same as choosing $1 \leq a<b$ and a such that $a c t^{n-1} \equiv-r_{f} \bmod b$. We thus see the relation to the set B_{f}. We then let $z=(a p+b w+t) / b$ and show that z is a root of $f \bmod p$.

Lemma 2. The polynomial $g(b w+t, b)$, where w is the variable, b is prime, $\left(b, c r_{f}\right)=1,1 \leq t<b$, is irreducible in $\mathbb{Z}[w]$.

Proof. The polynomial $g(b w+t, b)$ is related in a simple way to the original polynomial f :

$$
\begin{aligned}
g(b w+t, b) & =\sum_{i} c_{i}(b w+t)^{i} b^{n-i}=b^{n} \sum_{i} c_{i}(w+t / b)^{i}=b^{n} g(w+t / b, 1) \\
& =b^{n} f(w+t / b)
\end{aligned}
$$

Since a polynomial is irreducible in $\mathbb{Z}[x]$ if and only if it is irreducible in $\mathbb{Q}[x]$, the lemma follows.

LEMMA 3. Let b be prime, $\left(b, c r_{f}\right)=1$, and $1 \leq t<b$. Then

$$
\operatorname{gcd}(\{g(b w+t, b): w \in \mathbb{Z}\})=r_{f}
$$

Proof. Let $r=r_{f}$. Since f has integer coefficients, we can think of f as a polynomial in $(\mathbb{Z} / r \mathbb{Z})[x]$. But since r divides all the values of f, it follows that $f(x)=0$ in $(\mathbb{Z} / r \mathbb{Z})[x]$. We showed in the proof of Lemma 2 that $g(b w+t, b)=b^{n} f(w+t / b)$ in $\mathbb{Q}[x]$. Since $\left(b, r_{f}\right)=1, b$ has an inverse $\bmod r$ and hence the rational number t / b can be thought of as an element in $\mathbb{Z} / r \mathbb{Z}$. Hence $g(b w+t, b)=b^{n} f(w+t / b)=0$ in $(\mathbb{Z} / r \mathbb{Z})[x]$. Therefore, for each such b and t, we find that r divides $\operatorname{gcd}(\{g(b w+t, b): w \in \mathbb{Z}\})$.

Conversely, let $r_{b, t}=\operatorname{gcd}(\{g(b w+t, b): w \in \mathbb{Z}\})$. We have $g(b w+t, b)=0$ in $\left(\mathbb{Z} / r_{b, t} \mathbb{Z}\right)[w]$. But $f(w)=\left(b^{n}\right)^{-1} g(b(w-t / b)+t, b)$, so $f(w)=0$ in $\left(\mathbb{Z} / r_{b, t} \mathbb{Z}\right)[w]$. Therefore $r_{b, t}$ divides r for each such b and t. It follows that the polynomials $g(b w+t, b)$ have the same gcd as f.

LEMMA 4. If a is chosen such that $z=(a p+b w+t) / b$ is an integer, then z is a root of the polynomial $f \bmod p$.

Proof. We have

$$
\begin{aligned}
b^{n} f(z) & =b^{n} f\left(\frac{a p+b w+t}{b}\right)=b^{n} \sum_{i} c_{i}\left(\frac{a p+b w+t}{b}\right)^{i} \\
& =\sum_{i} c_{i}(a p+b w+t)^{i} b^{n-i} \equiv \sum_{i} c_{i}(b w+t)^{i} b^{n-i}=g(b w+t, b) \\
& =r_{f} p \equiv 0 \bmod p
\end{aligned}
$$

Since $(b, p)=1$, the lemma is proven.

Having proven these lemmas, we know that z / p is close to a / b. Assuming the Bouniakowsky conjecture, we can let $w \rightarrow \infty$ and obtain infinitely many primes p and a root z for each prime. As $w \rightarrow \infty, z / p$ is arbitrarily close to a / b, since $n \geq 2$. Since we showed in Lemma 1 that B_{f} is dense in $(0,1)$, the theorem is now proved.

Acknowledgements. Thanks to Professor Zhengyu Mao for suggesting the problem to me and for many helpful discussions.

References

[B] A. Brauer, Über die Verteilung der Potenzreste, Math. Z. 35 (1932), 39-50.
[DFI] W. Duke, J. B. Friedlander and H. Iwaniec, Equidistribution of roots of a quadratic congruence to prime moduli, Ann. of Math. (2) 141 (1995), 423-441.
[H] C. Hooley, On the distribution of the roots of polynomial congruences, Mathematika 11 (1964), 39-49.
[T] Á. Tóth, Roots of quadratic congruences, Int. Math. Res. Notices 2000, no. 14, 719-739.

Timothy Foo
Division of Mathematical Sciences
Nanyang Technological University, Singapore
E-mail: S080074@ntu.edu.sg

[^0]: 2010 Mathematics Subject Classification: 11B05, 11C08, 11K06, 11N32.
 Key words and phrases: Bouniakowsky conjecture, density, polynomial roots, prime moduli.

