On the Diophantine equation
$$(x^2 \pm C)(y^2 \pm D) = z^4$$

by

PINGZHI YUAN (Guangzhou) and JIAGUI LUO (Zhaoqing)

1. Introduction. Let L>0 and M be rational integers such that L-4M>0 and (L,M)=1. Let α and β be the two roots of the trinomial $x^2-\sqrt{L}\,x+M$. For a non-negative integer n, the nth term in the Lehmer sequence $\{P_n\}$ and the associated Lehmer sequence $\{Q_n\}$ (see [11]) are defined by

$$P_n := P_n(\alpha, \beta) = \begin{cases} \frac{\alpha^n - \beta^n}{\alpha - \beta} & \text{for } n \text{ odd,} \\ \frac{\alpha^n - \beta^n}{\alpha^2 - \beta^2} & \text{for } n \text{ even,} \end{cases}$$

and

$$Q_n := Q_n(\alpha, \beta) = \begin{cases} \frac{\alpha^n + \beta^n}{\alpha + \beta} & \text{for } n \text{ odd,} \\ \alpha^n + \beta^n & \text{for } n \text{ even.} \end{cases}$$

Lehmer sequences have many interesting properties and often arise in the study of Diophantine equations. The arithmetic properties of the numbers P_n can be found in [11, 25].

Let a,b be positive integers such that ab is not a square. Diophantine equations of the form

$$aX^4 - bY^2 = c,$$

where $c \in \{\pm 1, \pm 2, \pm 4\}$, have received considerable interest, as we see from the references [2, 7, 8, 17, 19, 22, 23]. The study of these equations goes back to the classical work of Ljunggren [12, 13, 15, 16], who was able to prove many sharp results on (1.1). The following cases have been considered: Ljunggren [15] (c = -1), [16] (c = 4), Luca and Walsh [17] (c = -2), Luca and Yuan [18] $(c = \pm 4)$, Akhtari [1] (c = 1) and Yuan and Li [28] (c = 2).

As an application of some results on (1.1), Luca and Walsh [17] proved the following theorem.

Key words and phrases: Diophantine equations, Lehmer sequences.

²⁰¹⁰ Mathematics Subject Classification: 11D25, 11B39.

THEOREM LW1 (Theorem 3 in [17]).

1. The equation

$$(X^2 + 1)(Y^2 + 1) = Z^4$$

has no positive integer solutions.

2. The only positive integer solutions of the equation

$$(X^2 + 1)(Y^2 - 1) = Z^4$$

are (X, Y, Z) = (1, 3, 2), (239, 3, 26).

3. The equation

$$(X^2 - 1)(Y^2 - 1) = Z^4$$

has no positive integer solutions.

In this paper, we will investigate the positive integer solutions (x, y, z) of the Diophantine equations of the type

$$(1.2) (x^2 \pm C)(y^2 \pm D) = z^4,$$

where $C, D \in \{1, 2, 4\}$. The main purpose is try to completely solve the remaining eighteen equations of the type (1.2). The main results of the present paper are as follows. Throughout, \square stands for a square, and $\left(\frac{A}{B}\right)$ for the Jacobi symbol of A with respect to B, where A and B are coprime integers.

Theorem 1.1. Let A > 1 be a positive integer. Then the Diophantine equation

$$(1.3) (AX^2 + 1)(AY^2 + 1) = Z^4$$

has no positive integer solutions (X, Y, Z) with $X \neq Y$.

Theorem 1.2.

(1) The only positive integer solutions of the equation

(1.4)
$$(X^2 + 4)(Y^2 + 4) = Z^4$$
 are $(X, Y, Z) = (1, 11, 5), (11, 1, 5).$

(2) The equation

$$(1.5) (X^2 - 4)(Y^2 - 4) = Z^4$$

has no positive integer solutions.

(3) The equation

$$(1.6) (X^2 - 2)(Y^2 - 2) = Z^4$$

has no positive integer solutions.

(4) The only positive integer solutions of the equation

(1.7)
$$(X^2 + 2)(Y^2 + 2) = Z^4$$
 are $(X, Y, Z) = (1, 5, 3), (5, 1, 3).$

(5) The equation

$$(1.8) (X^2+2)(Y^2-2) = Z^4$$

has no positive integer solutions.

(6) The equation

$$(1.9) (X^2+2)(Y^2+1) = Z^4$$

has no positive integer solutions.

(7) The equation

$$(1.10) (X^2 - 2)(Y^2 + 1) = Z^4$$

has no positive integer solutions.

(8) The equation

$$(1.11) (X^2 + 2)(Y^2 - 4) = Z^4$$

has no positive integer solutions.

(9) The equation

$$(1.12) (X^2+2)(Y^2+4) = Z^4$$

has no positive integer solutions.

(10) The only positive integer solution to the equation

(1.13)
$$(X^2 + 2)(Y^2 - 1) = Z^4$$
 is $(X, Y, Z) = (5, 2, 3)$.

(11) The only positive integer solutions to the equation

(1.14)
$$(X^2 + 4)(Y^2 + 1) = Z^4$$
 are $(X, Y, Z) = (11, 2, 5), (2, 239, 26), (478, 1, 26).$

(12) The only positive integer solutions of the equation

(1.15)
$$(X^2 + 4)(Y^2 - 4) = Z^4$$
 are $(X, Y, Z) = (2, 6, 4), (478, 6, 52).$

(13) The equation

$$(1.16) (X^2 + 4)(Y^2 - 1) = Z^4$$

has no positive integer solutions.

(14) The equation

$$(1.17) (X^2 - 4)(Y^2 + 1) = Z^4$$

has no positive integer solutions.

(15) The equation

$$(1.18) (X^2 - 4)(Y^2 - 1) = Z^4$$

has only infinitely many trivial positive solutions (X, Y, Z) = (2Y, Y, 2S), where Y, S are positive integers with $Y^2 - 2S^2 = 1$.

(16) The only positive integer solutions to the equation

(1.19)
$$(X^2 - 2)(Y^2 + 4) = Z^4$$
 are $(X, Y, Z) = (2, 2, 2), (2, 478, 26).$

(17) The equation

$$(1.20) (X^2 - 4)(Y^2 - 1) = 4Z^4, 2 \nmid X,$$

has no positive integer solutions.

However, we have not been able to solve the following two equations:

$$(1.21) (X^2 - 2)(Y^2 - 4) = Z^4, 2 | XY,$$

$$(1.22) (X^2 - 2)(Y^2 - 1) = Z^4, 2 \mid X.$$

We leave this as an open question.

2. The results on the equation $ax^2 - by^4 = c$. In this section, we will list all the related results on equations $ax^2 - by^4 = \pm 2, \pm 4$, which will be used later.

Let a and b be odd positive integers such that the equation

$$(2.1) aX^2 - bY^2 = 2$$

is solvable in positive integers (X, Y). Let (a_1, b_1) be the minimal positive solution to (2.1), and define

(2.2)
$$\alpha = \frac{a_1\sqrt{a} + b_1\sqrt{b}}{\sqrt{2}}.$$

Furthermore, for k odd, define

(2.3)
$$\alpha^k = \frac{a_k \sqrt{a} + b_k \sqrt{b}}{\sqrt{2}},$$

where (a_k, b_k) are positive integers. It is well known that all positive integer solutions (X, Y) of (2.1) are of the form (a_k, b_k) .

By investigating the occurrence of squares and certain square classes in some sets of Lehmer sequences, Luca and Walsh [17] completely solved the Diophantine equations of the type

$$(2.4) ax^2 - by^4 = 2.$$

Theorem LW2 (Theorem 2 in [17]).

- 1. If b_1 is not a square, then equation (2.4) has no solutions.
- 2. If b_1 is a square and b_3 is not a square, then $(X,Y)=(a_1,\sqrt{b_1})$ is the only solution of (2.4).
- 3. If b_1 and b_3 are both squares, then $(X,Y)=(a_1,\sqrt{b_1})$, $(a_3,\sqrt{b_3})$ are the only solutions of (2.4).

Recently, by the method similar to that in Luca and Walsh [17], Yuan and Li [28] confirmed a conjecture of Akhtari, Togbe and Walsh [3] by proving the following result.

Theorem YL ([28]). For any positive odd integers a, b, the equation $aX^4 - bY^2 = 2$ has at most one solution in positive integers, and such a solution must arise from the minimal solution to the quadratic equation $aX^2 - bY^2 = 2$.

Let A and B be odd positive integers such that the Diophantine equation

$$(2.5) Ax^2 - By^2 = 4$$

has solutions in odd, positive integers x, y. Let a_1, b_1 be the minimal positive integer solution. Define

(2.6)
$$\frac{a_n\sqrt{A} + b_n\sqrt{B}}{2} = \left(\frac{a_1\sqrt{A} + b_1\sqrt{B}}{2}\right)^n.$$

With these assumptions, Ljunggren [16] showed the following two results by computing some Jacobi's symbols of the related Lehmer sequences.

Theorem Lj. The Diophantine equation $Ax^4 - By^2 = 4$ has at most two solutions in positive integers x, y.

- 1. If $a_1 = h^2$ and $Aa_1^2 3 = k^2$, there are only two solutions, namely, $x = \sqrt{a_1} = h$ and $x = \sqrt{a_3} = hk$.
- 2. If $a_1 = h^2$ and $Aa_1^2 3 \neq k^2$, then $x = \sqrt{a_1} = h$ is the only solution. 3. If $a_1 = 5h^2$ and $A^2a_1^4 - 5Aa_1^2 + 5 = 5k^2$, then the only solution is
- 3. If $a_1 = 5h^2$ and $A^2a_1^4 5Aa_1^2 + 5 = 5k^2$, then the only solution is $x = \sqrt{a_5} = 5hk$.

Otherwise there are no solutions.

By computing more Jacobi's symbols of the related Lehmer sequences, Luo and Yuan [18] proved the following result.

Theorem LY ([18]).

1. If b_1 is not a square, then the equation

$$(2.7) Ax^2 - By^4 = 4$$

has no positive integer solutions except in the case $b_1 = 3h^2$ and $Bb_1^2 + 3 = 3k^2$, when $y = \sqrt{b_3}$ is the only solution of (2.7).

2. If b_1 is a square, then (2.7) has at most one positive integer solution other than $y = \sqrt{b_1}$, which is given by either $y = \sqrt{b_3}$ or $y = \sqrt{b_2}$, the latter occurring if and only if a_1 and b_1 are both squares and A = 1 and $B \neq 5$.

3. Other lemmas. In this section, we present some other lemmas that will be used later.

Lemma 3.1 ([27]). Let $D \neq 2$ be a positive non-square integer with $8 \nmid D$.

(i) If 2 | D, then one and only one of the Diophantine equations

$$(3.1) kx^2 - ly^2 = 1$$

has integer solutions, where (k,l) ranges over all pairs of integers such that k > 1, kl = D.

(ii) If $2 \nmid D$, then one and only one of the Diophantine equations

(3.2)
$$kx^2 - ly^2 = 1, \quad kx^2 - ly^2 = 2$$

has integer solutions, where (k,l) in the former equation ranges over all pairs of integers such that k > 1, kl = D, and (k,l) in the latter equation ranges over all pairs of integers such that k > 0, kl = D.

(iii) If $2 \nmid D$ and the Diophantine equation $x^2 - Dy^2 = 4$ has solutions in odd integers x and y, then one and only one of the Diophantine equations

$$(3.3) kx^2 - ly^2 = 4$$

has integer solutions, where (k,l) ranges over all pairs of integers such that k > 1, kl = D.

The following lemma will be used in the proofs.

Lemma 3.2.

- (i) Let k > 1 and l be odd positive integers such that $kx^2 ly^2 = 4$, $2 \nmid xy$, has positive integer solutions. Then $kx^2 ly^2 = 1$ has positive integer solutions.
- (ii) Let D be a positive integer such that $x^2 Dy^2 = 4$, $2 \nmid xy$, is solvable. Then one and only one of the Diophantine equations

$$kx^2 - ly^2 = 1$$

has integer solutions, where (k,l) ranges over all pairs of integers such that k > 1, kl = D.

Proof. Obvious from Lemma 3.1(iii). ■

We also need the following ten known results.

LEMMA 3.3 ([19]). Let p be an odd prime. If $(L, M) \equiv (0, 3) \pmod{4}$ and $(\frac{L}{M}) = 1$, then the equation $P_p = px^2$ with x an integer has no solutions.

LEMMA 3.4 ([18]). Let L and M be coprime positive odd integers with L-4M>0. If $Q_n=ku^2$, $k\mid n$, then $n=1,\ 3,\ 5$. If $Q_n=2ku^2$, $k\mid n$, then n=3.

LEMMA 3.5 ([28]). Let p be an odd prime. If $(L, M) \equiv (2, 3) \pmod{4}$ and $(\frac{L}{M}) = 1$, then the equation $P_p = px^2$ with x an integer has no integer solutions provided that p > 3, and the equation $P_p = x^2$ has no integer solutions.

LEMMA 3.6 ([17]). Let p be an odd prime. If $(L, M) \equiv (2, 1) \pmod{4}$ and $(\frac{L}{M}) = 1$, then the equation $P_p = x^2$ with x an integer has no integer solutions provided that p > 3, and the equation $P_p = px^2$ has no integer solutions.

Lemma 3.7 ([14]). The only positive integer solutions to the equation

$$x^2 - 2y^4 = -1$$

are (x, y) = (1, 1), (239, 13).

Lemma 3.8 ([6], [26]). Let d > 3 be a non-square such that the Pell equation

$$X^2 - dY^2 = -1$$

is solvable in positive integers, and let $\tau = v + u\sqrt{d}$ denote its minimal positive integer solution. Then the only positive integer solution to the equation

$$X^2 - dY^4 = -1$$

is $(X,Y) = (v,\sqrt{u})$.

Lemma 3.9 ([21]).

(i) Let a and b be positive integers, with a non-square, such that the equation $aX^2 - bY^2 = 1$ is solvable in positive integers. Let (v, w) be the solution with v minimal, and put $\tau = v\sqrt{a} + w\sqrt{b}$. Let $w = n^2l$ with l odd and square-free. Then the Diophantine equation

$$(3.4) ax^2 - by^4 = 1$$

has at most one solution in positive integers. If a solution (x,y) to (3.4) exists, then $x\sqrt{a} + y^2\sqrt{b} = \tau^l$.

(ii) Let D > 0 be a non-square integer. Define

$$T_n + U_n \sqrt{D} = (T_1 + U_1 \sqrt{D})^n$$

where $T_1 + U_1\sqrt{D}$ is the fundamental solution of the Pell equation

$$(3.5) X^2 - DY^2 = 1.$$

Then there are at most two positive integer solutions (X,Y) to the equation

$$(3.6) X^2 - DY^4 = 1.$$

1. If two solutions with $Y_1 < Y_2$ exist, then $Y_1^2 = U_1$ and $Y_2^2 = U_2$, except when D = 1785 or $D = 16 \cdot 1785$, in which case $Y_1^2 = U_1$ and $Y_2^2 = U_4$.

2. If only one positive integer solution (X,Y) to equation (3.6) exists, then $Y^2 = U_l$ where $U_1 = lv^2$ for some square-free integer l, and either l = 1, l = 2 or l = p for some prime $p \equiv 3 \pmod{4}$.

LEMMA 3.10 ([20], [9]). Let the fundamental solution of the equation $v^2 - du^2 = 1$ be $a + b\sqrt{d}$. Then the only possible solutions to the equation $X^4 - dY^2 = 1$ are given by $X^2 = a$ and $X^2 = 2a^2 - 1$; both solutions occur in the following cases: d = 1785,7140,28560.

Lemma 3.11 ([5]). Let s, d be positive integers with s > 1. Then the Diophantine equation

$$s^2X^4 - dY^2 = 1$$

has at most one positive integer solution (X,Y), which can be given by $X^2s + \sqrt{d}Y = as + b\sqrt{d}$, where $as + b\sqrt{d}$ is the minimal positive integer solution of the equation $s^2T^2 - dU^2 = 1$.

Let A > 1 and B be positive integers with AB non-square, and let $v\sqrt{A} + w\sqrt{B}$ be the minimal positive integer solution to the equation $Ax^2 - By^2 = 1$. By the result of the first author [29], Bennett, Togbe and Walsh [4] and Akhtari [1], we have the following lemma.

LEMMA 3.12 ([4], [1]). The Diophantine equation

$$(3.7) Ax^4 - By^2 = 1$$

has at most two positive integer solutions. Moreover, (3.7) is solvable if and only if v is a square; and if $x^2\sqrt{A} + y\sqrt{B} = (v\sqrt{A} + w\sqrt{B})^k$, then k = 1 or $k = p \equiv 3 \pmod{4}$ is a prime.

The following lemma is a generalization of an old result (Theorem 7.4.8 in [29]) of the first author.

Lemma 3.13. Suppose the equation

$$A(ru^2)^2 - By^2 = 1,$$

where A > 1, AB is not a square, and $r \mid A$, has a solution. Let $a_1 \sqrt{A} + b_1 \sqrt{B}$ be its minimal positive integer solution. Then $a_1 = rv^2$ for some positive integer v.

Proof. Let (a_k, b_k) be positive integers such that

$$(3.8) a_k\sqrt{A} + b_k\sqrt{B} = (a_1\sqrt{A} + b_1\sqrt{B})^k.$$

We have $a_k = a_1 \cdot \frac{a_k}{a_1} = ru^2$ and $gcd(a_1, a_k/a_1) \mid k, r \mid k$. Hence

$$P_k = a_k/a_1 = r_1 l \square$$
, $a_1 = r_2 l \square$, $r = r_1 r_2$, $r_1 l \mid k$.

Now we show that $r_1l = 1$. Assume that this is not so and let p > 2 be a prime divisor of r_1l . Then

$$(3.9) P_k/P_{k/p} = pv^2$$

for some positive integer v. This sequence satisfies the hypothesis of Lemma 3.3, therefore (3.9) is impossible, so $r_1l = 1$, as desired. Hence $a_1 = r \square$.

LEMMA 3.14. Let a and b be odd positive integers such that the equation (2.1) is solvable in positive integers (X,Y). Let (a_1,b_1) and (a_k,b_k) be defined by (2.2) and (2.3), respectively.

- (i) If $a_k = r \square$, $r \mid aa_1k$, r square-free, then k = 1 or 3.
- (ii) If $b_k = s\square$, $s \mid bb_1k$, r square-free, then k = 1 or 3.

Proof. First we prove (ii). Since $b_k = b_1 \cdot (b_k/b_1) = r \square$, $s \mid bb_1k$ and $\gcd(b_1, b_k/b_1) \mid k$, we have

$$P_k = b_k/b_1 = s_1 l \square, \quad b_1 = s_2 l \square, \, s = s_1 s_2, \, s_1 l \mid k.$$

Let p be the largest prime divisor of k. Since

$$P_k = \frac{P_k}{P_{k/p}} \cdot P_{k/p} = s_1 l \square, \quad \gcd(P_k/P_{k/p}, P_{k/p}) \mid p,$$

we have $P_k/P_{k/p} = \square$ or $p\square$. Applying Lemma 3.6 to

$$\frac{P_k}{P_{k/p}} = P_p' = \frac{\alpha^k - \overline{\alpha}^k}{\alpha^{k/p} - \overline{\alpha}^{k/p}}$$

we find that p=3. Hence $k=3^m$ for some non-negative integer m. If m>1, then the above argument and Lemma 3.6 show that $P_9=\square$ and $P_3=\square$, which implies that the equation $ax^2-bb_1^2y^4=2$ has three positive integer solutions (x,y) with $y=1,\sqrt{P_3}$ and $\sqrt{P_9}$, which contradicts Theorem LW2. Therefore k=1 or 3.

Next we prove (i). By Lemma 3.5, we get $k=3^m$ for some non-negative integer m. If m>1, then a similar argument and Lemma 3.5 show that $P_9=3P_3\square$ and $P_3=3\square$, which implies that the equation $aa_1x^4-by^2=2$ has two positive integer solutions (x,y) with x=1 and $\sqrt{P_9}$, contradicting Theorem YL. Therefore k=1 or 3.

We also need the following two lemmas.

Lemma 3.15.

(i) The equation

$$5x^4 + 5x^2 + 1 = y^2$$

has no positive integer solutions.

(ii) The only positive integer solutions of the equation

$$5x^4 - 5x^2 + 1 = y^2$$

are
$$(x,y) = (1,1), (3,19)$$
.

Proof. We obtain the results by MAGMA computations. \blacksquare

Lemma 3.16. The only positive integer solution to the system

$$\begin{cases} 3x^2 - y^2 = 2, \\ 2x^2 - z^2 = 1, \end{cases}$$

is (x, y, z) = (1, 1, 1).

Proof. We have $x^2 + y^2 = 2z^2$ and $2 \nmid xyz$. Hence there are integers u, v such that

$$z = u^2 + v^2$$
, $x = u^2 - v^2 + 2uv$.

Substituting this into $2x^2 - z^2 = 1$ we get

$$u^4 + 8u^3v + 2u^2v^2 - 8uv^3 + v^4 = 1.$$

By a MAGMA computation, we obtain uv = 0, and thus (x, y, z) = (1, 1, 1).

4. Proof of Theorem 1.1. Define

$$R = \{p \mid (AX^2 + 1); \operatorname{ord}_p(AX^2 + 1) \equiv 1 \pmod{4}\},\$$

$$S = \{p \mid (AX^2 + 1); \operatorname{ord}_p(AX^2 + 1) \equiv 2 \pmod{4}\},\$$

$$Q = \{p \mid (AX^2 + 1); \operatorname{ord}_p(AX^2 + 1) \equiv 3 \pmod{4}\},\$$

and

$$r = \prod_{p \in R} p, \quad s = \prod_{p \in S} p, \quad t = \prod_{p \in Q} p.$$

By the above notation and (1.3) we have

(4.1)
$$rts^2(tu_1^2)^2 - AX^2 = 1, \quad rts^2(ru_2^2)^2 - AY^2 = 1$$

for some positive integers u_1 and u_2 . Suppose $rts^2 > 1$, and denote by $\varepsilon = T_1 \sqrt{rts^2} + U_1 \sqrt{2}$ the minimal positive solution of the equation

$$(4.2) rts^2T^2 - AU^2 = 1.$$

Then, by Lemma 3.13 and (4.1), we obtain

$$T_1 = t \square = r \square,$$

and so rt = 1 since gcd(r, t) = 1. Hence (4.1) becomes

$$(4.3) s^2 u_1^4 - AX^2 = 1, s^2 u_2^4 - AY^2 = 1,$$

which has no positive integer solutions with $X \neq Y$ by Lemma 3.11. Therefore (1.3) has no positive integer solutions with $X \neq Y$.

5. Proof of Theorem 1.2

(1) The equation $(X^2+4)(Y^2+4)=Z^4$. We first consider the solution (X,Y,Z) of (1.4) with $2 \nmid XY$. Define

$$R = \{ p \mid (X^2 + 4); \operatorname{ord}_p(X^2 + 4) \equiv 1 \pmod{4} \},$$

$$S = \{ p \mid (X^2 + 4); \operatorname{ord}_p(X^2 + 4) \equiv 2 \pmod{4} \},$$

$$Q = \{ p \mid (X^2 + 4); \operatorname{ord}_p(X^2 + 4) \equiv 3 \pmod{4} \},$$

and

$$r = \prod_{p \in R} p$$
, $s = \prod_{p \in S} p$, $t = \prod_{p \in Q} p$.

Then

(5.1)
$$X^2 + 4 = rts^2(tu_1^2)^2$$
, $Y^2 + 4 = rts^2(ru_2^2)^2$, $Z = rstu_1u_2$.

We denote by (T_1, U_1) the minimal positive solution of the equation

$$(5.2) rts^2T^2 - U^2 = 4$$

and let

$$\alpha = \frac{T_1\sqrt{rts^2} + U_1}{2}.$$

For a positive integer $k \geq 1$, we define (T_k, U_k) to be positive integers such that

$$\frac{T_k\sqrt{rts^2} + U_k}{2} = \alpha^k.$$

It is well known that all odd positive solutions of (5.2) are of the form $(T,U)=(T_k,U_k)$ for some positive integer k with $3 \nmid k$. With the above notations, for any positive integer solution (X,Y,Z) to $(X^2+4)(Y^2+4)=Z^4$ with $2 \nmid XY$, we have $X=U_k$ and $Y=U_l$ for some integers k and l and $3 \nmid kl$, and that

$$(5.3) T_k = tu_1^2, T_l = ru_2^2$$

for some odd positive integers u_1 and u_2 .

Let $d = \gcd(k, l)$, $k = dk_1$, $l = dl_1$. Then $2 \nmid kl$. Noting that every prime divisor of $\gcd(T_k/T_d, rtT_d)$ divides k_1 , we have

$$T_k/T_d = k_2 \square, \quad k_2 \mid k_1.$$

Now we apply Lemma 3.4 to

$$Q_{k_1} = \frac{T_k}{T_d} = \frac{\alpha^{k_1 d} + \overline{\alpha}^{k_1 d}}{\alpha^d + \overline{\alpha}^d},$$

to deduce that $k_1 \in \{1, 5\}$. Similarly, $l_1 \in \{1, 5\}$.

Since $k \neq l$, we may assume that $k_1 = 1$ and $l_1 = 5$. Hence

$$T_d = tu_1^2, \quad T_{5d} = ru_2^2.$$

If t > 1, then $t \mid T_{5d}/T_d$ since rt square-free, $gcd(T_{5d}/T_d, rt) \mid 5$, so t = 5 and $T_{5d} = 5u_1^2$. Similarly, if r > 1, then r = 5. Therefore rt = 5.

If r=1 and t=5, then $T_d=5u_1^2$ and $T_{5d}=u_2^2$. By a direct computation we get $5s^4T_d^4-5s^2T_d^2+1=(u_2/5u_1)^2$, so $sT_d=1$ or 3 by Lemma 3.15, which is impossible since $5 \mid T_d$.

If r=5 and t=1, then $T_d=u_1^2$ and $T_{5d}=5u_2^2$. Similarly, we have $5s^4T_d^4-5s^2T_d^2+1=(u_2/u_1)^2$, thus $sT_d=1$ or 3. If $sT_d=3$, then s=3, $T_d=1$ and $45-4=U_d^2$, which is impossible. If $sT_d=1$, then $U_d=1, u_2=5$ and (X,Y,Z)=(1,11,5).

Next we consider the solution (X, Y, Z) of (1.4) with $2 \mid XY$. Then $2 \mid X$ and $2 \mid Y$, say $X = 2X_1, Y = 2Y_1, Z = 2Z_1$, and we obtain

$$(X_1^2 + 1)(Y_1^2 + 1) = Z_1^4.$$

By item 1 of Theorem LW1, the above equation has no positive integer solutions. Therefore, the only positive integer solutions to (1.4) are (X, Y, Z) = (1, 11, 5), (11, 1, 5).

(2) The equation $(X^2-4)(Y^2-4)=Z^4$. We first consider the solution (X,Y,Z) of (1.5) with $2 \nmid XY$. We retain the definitions of r,s, and t as given at the beginning of the proof of Theorem 1.2(1), but define them to be square-free numbers built up from prime divisors of X^2-4 instead of X^2+4 . We denote by (T_1,U_1) the minimal positive solution of the equation

$$(5.4) T^2 - rts^2 U^2 = 4$$

and let

$$\alpha = \frac{T_1 + U_1 \sqrt{rts^2}}{2}.$$

For a positive integer $k \geq 1$, we define (T_k, U_k) to be positive integers such that

$$\frac{T_k + U_k \sqrt{rts^2}}{2} = \alpha^k.$$

Proceeding as before, it follows that there are integers k and l such that $X = T_k$ and $Y = T_l$,

$$(5.5) U_k = tu_1^2, U_l = ru_2^2$$

for some odd positive integers u_1 and u_2 .

We may assume that $d = \gcd(k, l)$, $k = dk_1$, $l = 2^u l_1 d, 2 \nmid k_1 l_1$, $u \geq 0$. Then $U_d = \gcd(U_k, U_l) = c \square$ with $c \mid rt$ since $\gcd(r, t) = 1$. Since

$$U_l = \frac{U_l}{U_{l_1d}} \cdot U_{l_1d}, \quad \gcd(U_l/U_{l_1d}, rU_{l_1d}) = 1,$$

we have

$$U_{l_1d} = r \square.$$

Since every prime divisor of $gcd(U_{k_1d}/U_d, rtU_d)$ divides k_1 , we obtain

$$U_{k_1d}/U_d = n\Box, \quad n \mid k_1.$$

Applying Lemma 3.4 to

$$Q_{k_1} = \frac{U_{k_1 d}}{U_d} = \frac{(\alpha^d)^{k_1} + (-\overline{\alpha}^d)^{k_1}}{(\alpha^d) + (-\overline{\alpha}^d)},$$

we have $k \in \{1,5\}$. Similarly, $l \in \{1,5\}$. Since $2 \nmid U_k U_l$, $k \neq l$, we may assume that $k_1 = 1$ and $l_1 = 5$. Hence

$$U_d = tu_1^2, \quad U_{5d} = ru_2^2.$$

If t > 1, then $t \mid U_5/U_1$ since rt is square-free, $gcd(T_5/T_1, rt) \mid 5$, so t = 5 and $U_1 = 5u_1^2$. Similarly, if t > 1, then t = 5. Thus t = 5 when t > 1.

If r=1 and t=5, then $U_d=5u_1^2$ and $U_{5d}=u_2^2$. It follows that $5s^4U_d^4+5s^2U_d^2+1=(u_2/5u_1)^2$. This yields $sU_d=0$ by Lemma 3.15, which is impossible. If r=5 and t=1, then $U_d=u_1^2$ and $U_{5d}=5u_2^2$, and $5s^4U_d^4+5s^2U_d^2+1=(u_2/u_1)^2$. This yields $sU_d=0$ by Lemma 3.15 again, which is also impossible.

Next we consider the solution (X, Y, Z) of (1.5) with $X \neq Y$ and $2 \mid XY$. If $2 \mid X$ and $2 \mid Y$, then $X = 2X_1$, $Y = 2Y_1$, $Z = 2Z_1$, and we obtain

$$(X_1^2 - 1)(Y_1^2 - 1) = Z_1^4.$$

By item 3 of Theorem LW1 the above equation has no positive integer solutions. If $2 \nmid X$ and $2 \mid Y$ (the case that $2 \nmid Y$ and $2 \mid X$ is similar), say $Y = 2Y_1$, $Z = 2Z_1$, then we obtain

$$(X^2 - 4)(Y_1^2 - 1) = 4Z_1^2, \quad 2 \nmid X,$$

which has no positive integer solutions by Theorem 1.2(17). Hence (1.5) has no positive integer solutions.

(3) The equation $(X^2-2)(Y^2-2)=Z^4$. It is obvious that for any solution (X,Y,Z) of the equation, we have $X\neq Y$ and $2\nmid XYZ$. We retain the definitions for r,s, and t as given at the beginning of the proof of Theorem 1.2(1), but define them to be square-free numbers built up from prime divisors of X^2-2 instead of X^2+4 .

From (1.6) we have

$$(5.6) X^2 - rt(tsu_1^2)^2 = 2, Y^2 - rt(rsu_2^2)^2 = 2, Z = rstu_1u_2$$

for some positive integers u_1 and u_2 . We denote by (T_1, U_1) the minimal positive solution of the equation

$$(5.7) T^2 - rts^2 U^2 = 2$$

and for a positive integer $k \geq 1$, we define (T_k, U_k) to be positive integers such that

$$\frac{T_k + U_k \sqrt{rts^2}}{\sqrt{2}} = \left(\frac{T_1 + U_1 \sqrt{rts^2}}{\sqrt{2}}\right)^k.$$

Proceeding as before, it follows that there are integers k and l such that $X = T_k$ and $Y = T_l$ for some odd integers k and l, and

$$(5.8) U_k = tu_1^2, U_l = ru_2^2$$

for some positive integers u_1 and u_2 . By Lemma 3.14, we have $k, l \in \{1, 3\}$. Since $2 \nmid U_k U_l$, $k \neq l$, we may assume that k = 1 and l = 3. Hence

$$U_1 = tu_1^2, \quad U_3 = ru_2^2.$$

If t > 1, then $t \mid U_3/U_1$ since rt is square-free, $\gcd(U_3/U_1, rt) \mid 3$, so t = 3 and $U_1 = 3u_1^2$. Similarly, if t > 1, then t = 3. Thus t = 3 since $\gcd(t, t) = 1$. If t = 1 and t = 3, then $t = 3u_1^2$ and $t = 3u_2^2$. It follows that

$$18s^2u_1^4 + 1 = \left(\frac{u_2}{3u_1}\right)^2,$$

which is also impossible since $2 \nmid su_1^2$. If r = 3 and t = 1, then $U_1 = u_1^2$ and $U_3 = 3u_2^2$. It follows that

$$2s^2u_1^4 + 1 = \left(\frac{u_2}{u_1}\right)^2,$$

which is impossible since $2 \nmid su_1^2$. Hence (1.6) has no positive integer solutions.

(4) The equation $(X^2 + 2)(Y^2 + 2) = Z^4$. It is obvious that for any solution (X, Y, Z) of (1.7), we have $X \neq Y$ and $2 \nmid XYZ$. We retain the definitions for r, s, and t as given at the beginning of the proof of Theorem 1.2(1), but define them to be square-free numbers built up from prime divisors of $X^2 + 2$ instead of $X^2 + 4$.

From (1.7) we have

$$(5.9) rt(tsu_1^2)^2 - X^2 = 2, rt(rsu_2^2)^2 - Y^2 = 2$$

for some positive integers u_1 and u_2 . We denote by (T_1, U_1) the minimal positive solution of the equation

$$(5.10) rts^2T^2 - U^2 = 2$$

and for a positive integer $k \geq 1$, we define (T_k, U_k) to be positive integers such that

$$\frac{T_k\sqrt{rts^2} + U_k}{\sqrt{2}} = \left(\frac{T_1\sqrt{rts^2} + U_1}{\sqrt{2}}\right)^k.$$

Proceeding as before, we have $X = U_k$ and $T = U_l$ for some odd integers k and l, and

$$(5.11) T_k = tu_1^2, T_l = ru_2^2$$

for some positive integers u_1 and u_2 . Moreover, rt = 3.

If r = 1 and t = 3, then $T_1 = 3u_1^2$ and $T_3 = u_2^2$. It follows that

$$18s^2u_1^4 - 1 = \left(\frac{u_2}{3u_1}\right)^2,$$

which has no solutions (s, u_1, u_2) .

If r=3 and t=1, then $T_1=u_1^2$ and $T_3=3u_2^2$. It follows that

$$2s^2u_1^4 - 1 = \left(\frac{u_2}{u_1}\right)^2.$$

Combining this with the first equation of (5.9) we obtain

$$3s^2u_1^4 - X^2 = 2$$
, $2s^2u_1^4 - m^2 = 1$,

which has only the positive integer solution $(s, u_1, X, m) = (1, 1, 1, 1)$ by Lemma 3.16. Hence all positive integer solutions of (1.7) are (X, Y, Z) = (1, 5, 3), (5, 1, 3).

For the proofs of Theorem 1.2(5)–(7), we note that the equations in (5)–(7) have no solutions (X, Y, Z) with $2 \mid Z$, so we only consider the solutions (X, Y, Z) with $2 \nmid Z$.

(5) The equation $(X^2+2)(Y^2-2)=Z^2, 2 \nmid XY$. From the equation we have

$$X^2 + 2 = du_1^2$$
, $Y^2 - du_2^2 = 2$, $Z = du_1u_2$,

which is impossible by Lemma 3.1 since both equations $x^2 - dy^2 = 2$ and $dx^2 - y^2 = 2$ would then have solutions.

(6) The equation $(X^2+2)(Y^2+1)=Z^2$, $2 \nmid X$. From the equation we have

$$X^2 + 2 = du_1^2$$
, $du_2^2 - Y^2 = 1$, $Z = du_1u_2$,

which is impossible by Lemma 3.1 since both equations $dx^2 - y^2 = 2$ and $dx^2 - y^2 = 1$ would then have solutions.

(7) The equation $(X^2-2)(Y^2+1)=Z^2,\ 2\nmid X.$ From the equation we have

$$X^2 - 2 = du_1^2$$
, $du_2^2 - Y^2 = 1$, $Z = du_1u_2$,

which is impossible by Lemma 3.1 since both equations $x^2 - dy^2 = 2$ and $dx^2 - y^2 = 1$ would then have solutions.

(8) The equation $(X^2 + 2)(Y^2 - 4) = Z^4$. We divide the proof into two cases.

Case 1: $2 \nmid XY$. We consider the following more general equation:

$$(X^2 + 2)(Y^2 - 4) = Z^2, \quad 2 \nmid XY.$$

From the above equation we have

(5.12)
$$X^2 + 2 = du_1^2, \quad Y^2 - du_2^2 = 4, \quad Z = du_1 u_2.$$

It follows from Lemma 3.2(ii) and the second equation of (5.12) that one of the equations $d_1x^2 - d_2y^2 = 1$ with $d_1 > 1$ and $d_1d_2 = d$ has a solution, which is impossible by Lemma 3.1 since both equations $d_1x^2 - d_2y^2 = 1$, $d_1 > 1$ and $dx^2 - y^2 = 2$ would then have solutions.

Case 2: $2 \mid XY$. It is easy to see that (1.11) has no integer solutions when $2 \mid X$ and $2 \nmid Y$ by taking the equation modulo 4.

We first consider the subcase $2 \mid X$ and $2 \mid Y$. Write $X = 2X_1$, $Y = 2Y_1$, $Z = 2Z_1$. Then (1.11) becomes

$$(5.13) (2X_1^2 + 1)(Y_1^2 - 1) = 2Z_1^4.$$

We retain the definitions for r, s, and t but define them to be square-free numbers built up from prime divisors of $2X^2 + 1$ instead of $AX^2 + 1$, as given at the beginning of the proof of Theorem 1.1. From (5.13) we have

$$(5.14) rts^2(tu_1^2)^2 - 2X_1^2 = 1, Y_1^2 - 2rts^2(ru_2^2)^2 = 1$$

for some positive integers u_1 and u_2 . From the second equation of (5.14) and Lemma 3.1, we eventually get

$$rts^2(rm^2)^2 - 2n^4 = 1$$

as we did in the proof of Theorem 1.2(4). Hence $(2X_1^2 + 1)(2n^4 + 1) = Z_2^4$, which has no positive integer solutions by Theorem 1.1.

Next we deal with the subcase $2 \nmid X$ and $2 \mid Y$. Write $Y = 2Y_1$, $Z = 2Z_1$. We obtain the equation

$$(5.15) (X^2 + 2)(Y_1^2 - 1) = 4Z_1^4.$$

From (5.15), we have

(5.16)
$$rts^{2}(tu_{1}^{2})^{2} - X^{2} = 2, \quad Y_{1}^{2} - 4rts^{2}(ru_{2}^{2})^{2} = 1$$

for some positive integers u_1 and u_2 . Similarly, from the second equation of (5.16) and Lemma 3.1, we finally obtain

$$rts^2(rm^2)^2 - n^4 = 2, \quad 2 \nmid n.$$

Hence $(X^2 + 2)(n^4 + 2) = Z_2^4$, $2 \nmid Xn$, which has only the positive integer solution $(X, n, Z_1) = (5, 1, 3)$ by Theorem 1.2(4), and thus r = 1, t = 3, s = 1. Now the second equation of (5.16) becomes $Y_1^2 - 12u_2^4 = 1$, which is easily seen to have no positive integer solutions by Lemma 3.9.

(9) The equation $(X^2 + 2)(Y^2 + 4) = Z^4$. We divide the proof into two cases.

Case 1: $2 \nmid XY$. We consider the more general equation

$$(X^2 + 2)(Y^2 + 4) = Z^2, \quad 2 \nmid XY.$$

From the above equation we have

(5.17)
$$X^2 + 2 = du_1^2, \quad du_2^2 - Y^2 = 4, \quad Z = du_1 u_2.$$

It follows from the second equation of (5.17) that the equation $dx^2 - y^2 = 1$ has a solution, which is impossible by Lemma 3.1 since both equations $dx^2 - y^2 = 2$ and $dx^2 - y^2 = 1$ would then have solutions.

CASE 2: $2 \mid XY$. It is easy to see that (1.12) has no integer solutions when $2 \nmid X$ or $2 \nmid Y$ by taking the equation modulo 16. Hence it suffices to consider the case $2 \mid X$ and $2 \mid Y$. Write $X = 2X_1$, $Y = 2Y_1$, $Z = 2Z_1$. Then (1.12) becomes

$$(5.18) (2X_1^2 + 1)(Y^2 + 1) = 2Z_1^4.$$

As before, it follows from (5.18) that

$$(5.19) rts^2(tu_1^2)^2 - 2X_1^2 = 1, 2rts^2(ru_2^2)^2 - Y_1^2 = 1$$

for some positive integers u_1 and u_2 . This contradicts Lemma 3.1 when rts > 1. If rst = 1, then the first equation of (5.19) becomes $u_1^4 - 2X_1^2 = 1$, which has no positive integer solutions by Lemma 3.10.

(10) The equation $(X^2 + 2)(Y^2 - 1) = Z^4$. We divide the proof into two cases.

Case 1: $2 \nmid X$. We retain the definitions r, s, and t as given at the beginning of the proof of Theorem 1.2(4). From (1.13) we have

$$(5.20) rts^2(tu_1^2)^2 - X^2 = 2, Y^2 - rts^2(ru_2^2)^2 = 1$$

for some positive integers u_1 and u_2 . It is easy to see that $rts^2 \neq 1$. From the second equation of (5.20), we have the following two subcases.

Subcase 1: $2 \mid u_2$. Then

$$Y + 1 = 2ar_1^2u_3^4$$
, $Y - 1 = 2br_2^2u_4^4$, $r_1r_2 = 2r$, $2u_3u_4 = u_2$.

and thus $ar_1^2u_3^4 - br_2^2u_4^4 = 1$. If a > 1, then both equations $rts^2x^2 - y^2 = 2$ and $ax^2 - by^2 = 1$ have solutions, which contradicts Lemma 3.1. Hence a = 1 and $r \mid r_2$. Continuing the above process for the equation $r_1^2u_3^4 - rts^2r_2^2u_4^4 = 1$, we finally get

$$rts^2(rm^2)^2 - n^4 = 2.$$

Subcase 2: $2 \nmid u_2$. Then

$$Y + 1 = ar_1^2 u_3^4$$
, $Y - 1 = br_2^2 u_4^4$, $r_1 r_2 = r$, $u_3 u_4 = u_2$,

and thus $ar_1^2u_3^4 - br_2^2u_4^4 = 2$. If b > 1, then both equations $rts^2x^2 - y^2 = 2$ and $ax^2 - by^2 = 2$ have solutions, which contradicts Lemma 3.1. Hence b = 1, $a = rts^2$ and $r = r_1$, $r_2 = 1$, and we also get the equation

$$rts^2(rm^2)^2 - n^4 = 2.$$

It follows that $(X^2 + 2)(n^4 + 2) = Z_1^4$. From the proof of the equation $(X^2 + 2)(Y^2 + 2) = Z^4$ we have X = 5, n = 1, hence X = 5, Y = 2, Z = 3.

Therefore the equation $(X^2+2)(Y^2-1)=Z^4$ has only the positive integer solution (X,Y,Z)=(5,2,3) with $2 \nmid X$.

Case 2: $2 \mid X$. Write $X = 2X_1$, $Z = 2Z_1$. Then (1.13) becomes

$$(5.21) (2X_1^2 + 1)(Y^2 - 1) = 8Z_1^4.$$

The remaining proof is similar to the proof of Case 1 of Theorem 1.2(8). Thus the Diophantine equation $(X^2 + 2)(Y^2 - 1) = Z^4$ with $2 \mid X$ has no positive integer solutions.

Therefore the equation $(X^2 + 2)(Y^2 - 1) = Z^4$ has only the positive integer solution (X, Y, Z) = (5, 2, 3).

(11) The equation $(X^2 + 4)(Y^2 + 1) = Z^4$. We divide the proof into two cases.

Case 1: $2 \nmid X$. An argument similar to the one employed for (1.4) shows that there exist odd integers k and l such that $3 \mid l$ and $X = U_k$ and $Y = U_l$ and

$$(5.22) T_k = tu_1^2, T_l = 2ru_2^2$$

for some positive integers u_1 and u_2 .

Let $d = \gcd(k, l)$, $k = dk_1$, $l = dl_1$. Then $2 \nmid k_1 l_1$. By a similar method to the proof of Theorem 1.2(1) and by Lemma 3.4, we have $k_1 \in \{1, 5\}$ and $l_1 = 3$. We first consider the case $k_1 = 1$. Then

$$T_d = t\Box, \quad T_{3d} = 2r\Box.$$

Since $gcd(T_{3d}/T_d, rt) \mid 3$, $rt \mid T_{3d}/T_d$ and $3 \nmid rts^2$, we have rt = 1, which is impossible. Hence

$$k_1 = 5, \quad T_{3d} = 2r\Box, \quad T_{5d} = t\Box.$$

Since $\gcd(T_{3d}/T_d, rt) \mid 3$ and $3 \nmid rt$, we have r=1. Similarly, t=5. Now from $T_d = \gcd(T_{3d}, T_{5d}) = \square$, $T_5 = 5\square$, and r=1, t=5, we derive that $5s^4T_d^4 - 5s^2T_d^2 + 1 = \square$, and so $sT_d = 1$ or 3 by Lemma 3.15. If $sT_d = 1$, then s=1, $T_d=1$, $U_d=1$, $T_{3d}=2$, $T_{5d}=5$, and thus (1.14) has a solution (X,Y,Z)=(11,2,5). If $sT_d=3$, then $s=3,T_d=1$, which is impossible since $3 \nmid Z$. Therefore (1.14) has only one positive integer solution (X,Y,Z)=(11,2,5).

Case 2: $2 \mid X$. Write $X = 2X_1$, $Z = 2Z_1$. As before we obtain the equation

$$(5.23) (X_1^2 + 1)(Y_1^2 + 1) = 4Z_1^4,$$

and from (5.23) we have

$$(5.24) 2rts^2(tu_1^2)^2 - X_1^2 = 1, 2rts^2(ru_2^2)^2 - Y^2 = 1.$$

Similarly, by Lemma 3.13, we have rt = 1, and so

$$(5.25) 2s^2u_1^4 - X_1^2 = 1, 2s^2u_2^4 - Y^2 = 1,$$

which implies that s = 1 by Lemma 3.8. Thus

$$(5.26) X_1^2 - 2u_1^4 = -1, Y^2 - 2u_2^4 = -1.$$

It follows from Lemma 3.8 that $(X_1, Y, u_1, u_2) = (1, 239, 1, 13), (239, 1, 13, 1).$

Therefore the only positive integer solutions to the Diophantine equation $(X^2 + 4)(Y^2 + 1) = Z^4$ are (X, Y, Z) = (11, 2, 5), (2, 239, 26), (478, 1, 26).

(12) The equation $(X^2 + 4)(Y^2 - 4) = Z^4$. We divide the proof into two cases.

CASE 1: $2 \nmid XY$. We define r, s, and t as at the beginning of the proof of Theorem 1.2(1). We only consider the solution (X, Y, Z) of (1.15) with $2 \nmid XY$. From (1.15) we have

$$(5.27) \quad rts^2(tu_1^2)^2 - X^2 = 4, \quad Y^2 - rts^2(ru_2^2)^2 = 4, \quad Z = rstu_1u_2, \quad 2 \nmid Z.$$

From the second equation of (5.27) there are positive integers a, b, r_1 , r_2 , u_3 , u_4 such that

$$Y + 2 = ar_1^2 u_3^4$$
, $Y - 2 = br_2^2 u_4^4$, $ab = rts^2$, $r = r_1 r_2$, $u_2 = u_3 u_4$,

hence

$$(5.28) ar_1^2 u_3^4 - br_2^2 u_4^4 = 4, 2 \nmid abr_1 r_2 u_3 u_4.$$

If a, b > 1, then both equations $rts^2x^2 - y^2 = 1$ and $ax^2 - by^2 = 1$ with $ab = rts^2, a, b > 1$ have integer solutions, contradicting Lemma 3.1.

If a > 1 and b = 1, then $r_1 = r$, $r_2 = 1$, and so

$$(5.29) rts^2(ru_3^2)^2 - u_4^4 = 4, u_4 \mid u_2.$$

If a=1 and $b=rts^2$, then repeating the above process for the equation $u_3^4 - rts^2(ru_4^2)^2 = 4$ we eventually obtain

$$(5.30) rts^2(rm^2)^2 - n^4 = 4, \quad n \mid u_2.$$

Combining (5.30) or (5.29) and the first equation of (5.27) we get

$$(5.31) (n4 + 4)(X2 + 4) = Z14, 2 \nmid Xn.$$

By Theorem 1.2(1), equation (5.31) has no positive integer solutions. Therefore, (1.15) has no positive integer solutions with $2 \nmid XY$.

CASE 2: $2 \mid XY$. It is easy to see that the equation $(X^2+4)(Y^2-4) = Z^4$ has no integer solutions when $2 \mid X$ and $2 \nmid Y$ by taking the equation modulo 16.

Assume $2 \mid X$ and $2 \mid Y$. Write $X = 2X_1$, $Y = 2Y_1$, $Z = 2Z_1$. Then, from (1.15), we obtain

$$(5.32) (X_1^2 + 1)(Y_1^2 - 1) = Z_1^4.$$

By Theorem LW1, the above equation has only the positive integer solutions $(X_1, Y_1, Z_1) = (1, 3, 2), (239, 3, 26).$

Next we consider the case $2 \nmid X$ and $2 \mid Y$. Write $Y = 2Y_1$, $Z = 2Z_1$. Then

$$(5.33) (X^2 + 4)(Y_1^2 - 1) = 4Z_1^4.$$

From (5.33) we have

(5.34)
$$rts^{2}(tu_{1}^{2})^{2} - X^{2} = 4, \quad Y_{1}^{2} - 4rts^{2}(ru_{2}^{2})^{2} = 1,$$
$$Z_{1} = rstu_{1}u_{2}, \quad 2 \nmid X.$$

Similarly, from the second equation of (5.34) and Lemma 3.1, we eventually obtain

$$(5.35) rts^2(rm^2)^2 - 4n^4 = 1 or rts^2(rm^2)^2 - n^4 = 1.$$

Combining (5.35) and the first equation of (5.34) we get

$$(5.36) (4n4 + 1)(X2 + 4) = Z24 or (n4 + 1)(X2 + 4) = Z24, 2 \nmid X.$$

By the proof of Theorem 1.2(11), only the first equation in (5.36) has the positive integer solution $(X, n, Z_2) = (11, 1, 5)$.

Therefore, (1.15) has only the positive integer solutions (X, Y, Z) = (2, 6, 4), (478, 6, 52).

(13) The equation $(X^2+4)(Y^2-1)=Z^4$. We first consider the solution (X,Y,Z) of (1.16) with $2 \nmid X$. We retain the definitions for r,s, and t as given at the beginning of the proof of Theorem 1.2(1). Then from (1.16) we have

$$(5.37) rts^2(tu_1^2)^2 - X^2 = 4, Y^2 - rts^2(ru_2^2)^2 = 1, Z = rstu_1u_2.$$

If $2 \nmid u_2$, then from the second equation of (5.37) there are positive integers a, b, r_1, r_2, u_3, u_4 such that

$$Y + 1 = ar_1^2 u_3^4$$
, $Y - 1 = br_2^2 u_4^4$, $ab = rts^2$, $r = r_1 r_2$, $u_2 = u_3 u_4$,

hence

$$(5.38) ar_1^2 u_3^4 - br_2^2 u_4^4 = 2, 2 \nmid abr_1 r_2 u_3 u_4.$$

It follows that both equations $rts^2x^2 - y^2 = 1$ and $ax^2 - by^2 = 2$, $ab = rts^2$, $2 \nmid xy$ have integer solutions, contradicting Lemma 3.1.

If $2 \mid u_2$, then from the second equation of (5.38) there are positive integers a, b, r_1, r_2, u_3, u_4 such that

$$Y + 1 = 2ar_1^2u_3^4$$
, $Y - 1 = 2br_2^2u_4^4$, $ab = rts^2$, $2r = r_1r_2$, $u_2 = u_3u_4$,

hence

$$(5.39) ar_1^2 u_3^4 - br_2^2 u_4^4 = 1.$$

If a, b > 1, then both equations $rts^2x^2 - y^2 = 1$ and $ax^2 - by^2 = 1$, $ab = rts^2$, a, b > 1 have integer solutions, contradicting Lemma 3.1. If a > 1 and b = 1, then $r_1 = r, r_2 = 1$, and so

$$(5.40) rts^2(ru_3^2)^2 - 4u_4^4 = 1.$$

If a=1 and $b=rts^2$, then repeating the above process for the equation $u_3^4-rts^2(ru_4^2)^2=1$ we eventually obtain

$$(5.41) rts^2(rm^2)^2 - 4n^4 = 1.$$

Combining (5.41) or (5.40) and the first equation of (5.37) we get

$$(5.42) (4n4 + 1)(X2 + 4) = Z14, 2 \nmid X.$$

By the proof of Theorem 1.2(11), equation (5.42) has only the positive integer solution $(X, n, Z_1) = (11, 1, 5)$. Therefore, (1.16) has no positive integer solutions with $2 \nmid X$.

Next we consider the case $2 \parallel X$. Write $X=2X_1, Z=2Z_1$ with X_1 odd. From (1.16) we obtain

(5.43)
$$X_1^2 + 1 = 2rts^2(tu_1^2)^2, \quad Y^2 - 1 = 2rts^2(ru_2^2)^2.$$

Similarly, from the second equation of (5.43) and Lemma 2.1, we obtain

$$(5.44) 2rts^2(2ru_3^2)^2 = u_4^4 + 1, u_3, u_4 \in \mathbb{N}.$$

Combining the first equation of (5.43) and equation (5.44) leads to

$$(u_4^4 + 1)(X_1^2 + 1) = Z_2^4,$$

which is impossible by Theorem LW1.

Now we consider the case $4 \mid X$. Write $X = 2X_1$, $Z = 2Z_1$ with X_1 even. We obtain

$$(5.45) X_1^2 + 1 = rts^2(tu_1^2)^2, Y^2 - 1 = rts^2(2ru_2^2)^2.$$

Similarly, from the second equation of (5.45) and Lemma 3.1, we obtain

$$(5.46) rts^2(ru_3^2)^2 = (2u_4^2)^2 + 1, u_3, u_4 \in \mathbb{N}.$$

Combining the first equation of (5.45) and equation (5.46), we derive

$$((2u_4^2)^2 + 1)(X_1^2 + 1) = Z_2^4,$$

which is impossible by Theorem LW1. Thus the Diophantine equation $(X^2 + 4)(Y^2 - 1) = Z^4$ has no positive integer solutions.

(14) The equation $(X^2 - 4)(Y^2 + 1) = Z^4$. We consider the solution (X, Y, Z) of (1.17) with $2 \nmid X$. We retain the definitions for r, s, and t as given at the beginning of the proof of Theorem 1.2(2). Then

(5.47)
$$X^2 - 4 = rts^2(tu_1^2)^2$$
, $Y^2 + 1 = rts^2(ru_2^2)^2$, $Z = rstu_1u_2$.

From the first equation of (5.47) there are positive integers a, b, t_1, t_2, u_3, u_4 such that

$$X + 2 = at_1^2 u_3^4$$
, $X - 2 = bt_2^2 u_4^4$, $ab = rts^2$, $t = t_1 t_2$, $u_2 = u_3 u_4$,

hence

$$(5.48) at_1^2 u_3^4 - bt_2^2 u_4^4 = 4, 2 \nmid abr_1 r_2 u_3 u_4.$$

If a, b > 1, then both equations $rts^2x^2 - y^2 = 1$ and $ax^2 - by^2 = 1$, $ab = rts^2$, have integer solutions, contradicting Lemma 3.1.

If a > 1 and b = 1, then $r_1 = r$, $r_2 = 1$, and so

$$(5.49) rts^2(ru_3^2)^2 - u_4^4 = 4, u_4 \mid u_2.$$

If a = 1 and $b = rts^2$, then repeating the above process for the equation $u_3^4 - rts^2(ru_4^2)^2 = 4$ we finally obtain

$$(5.50) rts^2(rm^2)^2 - n^4 = 4, \quad n \mid u_2.$$

Combining (5.50) or (5.49) and the second equation of (5.47) we get

$$(5.51) (n4 + 4)(Y2 + 1) = Z14, 2 \nmid n.$$

By Theorem 1.2(11), equation (5.51) has no positive integer solutions. Therefore, (1.17) has no positive integer solutions with $2 \nmid X$.

We now consider the case $2 \parallel X$. Write $X = 2X_1$, $Z = 2Z_1$ with X_1 odd. We obtain

$$(5.52) X_1^2 - 1 = 2rts^2(tu_1^2)^2, Y^2 + 1 = 2rts^2(ru_2^2)^2.$$

From the first equality of (5.52) and Lemma 3.1 we get

(5.53)
$$X_1 + 1 = 4rts^2(2ru_3^2)^2, \quad X_1 - 1 = 2u_4^4.$$

Thus

$$(5.54) 2rts^2(2ru_3^2)^2 = u_4^4 + 1,$$

which is impossible by taking the equation modulo 4.

Now we assume that $4 \mid X$. Write $X = 2X_1$, $Z = 2Z_1$ with X_1 even. We obtain

$$(5.55) X_1^2 - 1 = rts^2(tu_1^2)^2, Y^2 + 1 = rts^2(2ru_2^2)^2;$$

however, the second equation of (5.55) is impossible by taking it modulo 4. Thus the Diophantine equation $(X^2-4)(Y^2+1)=Z^4$ has no positive integer solutions.

(15) The equation $(X^2 - 4)(Y^2 - 1) = Z^4$. We first consider the case $2 \nmid X$. An argument similar to the one employed in the solution of (1.18) shows that there exist positive integers k and l such that $3 \mid l$ and $X = T_k$ and $Y = T_l$ and

$$(5.56) U_k = tu_1^2, U_l = 2ru_2^2$$

for some positive integers u_1 and u_2 .

We may assume that $d = \gcd(k, l)$, $k = dk_1$, $l = 2^u l_1 d$, $2 \nmid k_1 l_1$, $u \geq 0$. Then $U_d = \gcd(U_k, U_l) = c \square$ with $c \mid rt$ since $\gcd(r, t) = 1$. Since

$$U_l = \frac{U_l}{U_{l_1d}} \cdot U_{l_1d}, \quad \gcd(U_l/U_{l_1d}, rU_{l_1d}) = 1,$$

we have

$$U_{l_1d}=2r\square$$
.

Since every prime divisor of $gcd(U_{l_1d}/U_d, rtU_d)$ divides l_1 , we obtain

$$U_{l_1d}/U_d = m\Box, \quad m \mid l_1.$$

Applying Lemma 3.4 to

$$Q_{l_1} = \frac{U_{l_1 d}}{U_d} = \frac{(\alpha^d)^{l_1} + (-\overline{\alpha}^d)^{l_1}}{(\alpha^d) + (-\overline{\alpha}^d)}$$

we have $l_1 = 3$. Similarly, $k_1 \in \{1, 5\}$. We first consider the case $k_1 = 1$. Then

$$U_d = t \square, \quad U_{3d} = 2r \square.$$

Since every prime divisor of $\gcd(T_{3d}/T_d, rt)$ divides 3, and $rt \mid T_{3d}/T_d$ (as $\gcd(r,t)=1$), we have rt=3, which is impossible since $T_d^2-3s^2U_d^2=4$ and $2 \nmid T_d$. Hence

$$k_1 = 5$$
, $T_{3d} = 2r\square$, $T_{5d} = t\square$.

Since every prime divisor of $gcd(T_{3d}/T_d, rt)$ divides 3, we have $r \mid 3$; similarly, $t \mid 5$.

Since $T_d^2 - rts^2U_d^2 = 4$, $2 \nmid T_d$, we have $rt \neq 1, 3, 15$, so r = 1 and t = 5. Now from $U_d = \gcd(U_{3d}, U_{5d}) = \square$, $U_{5d} = 5\square$, r = 1, t = 5, we derive that $5s^4U_d^4 + 5s^2U_d^2 + 1 = \square$, and so $sT_d = 0$ by Lemma 3.15, which is impossible. Therefore (1.18) has no positive integer solutions with $2 \nmid X$.

Now we consider the case $2 \mid X$. Write $X = 2X_1$, $Z = 2Z_1$. Then (1.18) becomes

$$(5.57) (X_1^2 - 1)(Y^2 - 1) = 4Z_1^2.$$

We first consider the case $2 \mid X_1 Y$. We may assume that $2 \mid Y$ and $2 \nmid X_1$. From (5.57), there are positive integers u_1, u_2 such that

$$(5.58) Y^2 - 1 = rts^2(ru_2)^2, X_1^2 - 1 = 4rts^2(tu_1^2)^2, 2 \nmid rtsu_2.$$

From the first equation of (5.58), there exist odd integers m, n, r_1, r_2, u_3, u_4 such that

$$(5.59) m(r_1u_3^2)^2 - n(r_2u_4^2)^2 = 2, mn = rts^2, r_1r_2 = r, u_3u_4 = u_2.$$

From the second equation of (5.58) and Lemma 3.1, there exist positive integers t_1, t_2, u_5, u_6 such that

(5.60)
$$X + 1 = 2t_1^2 u_5^4$$
, $X - 1 = 2t_2^2 r t s^2 u_6^4$, $2 \mid u_6, t_1 t_2 = t$.

It follows that $t_1 = 1$ and

$$(5.61) u_5^4 - rts^2t^2u_6^4 = 1, 2 | u_6.$$

From (5.59), (5.61) and Lemma 3.1, we derive

$$u_5^2 + 1 = 2u_7^2$$

which implies that $u_5 = 239$ and

$$239^2 - 1 = 3 \cdot 5 \cdot 7 \cdot 17 \cdot 2^5 = 8rts^2 u_8^4,$$

which is impossible.

Finally we consider the case $2 \nmid X_1Y$. From (5.57), there are positive integers u_1, u_2 such that

$$(5.62) Y^2 - 1 = 2rts^2(ru_2)^2, X_1^2 - 1 = 2rts^2(tu_1^2)^2, 2 \nmid rtsu_2.$$

From the first equation of (5.62), there exist positive integers m > 1, n, r_1 , r_2 , u_3 , u_4 such that

(5.63)
$$m(r_1u_3^2)^2 - n(r_2u_4^2)^2 = 1, \quad mn = 2rts^2 \text{ or } mn = rts^2/2,$$
$$r_1r_2 = r, \quad u_3u_4 = u_2.$$

From the second equation of (5.62), (5.63) and Lemma 3.1, there exist positive integers t_1, t_2, u_5, u_6 such that

$$(5.64) mt_1^2 u_5^4 - nt_2^2 u_6^4 = 1, t_1 t_2 = t.$$

Since m > 1, it follows from Lemma 3.13, (5.63) and (5.64) that $r_1t_1 = 1$, and so $rt \mid n$ and $m = 2s_1^2$. Therefore we have the equation

(5.65)
$$2s_1^2u_3^4 - rts_2^2(ru_4^2)^2 = 1, \quad 2s_1^2u_5^2 - rts_2^2(tu_6^2)^2 = 1,$$
$$s_1s_2 = s \text{ or } s_1s_2 = s/2.$$

We denote by (T_1, U_1) the minimal positive integer solution of the Pell equation

$$(5.66) 2s_1^2 T^2 - rts_2^2 U^2 = 1$$

and let $\varepsilon = T_1 \sqrt{2s_1^2 + U_1 \sqrt{rts_2^2}}$. For a positive integer $k \ge 1$, let (T_k, U_k) be positive integers given by

$$T_k\sqrt{2s_1^2} + U_k\sqrt{rts_2^2} = \varepsilon^k.$$

Assume rt > 1. By Lemma 3.12, we assume that $T_1\sqrt{2s_1^2} + U_1\sqrt{rts_2^2} = u_3^2\sqrt{2s_1^2} + ru_4^2\sqrt{rts_2^2}$ and $T_k\sqrt{2s_1^2} + U_k\sqrt{rts_2^2} = u_5^2\sqrt{2s_1^2} + tu_6^2\sqrt{rts_2^2}$. Then $U_k = tu_6^2 = U_1 \cdot tu_6^2/(ru_4^2)$. It follows that $rt \mid k$, say k = rtl for some positive

integer l. Observe that $k = p \equiv 3 \pmod{4}$ and rt > 1; by Lemma 3.12 again, we obtain l = 1 and the equation

$$2s_1^2 - ps_2^2 U^4 = 1$$
, $p \equiv 3 \pmod{4}$,

which is impossible by taking it modulo 8.

Now we assume that rt = 1. Then, by Lemma 3.9, the equation $X^2 - 2s^2U^4 = 1$ has at most one positive integer solution (X, U), so $X_1 = Y$, $u_1 = u_2$ by (5.58). Obviously, (5.58) has infinite many trivial solutions $(X_1, Y, S, u_1, u_2) = (Y, Y, S, 1, 1)$, where $Y^2 - 2S^2 = 1$.

Therefore the Diophantine equation $(X^2 - 4)(Y^2 - 1) = Z^4$ has only the trivial solutions (X, Y, Z) = (2Y, Y, 2S), where $Y^2 - 2S^2 = 1$.

(16) The equation $(X^2 - 2)(Y^2 + 4) = Z^4$. We divide the proof into two cases.

Case 1: $2 \nmid XY$. We consider the more general equation

$$(X^2 - 2)(Y^2 + 4) = Z^2, \quad 2 \nmid XY.$$

From the above equation we have

(5.67)
$$X^2 + 2 = du_1^2, \quad du_2^2 - Y^2 = 4, \quad Z = du_1 u_2.$$

It follows from the second equation of (5.67) that the equation $dx^2 - y^2 = 1$ has a solution, which is impossible by Lemma 3.1 since both equations $x^2 - dy^2 = 2$ and $dx^2 - y^2 = 1$ would then have solutions.

CASE 2: $2 \mid XY$. It is easy to see that the equation $(X^2 - 2)(Y^2 + 4) = Z^4$ has no integer solutions when $2 \mid X$ and $2 \nmid Y$ by taking the equation modulo 4. We consider two subcases.

Subcase 1: $2 \mid X$ and $2 \mid Y$. Write $X = 2X_1, Y = 2Y_1, Z = 2Z_1$. We obtain

$$(5.68) (2X_1^2 - 1)(Y_1^2 + 1) = 2Z_1^4.$$

We retain the definitions for r, s and t as given at the beginning of the proof of Theorem 1.1, but define them to be square-free numbers built up from prime divisors of $2X_1^2 - 1$ instead of $AX_1^2 + 1$. We obtain

$$(5.69) 2X_1^2 - rts^2(tu_1^2)^2 = 1,$$

$$(5.70) 2rts^2(ru_2^2)^2 - Y_1^2 = 1,$$

for some positive integers u_1 and u_2 with $Z_1 = rtsu_1u_2$. It follows from Lemma 3.1 that $rts^2 = 1$. Therefore

$$(5.71) 2X_1^2 - u_1^4 = 1,$$

$$(5.72) Y_1^2 - 2u_2^4 = -1.$$

It follows from (5.71), (5.72) and Lemma 3.7, and a theorem of Ljunggren, that $X_1 = 1$, $u_1 = 1$, $(Y_1, u_2) = (1, 1)$, (239, 13).

Subcase 2: $2 \nmid X$ and $2 \mid Y$. Write $Y = 2Y_1$, $Z = 2Z_1$. We obtain

$$(5.73) (X^2 - 2)(Y_1^2 + 1) = 4Z_1^4.$$

We retain the definitions for r, s and t as given at the beginning of the proof of Theorem 1.2(3). We have

$$(5.74) X^2 - rts^2(tu_1^2)^2 = 2,$$

$$(5.75) rts^2(2ru_2^2)^2 - Y_1^2 = 1,$$

for some positive integers u_1 and u_2 . It follows from Lemma 3.1 that $rts^2=1$. Therefore

$$(5.76) X^2 - u_1^4 = 2,$$

which is impossible. Thus the only positive integer solutions of the Diophantine equation $(X^2-2)(Y^2+4)=Z^4$ are (X,Y,Z)=(2,2,2) and (2,478,26).

(17) The equation $(X^2-4)(Y^2-1)=4Z^4$. The proof is almost the same as for $(X^2-4)(Y^2-1)=Z^4$, $2 \nmid X$; we leave the details to the reader.

This completes the proof of Theorem 1.2.

Acknowledgments. Research of P. Z. Yuan was supported by NSF of China (No. 10971072) and by the Guangdong Provincial Natural Science Foundation (No. 8151027501000114).

References

- [1] S. Akhtari, The Diophantine equation $aX^4 bY^2 = 1$, J. Reine Angew. Math. 630 (2009), 33–57.
- [2] S. Akhtari, A. Togbé and P. G. Walsh, On the equation $aX^4 bY^2 = 2$, Acta Arith. 131 (2008), 145–169.
- [3] -, -, -, Addendum on the equation $aX^4 bY^2 = 2$, ibid. 137 (2009), 199–202.
- [4] M. A. Bennett, A. Togbe and P. G. Walsh, A generalization of a theorem of Bumby, Int. J. Number Theory 2 (2006), 195–206.
- [5] M. A. Bennett and P. G. Walsh, The Diophantine equation $b^2X^4 dY^2 = 1$, Proc. Amer. Math. Soc. 127 (1999), 3481–3491.
- [6] J. H. Chen and P. M. Voutier, A complete solution of the Diophantine equation $x^2 + 1 = Dy^4$ and a related family of quartic Thue equations, J. Number Theory 62 (1997), 71–99.
- [7] J. H. E. Cohn, On square Fibonacci numbers, J. London Math. Soc. 39 (1964), 537–540.
- [8] —, Squares in some recurrent sequences, Pacific J. Math. 41 (1972), 631–646.
- [9] —, The Diophantine equation $x^4 Dy^2 = 1$, II, Acta Arith. 78 (1997), 401–403.
- [10] —, The Diophantine equation $x^4 + 1 = Dy^2$, Math. Comp. 66 (1997), 1347–1351.
- [11] D. H. Lehmer, An extended theory of Lucas functions, Ann. of Math. 31 (1930), 419–438.
- [12] W. Ljunggren, Einige Eigenschaften der Einheiten reeller quadratischer und reinbiquadratischer Zahl-Körper usw, Oslo Vid.-Akad. Skrifter (1936), no. 12.

- [13] W. Ljunggren, Über die Gleichung $x^4 Dy^2 = 1$, Arch. Math. Naturvid. 45 (1942), 61–70.
- [14] —, Zur Theorie der Gleichung $x^2 + 1 = Dy^4$, Avh. Norsk. Vid. Akad. Oslo (1942), 1–27.
- [15] —, Ein Satz über die diophantische Gleichung $Ax^2 By^4 = C$ (C = 1, 2, 4), in: Tolfte Skandinaviska Matematikerkongressen (Lund, 1953), Lunds Universitets Matematiska Inst., Lund, 1954, 188–194.
- [16] —, On the Diophantine equation $Ax^4 By^2 = C$ (C = 1, 4), Math. Scand. 21 (1967), 149–158.
- [17] F. Luca and P. G. Walsh, Squares in Lehmer sequences and some Diophantine applications, Acta Arith. 100 (2001), 47–62.
- [18] J. G. Luo and P. Z. Yuan, Square-classes in Lehmer sequences having odd parameters and their applications, ibid. 127 (2007), 49–62.
- [19] A. Rotkiewicz, Applications of Jacobi's symbol to Lehmer's numbers, ibid. 42 (1983), 163–187.
- [20] Q. Sun and P. Z. Yuan, A note on the Diophantine equation $x^4 Dy^2 = 1$, J. Sichuan Univ. 34 (1997), 265–267 (in Chinese).
- [21] A. Togbe, P. M. Voutier and P. G. Walsh, Solving a family of Thue equations with an application to the equation $x^2 Dy^4 = 1$, Acta Arith. 120 (2005), 39–58.
- [22] P. M. Voutier, A further note on "On the equation $aX^4 bY^2 = 2$ ", ibid. 137 (2009), 203–206.
- [23] P. G. Walsh, Diophantine equations of the form $aX^4 bY^2 = \pm 1$, in: Algebraic Number Theory and Diophantine Analysis (Graz, 1998), de Gruyter, Berlin, 2000, 531–554.
- [24] —, An improved method for solving the Thue equations $X^4 2rX^2Y^2 sY^4 = 1$, in: Number Theory for Millennium I, B. Berndt et al. (eds.), A K Peters, 2002.
- [25] P. Z. Yuan, A note on the divisibility of the generalized Lucas sequences, Fibonacci Quart. 40 (2002), 153–156.
- [26] —, Rational and algebraic approximations of algebraic numbers and their applications, Sci. China Ser. A 40 (1997), 1045–1051 (in Chinese).
- [27] —, A new proposition of Pell's equation and its applications, J. Changsha Railway Univ. 12 (1994), 79–84 (in Chinese).
- [28] P. Z. Yuan and Y. Li, Squares in Lehmer sequences and the Diophantine equation $Ax^4 By^2 = 2$, Acta Arith. 139 (2009), 275–302.
- [29] C. Zhou, Fibonacci-Lucas sequences and their application, Hunan Kexue Jishu Chubanshe, Changsha, 1993 (in Chinese).

Pingzhi Yuan School of Mathematics South China Normal University Guangzhou 510631, P.R. China E-mail: mcsypz@mail.sysu.edu.cn Jiagui Luo (Corresponding author)
College of Mathematics and Information Science
Zhaoqing University
Zhaoqing 526061, P.R. China
E-mail: luojg62@yahoo.com.cn

Received on 24.7.2009 and in revised form on 6.1.2010 (6096)