
ACTA ARITHMETICA

111.2 (2004)
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1. Introduction. Let S = {x1, . . . , xn} be a set of n distinct positive
integers. The matrix having the greatest common divisor (xi, xj) of xi and
xj as its i, j-entry is called the greatest common divisor (GCD) matrix , de-
noted by ((xi, xj)). The matrix having the least common multiple [xi, xj ] of
xi and xj as its i, j-entry is called the least common multiple (LCM ) matrix ,
denoted by ([xi, xj ]). The set S is said to be factor-closed if it contains every
divisor of x for any x ∈ S. H. J. S. Smith [14] showed that the determinant of
the GCD matrix ((xi, xj)) on a factor-closed set S is the product

∏n
i=1 ϕ(xi),

where ϕ is Euler’s totient function. In [14], Smith also considered the deter-
minant of the LCM matrix [S]n on a factor-closed set S. It was shown to be
the product

∏n
i=1 ϕ(xi)π(xi), where π is the multiplicative function which is

defined for the prime power pr by π(pr) = −p. Smith also gave formulas for
more general determinants like det((xi, xj)ε) and det([xi, xj ]ε), where ε is
any exponent. Since then many results (see, for example, [1–13]) concerning
GCD matrices and LCM matrices have been published.

The set S is said to be gcd-closed if (xi, xj) ∈ S for all 1 ≤ i, j ≤ n. It is
clear that a factor-closed set is gcd-closed but not conversely. In [2], Beslin
and Ligh extended Smith’s result by showing that the determinant of the
GCD matrix ((xi, xj)) on a gcd-closed set S = {x1, . . . , xn} is the product∏n
k=1 αk, where

αk =
∑

d|xk
d-xt, xt<xk

ϕ(d).

In [4], Bourque and Ligh generalized Smith’s result on LCM matrices by
proving that the determinant of the LCM matrix ([xi, xj ]) on a gcd-closed
set S = {x1, . . . , xn} is the product

∏n
k=1 x

2
kβk, where
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βk =
∑

d|xk
d-xt, xt<xk

g(d),

with the arithmetical function g defined by g(m) = m−1∑
d|m dµ(d), where

µ is the Möbius function.
In [6], Bourque and Ligh showed that if S = {x1, . . . , xn} is factor-closed

then the GCD matrix ((xi, xj)) on S divides the LCM matrix ([xi, xj ])
on S in the ring Mn(Z) of n × n matrices over the integers (i.e., there is
an n × n matrix A with integer entries such that ([xi, xj ]) = A((xi, xj)) =
((xi, xj))(A)T). Hong [13] proved that such a factorization theorem on LCM
and GCD matrices is no longer true in general. In fact, he showed that if
n ≤ 3, then for any gcd-closed set S = {x1, . . . , xn}, the GCD matrix
((xi, xj)) on S divides the LCM matrix ([xi, xj ]) on S in the ring Mn(Z).
For n ≥ 4, there exists a gcd-closed set S = {x1, . . . , xn} such that the GCD
matrix ((xi, xj)) on S does not divide the LCM matrix ([xi, xj ]) on S in the
ring Mn(Z).

From Beslin and Ligh’s result [3], one knows that the GCD matrix
((xi, xj)) on any set S = {x1, . . . , xn} of n distinct positive integers is al-
ways nonsingular. However, this is not true for LCM matrices in general
[1, Remark 5]. From Smith’s result [14], one also knows that the LCM ma-
trix on any factor-closed set is nonsingular. Further, it has been conjectured
by Bourque and Ligh [4] that the LCM matrix ([xi, xj ]) on any gcd-closed set
S = {x1, . . . , xn} is nonsingular. In [9–11], Hong systematically investigated
the Bourque–Ligh conjecture. Hong [11] proved that the Bourque–Ligh con-
jecture is true if n ≤ 7, but not true if n ≥ 8. Note also that Hong [10]
proved that this conjecture is true for a certain class of gcd-closed sets.

Although it follows from Bourque and Ligh’s result [5] that the power
GCD matrix ((xi, xj)ε) on any set S = {x1, . . . , xn} of n distinct positive
integers is nonsingular, it is not clear that the power LCM matrix ([xi, xj ]ε)
on any set S = {x1, . . . , xn} of n distinct positive integers is also nonsingular,
where ε ≥ 2 is an integer. For the factor-closed case, one knows by [7] that
the answer to this question is affirmative. For the gcd-closed case, Hong [12]
gave a conjectural answer to this question as follows.

Conjecture ([12]). Let ε be a given positive integer. Then there must
be a positive integer k(ε), depending only on ε, such that if n ≤ k(ε), then
the power LCM matrix ([xi, xj ]ε) on any gcd-closed set S = {x1, . . . , xn}
is nonsingular. But for n ≥ k(ε) + 1, there exists a gcd-closed set S =
{x1, . . . , xn} such that the power LCM matrix ([xi, xj ]ε) on S is singular.

The features of GCD matrices are well known, which is due to the nice
structure theorem [3, Theorem 1]. However, the features of LCM matri-
ces are less known which may be due to the fact that the convolution of
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arithmetical functions is not always available. So studying LCM matrices is
important. In the present paper, our main interest is still in the nonsingu-
larity of power LCM matrices. We will provide an interesting result related
to the above conjecture. For a positive integer x, let ν(x) denote the number
of distinct prime factors of x. We show that if ε is a positive integer and
S = {x1, . . . , xn} is a gcd-closed set satisfying maxx∈S{ν(x)} ≤ 2, then the
power LCM matrix ([xi, xj ]ε) on S is nonsingular.

The set S is said to be lcm-closed if [xi, xj ] ∈ S for all 1 ≤ i, j ≤ n.
For example, S = {2, 3, 6, 8, 24} is lcm-closed. One can easily check that
x |max{S} for any x ∈ S if S is lcm-closed. In the fourth section of this
paper, we also show that if ε is a positive integer and S = {x1, . . . , xn} is an
lcm-closed set satisfying maxx∈S{ν(x)} ≤ 2, then the power LCM matrix
([xi, xj ]ε) on S is nonsingular.

In the final section of this paper, we will raise several conjectures to
promote further investigations on GCD and LCM matrices.

2. Reductions of the formula for det([xi, xj ]ε). For any positive
integer ε, let the arithmetical function ζε be defined for any positive integer
m by ζε(m) = mε. First one has the following result.

Lemma 2.1. The determinant of the matrix ([xi, xj ]ε) defined on a gcd-
closed set S = {x1, . . . , xn} is equal to the product

∏n
k=1 x

2ε
k αε,k, where

(1) αε,k =
∑

d|xk
d-xt, xt<xk

(
1
ζε
∗ µ
)

(d).

Proof. This follows immediately from [12, Theorem 5].

In the rest of this paper, without any loss of generality, we assume that
S = {x1, . . . , xn} satisfies 1 ≤ x1 < . . . < xn. Denote by |A| the cardinal-
ity of any finite set A. In [11] we gave a reduction of the formula for the
determinant of the LCM matrix ([xi, xj ]) by introducing the concept of the
greatest-type divisor. In the following we will give a similar reduction for
αε,k using ideas similar to those in [11]. One needs a generalization of the
principle of cross-classification in [9] to give a preliminary reduction of the
formula for αε,k. For an elegant proof, see [13].

Lemma 2.2 ([9, 13]). Let R be any given finite set and f any complex-
valued function defined on R. For a subset T of R, set T = R \ T . If
R1, . . . , Rm are m given distinct subsets of R, then

∑

x∈⋂mi=1 Ri

f(x) =
∑

x∈R
f(x) +

m∑

t=1

(−1)t
∑

1≤i1<...<it≤m

∑

x∈⋂tj=1 Rij

f(x).
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Lemma 2.3. Let n ≥ 1 be an integer. Then
∑

d|n

(
1
ζε
∗ µ
)

(d) = n−ε.

Proof. This follows immediately from [12, Lemma 7].

Lemma 2.4. Let n be an integer. Let S = {x1, . . . , xn} be a gcd-closed
set and x1 < . . . < xn. If αε,k is defined as in (1), then

(2) αε,k = x−εk +
k−1∑

t=1

(−1)t
∑

1≤i1<...<it≤k−1

(xk, xi1 , . . . , xit)
−ε.

Proof. In Lemma 2.2, let m = k − 1 and R = {d ∈ Z+ : d |xk, xk ∈ S}.
For 1 ≤ i ≤ k − 1, let Ri = {d ∈ R : d |xi, xi ∈ S}. Then Ri = {d ∈ Z+ :
d | (xk, xi)}. By Lemma 2.2,

αε,k =
∑

d|xk

(
1
ζε
∗ µ
)

(d)(3)

+
k−1∑

t=1

(−1)t
∑

1≤i1<...<it≤k−1

∑

d|(xk,xi1 ,...,xit )

(
1
ζε
∗ µ
)

(d).

By Lemma 2.3,
∑
d|xk

(
1
ζε
∗ µ
)
(d) = x−εk and for 1 ≤ i1 < . . . < it ≤

k − 1 (1 ≤ t ≤ k − 1),

(4)
∑

d|(xk,xi1 ,...,xit )

(
1
ζε
∗ µ
)

(d) = (xk, xi1 , . . . , xit)
−ε.

It then follows from (3) and (4) that (2) holds.

Consequently, we obtain a further reduction of the formula for αε,k.

Lemma 2.5. Let S = {x1, . . . , xn} be a gcd-closed set. For 1 ≤ k ≤ n,
let Ik = {i : 1 ≤ i ≤ k − 1 and xi -xk} and Jk = {1, . . . , k − 1} \ Ik. Then

(5) αε,k = x−εk +
|Jk|∑

r=1

(−1)r
∑

i1<...<ir
ij∈Jk

(xk, xi1 , . . . , xir )
−ε.

Proof. If |Ik| = 0, then the assertion follows from Lemma 2.4. In what
follows let |Ik| ≥ 1. Note that for i ∈ Jk, one has xi |xk. Since S is gcd-closed,
x1 |xk. Thus, |Jk| ≥ 1. Note also that |Ik|+ |Jk| = k − 1. By Lemma 2.4,

(6) αε,k = x−εk +∆′ +∆,

where
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∆′ =
|Jk|∑

r=1

(−1)r
∑

i1<...<ir
ij∈Jk

(xk, xi1 , . . . , xir )
−ε

and

(7) ∆ =
|Jk|∑

r=1

∑

i1<...<ir
ij∈Jk

|Ik|∑

s=1

(−1)r+s
∑

t1<...<ts
tu∈Ik

(xk, xi1 , . . . , xir , xt1 , . . . , xts)
−ε.

For any given t1 < . . . < ts, tu ∈ Ik (1 ≤ u ≤ s). Since S is gcd-closed
it follows that (xk, xt1 , . . . , xts) ∈ S. Let xl = (xk, xt1 , . . . , xts). Then xl |xk
and xl |xtu for 1 ≤ u ≤ s. So, l ∈ Jk. Then, by (7),

(8) ∆ =
|Ik|∑

s=1

∑

t1<...<ts
tu∈Ik

|Jk|∑

r=1

(−1)r+s
∑

i1<...<ir
ij∈Jk

(xk, xi1 , . . . , xir , xt1 , . . . , xts)
−ε

=
|Ik|∑

s=1

∑

t1<...<ts
tu∈Ik

|Jk|−1∑

r=0

∑

i1<...<ir
ij∈Jk, ij 6=l

((−1)r+s(xk, xi1 , . . . , xir , xt1 , . . . , xts)
−ε

+ (−1)r+s+1(xk, xi1 , . . . , xir , xl, xt1 , . . . , xts)
−ε)

=
|Ik|∑

s=1

∑

t1<...<ts
tu∈Ik

|Jk|−1∑

r=0

∑

i1<...<ir
ij∈Jk, ij 6=l

((−1)r+s(xi1 , . . . , xir , xl)
−ε

+ (−1)r+s+1(xi1 , . . . , xir , xl)
−ε)

= 0.

It follows from (6) and (8) that (5) holds.

Definition ([11]). Let T be a set of distinct positive integers. For any
a, b ∈ T and a < b, we say that a is a greatest-type divisor of b in T if a | b
and the conditions a | c, c | b, c < b, and c ∈ T imply that c = a.

Lemma 2.6. Let S = {x1, . . . , xn} be a gcd-closed set. For 1 ≤ k ≤ n,
let Rk = {i : 1 ≤ i ≤ k− 1, xi is the greatest-type divisor of xk in S}. Then

αε,k = x−εk +
|Rk|∑

r=1

(−1)r
∑

i1<...<ir
ij∈Rk

(xk, xi1 , . . . , xir)
−ε.

Proof. For k ≤ 2, the assertion is clearly true. In what follows let k ≥ 3.
Let Jk = {i : 1 ≤ i ≤ k − 1 and xi |xk}. Then |Jk| ≥ 1. It is clear that
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Rk ⊆ Jk. If |Jk| = 1, then Jk = {1}. Note that |Rk| ≥ 1. So one has
Rk = {1} = Jk. Thus by Lemma 2.5, the result is true. In the following
let |Jk| ≥ 2. Let Lk = Jk \ Rk. We show that Lk 6= ∅. Assuming otherwise
implies that Rk = Jk. But 1 ∈ Jk. Then 1 ∈ Rk. From |Jk| ≥ 2, one deduces
that there is an i ∈ Jk, i 6= 1, such that i ∈ Jk = Rk. Since S is gcd-closed,
one has x1 |xi. This is impossible since x1, xi cannot both be greatest-type
divisors of xk in S. Therefore the assertion is true. In a similar way to that
in (6), one has, by Lemma 2.5,

αε,k = x−εk +∆′ +∆,

where

∆′ =
|Rk|∑

r=1

(−1)r
∑

i1<...<ir
ij∈Rk

(xk, xi1 , . . . , xir)
−ε

and

(9) ∆ =
|Rk|∑

r=0

∑

i1<...<ir
ij∈Rk

|Lk|∑

s=1

∑

t1<...<ts
tu∈Lk

(−1)r+s(xk, xi1 , . . . , xir , xt1 , . . . , xts)
−ε

=
|Lk|∑

s=1

∑

t1<...<ts
tu∈Lk

(−1)s
|Rk|∑

r=0

∑

i1<...<ir
ij∈Rk

(−1)r(xk, xi1 , . . . , xir , xt1 , . . . , xts)
−ε.

To prove the lemma, one needs only to show that ∆ = 0, which we will
do in the following.

For any given t1 < . . . < ts (1 ≤ s ≤ |Lk|), tu ∈ Lk, 1 ≤ u ≤ s, let
P = {i : i ∈ Rk, and xtu |xi for some tu, 1 ≤ u ≤ s} and let Q = Rk \ P .
Let |P | = h and |Q| = h′. Clearly, 1 ≤ h ≤ |Rk| and 0 ≤ h′ ≤ |Rk|−1. Then

(10)
|Rk|∑

r=0

∑

i1<...<ir
ij∈Rk

(−1)r(xk, xi1 , . . . , xir , xt1 , . . . , xts)
−ε

=
h′∑

r′=0

∑

i1<...<ir′
iu∈Q

h∑

r=0

∑

j1<...<jr
jv∈P

(−1)r+r
′
(xk, xi1 , . . . , xir′ , xj1 , . . . , xjr , xt1 , . . . , xts)

−ε

=
h′∑

r′=0

∑

i1<...<ir′
iu∈Q

h∑

r=0

∑

j1<...<jr
jv∈P

(−1)r+r
′
(xk, xi1 , . . . , xir′ , xt1 , . . . , xts)

−ε
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(since by the definition of P , (xj1 , . . . , xjr , xt1 , . . . , xts) = (xt1 , . . . , xts) for
any j1 < . . . < jr, jv ∈ P )

=
h′∑

r′=0

∑

i1<...<ir′
iu∈Q

(−1)r
′
(xk, xi1 , . . . , xir′ , xt1 , . . . , xts)

−ε

×
(

1 +
h∑

r=1

(−1)r
∑

j1<...<jr
jv∈P

1
)

=
h′∑

r′=0

∑

i1<...<ir′
iu∈Q

(−1)r
′
(xk, xi1 , . . . , xir′ , xt1 , . . . , xts)

−ε
(

1 +
h∑

r=1

(−1)r
(
h

r

))

=
h′∑

r′=0

∑

i1<...<ir′
iu∈Q

(−1)r
′
(xk, xi1 , . . . , xir′ , xt1 , . . . , xts)

−ε(1− 1)h = 0.

It then follows from (9) and (10) that ∆ = 0.

3. The gcd-closed case. Throughout this section, let S = {x1, . . . , xn}
be gcd-closed. For 1 ≤ k ≤ n, let αε,k be defined as in (1). It is clear that
αε,1 = x−ε1 . We have the following lemmas.

Lemma 3.1. For 2 ≤ k ≤ n, let xk = peqh, where p and q are distinct
primes, e and h are positive integers. Then the set of greatest-type divisors of
x in S must have the form {pe1qh1 , . . . , pemqhm}, where 1 ≤ m ≤ min{e, h},
0 ≤ e1 < . . . < em ≤ e, h ≥ h1 > . . . > hm ≥ 0, and ei + hi ≤ e + h − 1
(i = 1, . . . ,m).

Proof. Let Rk be the set of greatest-type divisors of xk in S and let
|Rk| = m. Since xk = peqh, one may let Rk = {pe1qh1 , . . . , pemqhm}, where
ei and hi (1 ≤ i ≤ m) are nonnegative integers satisfying 0 ≤ ei ≤ e,
0 ≤ hi ≤ h and ei + hi ≤ e+ h− 1. We claim that for any i, j ∈ {1, . . . ,m},
i 6= j, we have ei 6= ej . Otherwise, there exist i, j ∈ {1, . . . ,m}, i 6= j, such
that ei = ej . Then peiqhi | pej qhj or pejqhj | peiqhi . This contradicts the fact
that peiqhi and pejqhj are greatest-type divisors of xk in S. Thus ei 6= ej for
any i, j ∈ {1, . . . ,m}, i 6= j. Similarly, hi 6= hj for i, j ∈ {1, . . . ,m}, i 6= j.

Without loss of generality, one may assume that 0 ≤ e1 < . . . < em.
Since pe1qh1 , . . . , pemqhm are greatest-type divisors, it follows that for any
i, j ∈ {1, . . . ,m}, i 6= j, both peiqhi - pejqhj and pejqhj - peiqhi . Therefore for
any i ∈ {1, . . . ,m− 1}, it follows from ei < ei+1 and peiqhi - pei+1qhi+1 that
hi > hi+1. So h1 > . . . > hm ≥ 0.

It is clear that ei + hi ≤ e+ h for 1 ≤ i ≤ m. Suppose that there exists
1 ≤ i ≤ m such that ei+hi = e+h. One can deduce that ei = e and hi = h.
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So peiqhi = xk. This contradicts the fact that peiqhi is a greatest-type divisor
of xk. Then ei + hi ≤ e+ h− 1 for i = 1, . . . ,m.

Lemma 3.2. For 2 ≤ k ≤ n, let xk = peqh, where p and q are distinct
primes, e and h are positive integers. If the set of greatest-type divisors of
xk in S is {pe1qh1 , . . . , pemqhm}, where 1 ≤ m ≤ min{e, h}, 0 ≤ e1 < . . . <
em ≤ e, h ≥ h1 > . . . > hm ≥ 0, and ei+hi ≤ e+h−1 (i = 1, . . . ,m), then

αε,k =





p−εeq−εh − p−εe1q−εh1 if m = 1,

p−εeq−εh − p−εemq−εhm +
m−1∑

i=1

(p−εeiq−εhi+1 − p−εeiq−εhi)
if m ≥ 2.

Proof. Let m ≤ 2. Then by Lemma 2.6, the result is clearly true.
In what follows let m ≥ 3. Noting that 0 ≤ e1 < . . . < em ≤ e and

h ≥ h1 > . . . > hm ≥ 0, by Lemma 2.6 one has

αε,k = p−εeq−εh − p−εe1q−εh1 − . . .− p−εemq−εhm

+
m∑

t=2

(−1)t
∑

1≤i1<...<it≤m
(peqh, pei1 qhi1 , . . . , peit qhit )−ε

= p−εeq−εh − p−εe1q−εh1 − . . .− p−εemq−εhm

+
m∑

t=2

(−1)t
∑

1≤i1<...<it≤m
p−εei1 q−εhit

= p−εeq−εh − p−εe1q−εh1 − . . .− p−εemq−εhm

+ p−εe1q−εh2 + . . .+ p−εem−1q−εhm + C,

where

C =
m∑

t=2

(−1)t
∑

1≤i1<...<it≤m
i1+1<it

p−εei1 q−εhit .

Since a+ 1 < b implies that b− a− 1 ≥ 1, one has

C =
∑

2≤a+1<b≤m

b−a+1∑

t=2

(−1)t
∑

a=i1<...<it=b

p−εei1 q−εhit

=
∑

2≤a+1<b≤m

b−a+1∑

t=2

(−1)tp−εeaq−εhb
∑

a=i1<...<it=b

1

=
∑

2≤a+1<b≤m

b−a+1∑

t=2

(−1)tp−εeaq−εhb
(
b− a− 1
t− 2

)
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=
∑

2≤a+1<b≤m
p−εeaq−εhb

b−a+1∑

t=2

(−1)t−2
(
b− a− 1
t− 2

)

=
∑

2≤a+1<b≤m
p−εeaq−εhb

b−a−1∑

l=0

(−1)l
(
b− a− 1

l

)

=
∑

2≤a+1<b≤m
p−εeaq−εhb(1− 1)b−a−1

=
∑

2≤a+1<b≤m
p−εeaq−εhb · 0 = 0.

Therefore

αε,k = p−εeq−εh − p−εe1q−εh1 − . . .− p−εemq−εhm

+ p−εe1q−εh2 + . . .+ p−εem−1q−εhm ,

as desired.

Now we give the first main result in this paper.

Theorem 3.3. Let S = {x1, . . . , xn} be a gcd-closed set satisfying
maxx∈S{v(x)} ≤ 2 and ε a positive integer. Then the power LCM matrix
([xi, xj ]ε) on S is nonsingular.

Proof. One may assume x1 < . . . < xn. Since maxx∈S{v(x)} ≤ 2, for
2 ≤ k ≤ n, noting that xk > 1, one has v(xk) = 1 or 2. Namely, xk = pe,
where e ≥ 1 is an integer and p is a prime, or xk = peqh, where e ≥ 1 and
h ≥ 1 are integers, p and q are distinct primes. We claim that αε,k 6= 0 for
1 ≤ k ≤ n.

If k = 1, then αε,1 = x−ε1 6= 0 by Lemma 2.5, so the claim is true. In the
following let k ≥ 2. Consider the following two cases.

Case 1: xk = pe. Then xk has only one greatest-type divisor in S whose
form must be pl, where l is an integer and 0 ≤ l ≤ e − 1. By Lemma 2.5,
αε,k = p−εe − p−εl. Since ε is a positive integer, one then deduces that
αε,k < 0. The claim is true.

Case 2: xk = peqh. It follows from Lemma 3.1 that there exist 2m
(where 1 ≤ m ≤ min{e, h}) integers e1, . . . , em, h1, . . . , hm satisfying 0 ≤
e1 < . . . < em ≤ e, h ≥ h1 > . . . > hm ≥ 0, and ei + hi ≤ e + h − 1
(i = 1, . . . ,m), such that {pe1qh1 , . . . , pemqhm} is equal to the set of greatest-
type divisors of xk in S. If m = 1, then αε,k = p−εeq−εh − p−εe1q−εh1

by Lemma 3.2. By the assumption, αε,k < 0, so the claim is true. In the
following let m ≥ 2. By Lemma 3.2,
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αε,k =
1

pεeqεh
− 1
pεe1qεh1

− . . .− 1
pεemqεhm

(11)

+
1

pεe1qεh2
+ . . .+

1
pεem−1qεhm

=
1

pεeqεh
+
(

1
pεe1qεh2

− 1
pεe1qεh1

− 1
pεe2qεh2

)

+
(

1
pεe2qεh3

− 1
pεe3qεh3

)
+ . . .+

(
1

pεem−1qεhm
− 1
pεemqεhm

)
.

Since e1 < e2 and h1 > h2, one has e2 − e1 ≥ 1 and h1 − h2 ≥ 1. Since
ε≥ 1, one can deduce that (pε(e2−e1)−1)(qε(h1−h2)−1)−1≥ (2−1)(3−1)−1
= 1. Then

(12)
1

pεe1qεh2
− 1
pεe1qεh1

− 1
pεe2qεh2

=
1

pεe2qεh1
[(pε(e2−e1) − 1)(qε(h1−h2) − 1)− 1] > 0.

For i = 3, . . . ,m, since ei−1 < ei, ei − ei−1 ≥ 1, one has

(13)
1

pεei−1qεhi
− 1
pεeiqεhi

=
pε(ei−ei−1) − 1

pεeiqεhi
> 0.

By (11)–(13), one has αε,k > 0.
It then follows from the claim and Lemma 2.1 that det([xi, xj ]ε) 6= 0.

Therefore the power LCM matrix ([xi, xj ]ε) on S is nonsingular.

4. The lcm-closed case. In this section, we transfer the result of Sec-
tion 3 to the lcm-closed case by using the following lemmas.

Lemma 4.1. Let S = {x1, . . . , xn} be a set of n distinct positive integers.
Let ε be a real number and let m = lcm{S}. Then

([xi, xj ]ε) =
1
mε
· diag(xε1, . . . , x

ε
n) ·

([
m

xi
,
m

xj

]ε)
· diag(xε1, . . . , x

ε
n).

Proof. Since

[xi, xj ] =
m(

m
xi
, mxj

) =
m ·

[
m
xi
, mxj

]

m
xi
· mxj

=
xixj
m
·
[
m

xi
,
m

xj

]
,

it follows that

[xi, xj ]ε =
xεix

ε
j

mε
·
[
m

xi
,
m

xj

]ε
.

Therefore the result follows immediately.

Definition. Let S = {x1, . . . , xn} be a set of n distinct positive inte-
gers. Let m = lcm{S}. Then the reciprocal set of S, denoted by mS−1, is
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defined by

mS−1 =
{
m

x1
, . . . ,

m

xn

}
.

Lemma 4.2. Let S = {x1, . . . , xn} be an lcm-closed set. Then the recip-
rocal set mS−1 is gcd-closed.

Proof. First, for any 1 ≤ i, j ≤ n, one has
(
m

xi
,
m

xj

)
=

m

[xi, xj ]
.

But S is lcm-closed. So there exists 1 ≤ k ≤ n such that [xi, xj ] = xk.
Therefore (

m

xi
,
m

xj

)
=
m

xk
∈ mS−1.

Thus the reciprocal set mS−1 is gcd-closed.

We can give the second main result in this paper as follows.

Theorem 4.3. Let S = {x1, . . . , xn} be an lcm-closed set satisfying
maxx∈S{v(x)} ≤ 2 and ε a positive integer. Then the power LCM matrix
([xi, xj ]ε) defined on S is nonsingular.

Proof. This follows immediately from Lemmas 4.1 and 4.2, and Theo-
rem 3.3.

5. Final remarks. Let S = {x1, . . . , xn} be a set of positive integers.
The set S is said to be odd gcd-closed if S is gcd-closed and every element in
S is an odd number. The set S is said to be even gcd-closed if S is not odd
gcd-closed. By [11], we know that there is an even gcd-closed set S such that
the LCM matrix ([xi, xj ]) on S is singular. But it is not clear if there is an
odd gcd-closed set S such that the LCM matrix ([xi, xj ]) on S is singular.
We believe that the answer to this question is negative. Furthermore, we
propose the following conjecture.

Conjecture 5.1. Let ε be a positive integer and let S = {x1, . . . , xn}
be an odd gcd-closed set. Then the power LCM matrix ([xi, xj ]ε) on S is
nonsingular.

The set S is said to be odd lcm-closed if S is lcm-closed and every element
in S is an odd number. The set S is said to be even lcm-closed if S is not
odd lcm-closed. By [11], one can easily construct an even lcm-closed set S
such that the LCM matrix ([xi, xj ]) on S is singular. We suggest another
conjecture.
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Conjecture 5.2. Let ε be a positive integer and let S = {x1, . . . , xn}
be an odd lcm-closed set. Then the power LCM matrix ([xi, xj ]ε) on S is
nonsingular.

By Lemmas 4.1 and 4.2, Conjecture 5.1 is equivalent to Conjecture 5.2.
Namely, Conjecture 5.1 implies Conjecture 5.2, and the converse is also true.

It follows from [13] that there is an even gcd-closed set S = {x1, . . . , xn}
such that the GCD matrix ((xi, xj)) on S does not divide the LCM matrix
([xi, xj ]) on S in the ring Mn(Z). By [13], one can also easily construct an
even lcm-closed set S such that the GCD matrix ((xi, xj)) on S does not
divide the LCM matrix ([xi, xj ]) on S in the ring Mn(Z). However it is not
clear if there is an odd gcd-closed (resp. lcm-closed) set S = {x1, . . . , xn}
such that the GCD matrix ((xi, xj)) on S does not divide the LCM matrix
([xi, xj ]) on S in the ring Mn(Z). We still believe that the answer is negative.
We raise the following conjectures as the conclusion of this paper.

Conjecture 5.3. Let ε be a positive integer and let S = {x1, . . . , xn} be
an odd gcd-closed set. Then the power GCD matrix ((xi, xj)ε) on S divides
the power LCM matrix ([xi, xj ]ε) on S in the ring Mn(Z).

Conjecture 5.4. Let ε be a positive integer and let S = {x1, . . . , xn}
be an odd lcm-closed set. Then the power GCD matrix ((xi, xj)ε) on S
divides the power LCM matrix ([xi, xj ]ε) on S in the ring Mn(Z).
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