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1. Introduction. A partition of a positive integer n is any non-increas-
ing sequence of positive integers whose sum is n. The partition function,
denoted by p(n), enumerates the number of partitions of n. By convention,
p(0) = 1 and p(n) = 0 if n < 0. As is well known by the work of Euler, the
generating function for p(n) is given by

∞∑

n=0

p(n)qn =
∞∏

n=1

(1− qn)−1.

The study of the arithmetic properties of p(n) has a long history beginning
with the fundamental work of Ramanujan [R1–R4]. When r is an integer,
we denote by Pr the rth power of Euler’s generating function. In this paper,
we study arithmetic properties of the coefficients of Pr when r is positive.
Therefore, we define the arithmetic functions pr(n), which we call the rth
powers of the partition function, by

(1.1) Pr(q) =
∞∑

n=0

pr(n)qn :=
∞∏

n=1

(1− qn)−r = 1 + rq + . . . , r ∈ Z.

The functions pr(n) have been studied, for example, by Atkin, Gordon,
Kiming, Newman, Olsson, Ramanujan, and Serre [A, G, K-O, N1–N7, S3].

If ` ≥ 5 is prime and 0 ≤ a ≤ `− 1, then following Kiming and Olsson,
we say that there is a congruence for p at (`, r, a) if, for all integers n,

pr(`n+ a) ≡ 0 (mod `).

Before presenting our results, we cite some facts from [K-O] concerning the
classification of congruences of this type. In what follows,

( ·
`

)
denotes the

Legendre symbol modulo `.
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Proposition 1.1 ([K-O, Lemma 1, Theorem 2]). Suppose that ` ≥ 5 is
prime and 0 ≤ a ≤ `− 1.

(1) There is a congruence for p at (`, r, a) if and only if there is a con-
gruence for p at (`, r + `, a).

(2) If r ≡ 0 (mod `), then there is a congruence for p at (`, r, a) if and
only if a 6= 0.

(3) There is a congruence for p at (`, `− 1, a) if and only if
(

24a+ 1
`

)
= −1.

(4) There is a congruence for p at (`, `− 3, a) if and only if
(

8a+ 1
`

)
6= 1.

Items (3) and (4) of Proposition 1.1 follow from the following well known
q-series identities of Euler and Jacobi together with item (1) of Proposi-
tion 1.1.

(1) (Euler)
∞∏

n=1

(1− qn) =
∞∑

n=−∞
(−1)nqn(3n+1)/2,

(2) (Jacobi)
∞∏

n=1

(1− qn)3 =
∞∑

n=0

(−1)n(2n+ 1)qn(n+1)/2.

Following the terminology of Kiming and Olsson, we say that a congru-
ence for p at (`, r, a) is exceptional if 1 ≤ r ≤ `− 1 and r 6= `− 1, `− 3. The
main result from [K-O] is the following.

Theorem 1.2 ([K-O, Theorem 1]). If ` ≥ 5 is prime and if there is an
exceptional congruence for p at (`, r, a), then r is odd and 24a ≡ r (mod `).

Therefore, we will say that ` is exceptional for r if there is an exceptional
congruence in the distinguished class 24−1r (mod `).

Now suppose that ` ≥ 5 is a fixed prime. One can classify all r for which
` is exceptional by a finite computation. In particular, by Proposition 1.1
and Theorem 1.2, it suffices to check whether ` is exceptional for all odd
r ≤ ` − 1. Some details concerning computations of this type are included
in Section 6.

In this paper we consider the problem of classifying all exceptional primes
` for a fixed r. This problem requires different methods; clearly, one cannot
classify all exceptional primes for r by checking each prime ` ≥ r + 2 indi-
vidually. In [A-B], the author and Ahlgren use modular forms modulo ` to
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reduce the problem for r = 1 to a finite computation. In particular, they
show that the only congruences of the form p(`n + a) ≡ 0 (mod `) are the
celebrated Ramanujan congruences

p(5n+ 4) ≡ 0 (mod 5),(1.2)

p(7n+ 5) ≡ 0 (mod 7),(1.3)

p(11n+ 6) ≡ 0 (mod 11).(1.4)

In Section 2, we state the main theorem of this paper, Theorem 2.1,
which is a generalization of the results in [A-B] to all odd r. In fact, for any
odd r, we show (subject to a mild hypothesis) how to obtain the complete set
of exceptional primes. We also state a related theorem, Theorem 2.3, which
explains the existence of many exceptional congruences. As an example of
Theorem 2.1, we completely classify all exceptional congruences for r ≤ 47.

Theorem 1.3. The following table gives the complete list of exceptional
primes ` for r ≤ 47.

r ` r ` r ` r `

1 5, 7, 11 13 17, 19, 23 25 29, 31 37 41, 43, 47
3 11, 17 15 23, 29 27 31, 41 39 47, 53, 61
5 11, 23 17 23 29 none 41 47
7 11, 19 19 23 31 none 43 47
9 17, 19, 23 21 29, 31, 47 33 41, 43, 47, 59 45 53, 59, 71
11 none 23 none 35 none 47 none

The proofs of our results depend on a careful study of the reductions
modulo primes of certain modular forms related to the functions pr(n).
Section 3 gives the necessary facts on modular forms modulo primes. In
Section 4, we prove Theorem 2.1, and in Section 5, we prove Theorem 2.3.
In Section 6, we briefly describe how to computationally verify exceptional
congruences.

2. Statement of results. Before we state our main result, we need to
define our notation. If N and k are positive integers and χ is a Dirichlet
character defined modulo N , then we denote by Mk(Γ0(N), χ) the C-vector
space of holomorphic modular forms of weight k and character χ for Γ0(N).
We denote by Sk(Γ0(N), χ) the subspace of cusp forms in Mk(Γ0(N), χ).
We identify f(z) ∈ Mk(Γ0(N), χ) with its Fourier series in the variable
q := e2πiz .

In particular, when k is even, we denote by Mk the C-vector space of
holomorphic modular forms of weight k with respect to Γ0(1) = SL2(Z).
The usual Eisenstein series of weights 4 and 6 on SL2(Z) are given by
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E4(z) := 1 + 240
∞∑

n=1

∑

d|n
d>0

d3qn ∈M4 ∩ Z[[q]],

E6(z) := 1− 504
∞∑

n=1

∑

d|n
d>0

d5qn ∈M6 ∩ Z[[q]].

For convenience, we define E∗k(z) by

E∗k(z) :=





1 if k ≡ 0 (mod 12),

E4(z)2E6(z) if k ≡ 2 (mod 12),

E4(z) if k ≡ 4 (mod 12),

E6(z) if k ≡ 6 (mod 12),

E4(z)2 if k ≡ 8 (mod 12),

E4(z)E6(z) if k ≡ 10 (mod 12).
We recall that Dedekind’s eta-function is given by

η(z) := q1/24
∞∏

n=1

(1− qn).

Then

(2.1) ∆(z) := η24(z) = q
∞∏

n=1

(1− qn)24 ∈M12

is the unique normalized weight 12 cusp form on SL2(Z).
Throughout, we let r be a fixed odd positive integer, and we let

(2.2) αr :=





⌊
r + 3

12

⌋
if r 6≡ 11 (mod 12),

⌊
r + 3

12

⌋
− 1 if r ≡ 11 (mod 12).

We define integers ar,i by

(2.3)
∞∑

n=i

ar,i(n)qn := PrE
∗
r+3E

3(αr−1)
4 ∆i = qi + . . . , 0 ≤ i ≤ αr.

We also let
Ar(0) := (−r)(r+3)/2,

and for each positive integer n, we define

A±r (n) := ±(24n− r)(r+3)/2pr(n).

Next, we define the set

S := {(s(1), . . . , s(αr)) | s(j) ∈ {+,−}, 1 ≤ j ≤ αr}.
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For a fixed s = (s(1), . . . , s(αr)) ∈ S, we set

cr,0(s) := Ar(0),

cr,n(s) := As(n)
r (n)−

n−1∑

i=0

cr,i(s)ar,i(n), 1 ≤ n ≤ αr.

Finally, we define the set of integers Br(n) for each n ≥ αr + 1 by

Br(n) :=
{
A±r (n)−

αr∑

i=0

cr,i(s)ar,i(n)
}
s∈S

.

We observe that each Br(n) contains 2αr+1 integers. By Proposition 1.1, we
need only consider ` ≥ r.

Theorem 2.1. Let r be an odd positive integer.

(1) If ` = r + 2 is prime, then ` is not exceptional for r.
(2) If ` = r + 4 is prime, then ` is exceptional for r if and only if ` ≡ 2

(mod 3).
(3) If ` ≥ r+ 6 is an exceptional prime for r, then for every n ≥ αr + 1,

` divides at least one integer in Br(n).

As an obvious corollary, we have

Corollary 2.2. If r is an odd positive integer and if there is some
n ≥ αr + 1 for which all of the integers in Br(n) are non-zero, then the set
of exceptional primes for r is finite.

If the hypotheses of Corollary 2.2 are satisfied, then Theorem 2.1 may
be used to show that all but finitely many primes are not exceptional for r.
The remaining primes must be checked individually to determine whether
they are exceptional, which may be done by applying Theorem 2.3 below
or the methods of Section 6, as appropriate. In this way, the exceptional
primes for r may be determined by a finite computation.

For example, to compute the exceptional primes for r = 37, we find
that all of the integers in B37(4) and B37(5) are non-zero and that the
only primes common to the prime divisors of the integers in both sets are
` = 41, 43, and 47. These primes are exceptional for 37 by Theorem 2.3.

For completeness, we include Theorem 2.3, which is well known to ex-
perts. Its proof is included in Section 5. In contrast to Theorem 2.1 and
Corollary 2.2, Theorem 2.3 explains the existence of many exceptional con-
gruences.

Theorem 2.3. Suppose that ` ≥ 5 is prime.

(1) Let i = 4, 8, or 14. If ` ≡ 2 (mod 3) and `−i > 0, then ` is exceptional
for r = `− i.
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(2) Let i = 6 or 10. If ` ≡ 3 (mod 4) and `− i > 0, then ` is exceptional
for r = `− i.

(3) Let i = 26. If ` ≡ 11 (mod 12) and ` − i > 0, then ` is exceptional
for r = `− i.

We observe that Theorem 2.3 contains the Ramanujan congruences (1.2),
(1.3), and (1.4) as special cases. In fact, Theorem 2.3 appears to explain
most, but not all, exceptional congruences. Therefore, one might refer to
congruences which are not explained by Theorem 2.3 as superexceptional.
For example, Theorem 1.3 indicates that 19, 23 and 61 are superexceptional
primes for 7, 5, and 39, respectively, and that these are the only superexcep-
tional primes for r ≤ 47.

Theorem 2.3 also shows that if r ≡ 11 (mod 12) and ` is exceptional for r,
then ` must be superexceptional for r. This “explains” why no congruences
of this specific type have been found (to our knowledge).

3. Modular forms modulo `. We now record some relevant facts
concerning modular forms modulo `. Details may be found, for example, in
[SwD] or [S1]. Throughout this section we will suppose that ` ≥ 5 is a fixed
prime. If f =

∑∞
n=0 a(n)qn ∈Mk ∩ Z[[q]], then

f̃ := f (mod `) ∈ F`[[q]].
We define the space of weight k modular forms modulo ` by

M̃k := {f̃ : f ∈Mk ∩ Z[[q]]}.
The filtration of a modular form f ∈Mk ∩ Z[[q]] is defined by

w(f) := inf{k′ : f̃ ∈ M̃k′}.
If we have f̃ ≡ g̃ 6≡ 0 (mod `), then it must be that k ≡ k′ (mod ` − 1). It
follows that if f ∈Mk ∩ Z[[q]] has f̃ 6≡ 0 (mod `), then

(3.1) w(f) ≡ k (mod `− 1).

Moreover, we see that w(f) = −∞ if and only if f̃ ≡ 0 (mod `). We also
recall the fact [S1, §2.2, Lemme 1] that if f ∈ Mk ∩ Z[[q]] for some k, then
for each i ∈ N we have

(3.2) w(f i) = iw(f).

We define the theta operator on formal power series by

(3.3) Θ
( ∞∑

n=0

a(n)qn
)

:=
∞∑

n=1

na(n)qn.

Lemma 3.1 is fundamentally important in what follows.
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Lemma 3.1 ([SwD, Lemmas 3, 5]). The operator Θ maps M̃k to M̃k+`+1.
Moreover , if f ∈Mk ∩ Z[[q]] for some k, and f̃ 6≡ 0 (mod `), then for some
α ≥ 0, we have w(Θf) = w(f) + `+ 1− α(`− 1), with α > 0 if and only if
w(f) ≡ 0 (mod `).

Next, we define the operator U` on formal power series by

(3.4)
( ∞∑

n=0

a(n)qn
)∣∣∣U` :=

∞∑

n=0

a(`n)qn.

When N and k are positive integers and χ is a Dirichlet character de-
fined modulo N , the Hecke operator T`,k acts on a modular form f(z) =∑∞
n=0 a(n)qn ∈Mk(Γ0(N), χ) by the formula

( ∞∑

n=0

a(n)qn
)∣∣∣T`,k :=

∞∑

n=0

(
a(`n) + χ(`)`k−1a

(
n

`

))
qn(3.5)

∈Mk(Γ0(N), χ),

where a
(
n
`

)
= 0 if ` -n. Comparing (3.4) and (3.5), we see that for k ≥ 2,

the operators T`,k and U` agree modulo `. It follows that U` : M̃k → M̃k.
It is also well known that if f(z) =

∑∞
n=1 a(n)qn is a normalized eigenform

for all of the T`,k, then

a(mn) = a(m)a(n) if gcd(m,n) = 1,(3.6)

a(`t) = a(`t−1)a(`)− χ(`)`k−1a(`t−2) if t ≥ 1.(3.7)

For all f ∈ Z[[q]], the relationship between the operators Θ and U` is given
by

(3.8) (f |U`)` ≡ f −Θ`−1f (mod `).

Using (3.8) and Lemma 3.1, we see that the operator U` contracts the
space M̃k.

Lemma 3.2 ([S1, §2.2, Lemme 2]). Suppose that ` ≥ 5 is prime and
f ∈Mk ∩ Z[[q]].

(1) We have

w(f |U`) ≤ `+
w(f)− 1

`
.

(2) If w(f) = `− 1, then

w(f |U`) = `− 1.
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We also require a suitable basis for the space M̃k. It is well known that

(3.9) dk := dimension(Mk) =





⌊
k

12

⌋
+ 1 if k 6≡ 2 (mod 12),

⌊
k

12

⌋
if k ≡ 2 (mod 12).

Using the forms E∗k(z) defined in Section 2, we see that a basis for Mk may
be given as

(3.10) Bk = {E∗kE3(dk−1−i)
4 ∆i = qi + . . .}dk−1

i=0 .

Therefore, a basis for M̃k consists of the reductions modulo ` of the basis
forms in Bk.

4. The proof of Theorem 2.1. The proof of Theorem 2.1 is an ex-
tension of the method of Ahlgren and Boylan [A-B] to all odd positive
integers r. As in [A-B] and [K-O], we will consider the sequence of filtra-
tions {w(f), w(θ(f)), w(θ2(f)), . . .}, where f is a suitable modular form. We
remind the reader that ` is prime and ` ≥ r + 2. For the duration of the
proof, we set

δ` :=
`2 − 1

24
,

and observe that 24(−rδ`) ≡ r (mod `). From (1.1) and (2.1) we deduce that

∆rδ` = qrδ`
∞∏

n=1

(1− qn)r`
2

(1− qn)r
≡
∞∏

n=1

(1− q`n)r` ·
∞∑

n=0

pr(n− rδ`)qn (mod `),

which implies that

(4.1) ∆rδ` |U` ≡
∞∏

n=1

(1− qn)r` ·
∞∑

n=0

pr(`n− rδ`)qn (mod `).

Hence, if ` is exceptional for r, (4.1) implies that ∆rδ` |U` ≡ 0 (mod `). That
is, we must have w(∆rδ` |U`) = −∞.

Furthermore, by (3.2), it is clear that

(4.2) w(∆rδ`) = rδ` · w(∆) =
r(`2 − 1)

2
≡ `− r

2
(mod `).

By (3.9) and (3.10), a modular form f ∈Mk has ord∞f ≤ k/12. Therefore,
we obtain the following.

Lemma 4.1 (cf. [K-O, Lemma 2]). If m is a positive integer , then

w(Θm∆rδ`) ≥ w(∆rδ`).

Using (4.2) and iterating Lemma 3.1 give

(4.3) w(Θ(`+r)/2∆rδ`) ≡ 0 (mod `),
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where j = (`+ r)/2 is the smallest positive integer for which w(Θj∆rδ`) ≡ 0
(mod `). We turn to the proof of Theorem 2.1(1).

The proof of Theorem 2.1(1). Suppose that ` = r + 2 is prime. If ` is
exceptional for r, then using (3.2) and (3.8), we conclude that

w(∆rδ` |U`) = −∞ =
1
`
w(∆rδ` −Θ`−1∆rδ`).

It follows that Θ`−1∆rδ` ≡ ∆rδ` (mod `), and hence, that w(Θ`−1∆rδ`) =
w(∆rδ`). By (4.3), we have w(Θ`−1∆rδ`) ≡ 0 (mod `), but by (4.2), we have
w(∆rδ`) 6≡ 0 (mod `). Therefore, the prime ` = r + 2 is not exceptional
for r.

The proof of Theorem 2.1(2). To prove Theorem 2.1(2), we begin by
defining, for every n ≥ 1, integers A4(n) by

∞∑

n=1

A4(n)qn := η4(6z) ∈ S2(Γ0(36)).

We need the following proposition.

Proposition 4.2. If ` ≥ 5 is prime and r = `− 4, then ` is exceptional
for r if and only if A4(`) ≡ 0 (mod `).

Proof. We observe that
∞∑

n=1

A4(n)qn = q
∞∏

n=1

(1− q6n)4 = q
∞∏

n=1

(1− q6n)`

(1− q6n)r

≡
∞∑

k=0

p−1(k)q6k` ·
∞∑

j=0

pr(j)q6j+1 (mod `).

It follows that for all n, we have

(4.4) A4(6`n+ `2) ≡
∞∑

k=0

p−1(k)pr

(
`(n− k) +

`2 − 1
6

)
(mod `).

We note that (`2 − 1)/6 ≡ −rδ` (mod `). We let 6`n + `2 = `ts with t ≥ 1
and ` - s. It is well known that the modular form η4(6z) is a normalized eigen-
form for all of the Hecke operators (since, for example, the space S2(Γ0(36))
is one-dimensional). By (3.6) and (3.7), we have the formulae

(4.5) A4(`ts) =





A4(`)A4(s) if t = 1,

(A4(`t−1)A4(`)− `A4(`t−2))A4(s)

≡ A4(`t−1)A4(`)A4(s) (mod `) if t > 1.

If A4(`) ≡ 0 (mod `), then by (4.5), we have

A4(6`n+ `2) = A4(`ts) ≡ 0 (mod `) for all n.
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By induction on n using (4.4) and the fact that p−1(0) = 1, we see that

pr

(
`n+

`2 − 1
6

)
≡ 0 (mod `) for all n,

and hence, that ` is exceptional for r.
Conversely, if ` is exceptional for r, (4.4) shows that for all n, we must

have A4(6n`+ `2) ≡ 0 (mod `). In particular, setting n = 0 and using (4.5)
gives A4(`2) ≡ A4(`)2 ≡ 0 (mod `). Hence A4(`) ≡ 0 (mod `).

To conclude, it suffices to show that A4(`) ≡ 0 (mod `) if and only if
` ≡ 2 (mod 3). This is a consequence of the following.

Proposition 4.3 (cf. [M-O, Theorem 3]). If ` ≥ 5 is prime, then

(4.6) A4(`) =





0 if ` ≡ 2 (mod 3),

2n ·
(
n

3

)
if ` ≡ 1 (mod 3), ` = n2 + 3m2.

One may deduce (4.6) by combining the following q-series identities of
Gauss, Köhler, and Macdonald ([A-A-R, Corollary 10.4.2], [K], [M]).

(1) (Gauss)

η2(z)
η(2z)

=
∞∏

n=1

(1− qn)2

1− q2n = 1 + 2
∞∑

n=1

(−1)nqn
2
,

(2) (Köhler–MacDonald)

η5(6z)
η2(3z)

= q
∞∏

n=1

(1− q6n)5

(1− q3n)2 =
∞∑

n=1

(−1)n−1
(
n

3

)
nqn

2
.

We will revisit (4.6) in the context of Hecke newforms with complex
multiplication in Section 5.

The proof of Theorem 2.1(3). We now consider primes ` ≥ r+6. In such
cases, (`+ r)/2 < `− 2, so by (4.3), (4.2), Lemmas 3.1 and 4.1, there is an
integer 0 < α < `− 1 for which

w(Θ(`+r)/2+1∆rδ`) =
r(`2 − 1)

2
+
(
`+ r

2
+ 1
)

(`+ 1)− α(`− 1)(4.7)

≥ w(∆rδ`) =
r(`2 − 1)

2
.

From (4.7), we have

1 ≤ α ≤
(
`+ r

2
+ 1
)(

`+ 1
`− 1

)

=
(
`+ r

2
+ 1
)(

1 +
2

`− 1

)
=
`+ r

2
+ 2 +

r + 3
`− 1

.
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Hence, since ` ≥ r + 6, we find that

(4.8) 1 ≤ α ≤ (`+ r)/2 + 2.

We would like to obtain the exact value of α when ` is exceptional for r so
that we may explicitly evaluate (4.7). If ` is exceptional for r, we recall that

w(∆rδ` |U`) = −∞ =
1
`
w(∆rδ` −Θ`−1∆rδ`).

Therefore, it is immediate that

(4.9) w(Θ`−1∆rδ`) = w(∆rδ`) = r(`2 − 1)/2.

If we suppose that w(Θ`−2∆rδ`) 6≡ 0 (mod `), then Lemma 3.1 and (4.9)
give

w(Θ`−1∆rδ`) = w(Θ`−2∆rδ`) + `+ 1 = r(`2 − 1)/2,

implying that
w(Θ`−2∆rδ`) < w(∆rδ`),

which contradicts Lemma 4.1. Thus, it must be that

(4.10) w(Θ`−2∆rδ`) ≡ 0 (mod `).

From (4.3), (4.8), and (4.10), we see that there is a least positive integer
j ≤ (`− r)/2− 2 for which

w(Θ(`+r)/2+j∆rδ`) ≡ 0 (mod `).

However, using (4.2), (4.3), and Lemma 3.1, we may also write

w(Θ(`+r)/2+j∆rδ`) =
r(`2 − 1)

2
+
(
`+ r

2
+ j

)
(`+ 1)− α(`− 1)

≡ j + α ≡ 0 (mod `).

Since αr ≤ (`+ r)/2 + 2 and j ≤ (`− r)/2− 2, we conclude that

α = (`+ r)/2 + 2.

Returning to the computation (4.7), we find that

w(Θ(`+r)/2+1∆rδ`) =
r(`2 − 1)

2
+
(
`+ r

2
+ 1
)

(`+ 1) +
(
`+ r

2
+ 2
)

(`− 1)

=
r(`2 − 1)

2
+ r + 3 ≡ r + 3 (mod 12),

which shows that the reduction modulo ` of

(4.11) Θ(`+r)/2+1∆rδ` = (rδ`)(`+r)/2+1qrδ` + . . . 6≡ 0 (mod `)

lies in the space M̃(r(`2−1))/2+r+3. By (3.10), a basis for M(r(`2−1))/2+r+3
may be given as

(4.12) Br,` := {E∗r+3E
3(rδ`+αr−i)
4 ∆i = qi + . . .}rδ`+αri=0 .
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Using (1.1), (2.1), (2.3), (4.11), and (4.12), it follows that for rδ` ≤ i ≤
rδ` + αr, there are integers bi which satisfy

(4.13)
(−6r

`

)
24(r+3)/2Θ(`+r)/2+1∆rδ`

≡
(−6r

`

)
24(r+3)/2

rδ`+αr∑

i=rδ`

biE
∗
r+3E

3(rδ`+αr−i)
4 ∆i

≡ ∆rδ`

αr∑

i=0

(−6r
`

)
24(r+3)/2bi+rδ`E

∗
r+3E

3(αr−i)
4 ∆i

≡ qrδ`
∞∏

n=1

(1− qn)r`
2 ·

αr∑

i=0

cr,iPrE
∗
r+3E

3(αr−i)
4 ∆i

≡ qrδ`
∞∏

n=1

(1− qn)r`
2 ·

αr∑

i=0

∞∑

n=i

cr,iar,i(n)qn (mod `),

where

cr,i :=
(−6r

`

)
24(r+3)/2bi+rδ` .

Next, we observe that

Θ
( ∞∏

n=1

(1− qn)r`
2
)
≡ 0 (mod `).

Using this together with (1.1), (2.1), (3.3), and the fact that for all n, we
have n(`−1)/2 ≡

(
n
`

)
(mod `), we compute

(4.14)
(−6r

`

)
24(r+3)/2Θ(`+r)/2+1∆rδ`

=
(−6r

`

)
24(r+3)/2Θ(`+r)/2+1

( ∞∏

n=1

(1− qn)r`
2 ·
∞∑

n=0

pr(n)qn+rδ`
)

≡
(−6r

`

)
24(r+3)/2

∞∏

n=1

(1− qn)r`
2 ·Θ(`+r)/2+1

( ∞∑

n=0

pr(n)qn+rδ`
)

≡ qrδ`
∞∏

n=1

(1− qn)r`
2

×
∞∑

n=0

((−6r
`

)
24(r+3)/2

(
n+

r(`2 − 1)
24

)(`+r)/2+1

pr(n)
)
qn

≡ qrδ`
∞∏

n=1

(1− qn)r`
2 ·
∞∑

n=0

(
r(r − 24n)

`

)
(24n− r)(r+3)/2pr(n)qn (mod `).
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Comparing coefficients in (4.13) and (4.14) yields

(4.15)
αr∑

i=0

∞∑

n=i

cr,iar,i(n)qn

=
αr∑

n=0

n∑

i=0

cr,iar,i(n)qn +
∞∑

n=αr+1

αr∑

i=0

cr,iar,i(n)qn

≡
∞∑

n=0

(
r(r − 24n)

`

)
(24n− r)(r+3)/2pr(n)qn (mod `).

When 0 ≤ n ≤ αr, we note that ar,n(n) = 1. We also note that pr(0) = 1
for all r. In particular, when n = 0, we see by (4.15) that

cr,0 ≡
(
r2

`

)
(−r)(r+3)/2 (mod `).

Since ` ≥ r + 6, it follows that ` - r. Therefore,
(
r2

`

)
= 1, which gives

(4.16) cr,0 ≡ (−r)(r+3)/2 (mod `).

Similarly, when 1 ≤ n ≤ αr, we find that

cr,n +
n−1∑

i=0

cr,iar,i(n) ≡
(
r(r − 24n)

`

)
(24n− r)(r+3)/2pr(n) (mod `),

which implies that

(4.17) cr,n ≡
(
r(r − 24n)

`

)
(24n− r)(r+3)/2pr(n)−

n−1∑

i=0

cr,iar,i(n) (mod `).

When r 6≡ 9 (mod 12), using (2.2), we observe that 24n − r < r + 6 ≤ `,
so ` - r − 24n. Alternatively, when r ≡ 9 (mod 12), using (2.2), we see that
24n − r ≤ r + 6 ≤ `. Hence, if ` | r − 24n, then ` = 24n − r. However,
24n − r is not prime when r ≡ 9 (mod 12), so ` - r − 24n. Therefore, when
1 ≤ n ≤ αr we must have

( r(r−24n)
`

)
= ±1.

We recall that the integers Ar(0) and A±r (n) are defined by

Ar(0) := (−r)(r+3)/2,

A±r (n) := ± (24n− r)(r+3)/2pr(n), n ≥ 1.

Using (4.16) and (4.17), we find that there is an

s ∈ S := {s = (s(1), . . . , s(αr)) | s(j) ∈ {+,−}, 1 ≤ j ≤ αr}
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for which

(4.18)

cr,0 ≡ cr,0(s) = Ar(0) (mod `),

cr,n ≡ cr,n(s)

= As(n)
r (n)−

n−1∑

i=0

cr,i(s)ar,i(n) (mod `), 1 ≤ n ≤ αr.

Suppose now that n ≥ αr + 1. By (4.15) and (4.18), we see that there is
an s ∈ S for which
(
r(r − 24n)

`

)
(24n− r)(r+3)/2pr(n)−

αr∑

i=0

cr,i(s)ar,i(n) ≡ 0 (mod `).

It follows that for every n ≥ αr + 1, ` must divide one of the integers in the
set

{
A±r (n)−

αr∑

i=0

cr,i(s)ar,i(n)
}
s∈S

.

This completes the proof of Theorem 2.1(3).

5. The proof of Theorem 2.3. A formal power series

F (q) =
∞∑

n=0

a(n)qn

is called lacunary if

lim
X→∞

#{n < X | a(n) = 0}
X

= 1.

Serre [S2, Théorème 17] proved that an integral weight modular form f(z)
is lacunary if and only if it is a finite linear combination of modular forms
with complex multiplication (see, for example, [Ri], for background on CM
forms). In [S3], Serre classified all positive even powers of the Dedekind
eta-function which are lacunary.

Theorem 5.1 (Serre [S3, Théorème 1]). Suppose that r > 0 is an even
integer. The function ηr is lacunary if and only if r is equal to 2, 4, 6, 8,
10, 14, or 26.

Moreover, in these seven cases, Serre gave an explicit decomposition of
ηr as a linear combination of CM forms [S3, §2]. To see how Theorem 2.3
follows, we will prove (2) of that theorem for i = 10. We observe that
Theorem 2.3(1) for i = 4 was proved in Section 4 as part of the proof of
Theorem 2.1(2).
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Following Serre [S3, §2.5], we write
∞∑

n=5

A(n)qn = η10(12z) =
1
96

(φK,c+ − φK,c−),

where
φK,c± = E4(12z)η2(12z)± 48η10(12z)

=
∞∑

n=1

a±(n)qn ∈ S5

(
Γ0(24 · 32),

(−1
·

))

are two CM newforms associated to certain Hecke characters c± of the imagi-
nary quadratic field K = Q(

√
−1) . (For our purposes, the definition of these

characters is not important.) Suppose that ` ≥ 11 is a fixed prime and that
` ≡ 3 (mod 4). Suppose also that r = `− 10. Then

∞∑

n=5

A(n)qn = η10(12z) = q5
∞∏

n=1

(1− q12n)10 = q5
∞∏

n=1

(1− q12n)`

(1− q12n)r

≡
∞∑

k=0

p−1(k)q12`k ·
∞∑

j=0

pr(j)q12j+5 (mod `).

We deduce that

A(12`n+ 5`2) =
1
96

(a+(12`n+ 5`2)− a−(12`n+ 5`2))

≡
∞∑

k=0

p−1(k)pr

(
`(n− k) +

5(`2 − 1)
12

)
(mod `),

and observe that 5(`2 − 1)/12 ≡ −rδ` (mod `). Since the newforms φK,c±
arise from the field K = Q(

√
−1), it must be that a±(`) = 0 when ` ≡ 3

(mod 4) is prime. Now we let 12`n + 5`2 = `ts with t ≥ 1 and ` - s. The
newforms φk,c± are normalized eigenforms for the Hecke operators. By (3.6)
and (3.7), it follows that when ` ≡ 3 (mod 4), we obtain the formulae

a±(`ts) =
{
a±(`)a±(s) = 0 if t = 1,

(a±(`t−1)a±(`) + `4a±(`t−2))a(s) ≡ 0 (mod `) if t > 1.

Therefore, for all n ≥ 0, we see that
∞∑

k=0

p−1(k)pr

(
`(n− k) +

5(`2 − 1)
12

)
≡ 0 (mod `).

Theorem 2.3(2) with i = 10 now follows by induction on n since p−1(0) = 1.
The remaining parts of Theorem 2.3 have similar proofs, observing from [S3,
§2, §3] that η6(4z) is a CM newform associated to the field K = Q(

√
−1),

that when r = 4, 8, or 14, ηr is a linear combination of CM newforms asso-
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ciated to the field K = Q(
√
−3), and that η26(12z) is a linear combination

of CM newforms arising from the fields K = Q(
√
−1) and K

′
= Q(

√
−3).

We also mention that one may deduce Theorem 2.3 from the perspective
of modular functions using the work of Newman [N2, Theorem 1].

6. Remarks on computation. Suppose that ` ≥ 5 is prime and that r
is an odd integer with 1 ≤ r ≤ `−1. Suppose also that ` is exceptional for r,
but not superexceptional for r. The exceptionality of ` may then be verified
by Theorem 2.3. On the other hand, to verify that ` is superexceptional for
r requires a finite computation.

There are a variety of ways to computationally verify an alleged superex-
ceptional congruence. Suppose f =

∑∞
n=0 a(n)qn ∩ Z[[q]] has f̃ ∈ M̃k. By

(3.9), if a(n) ≡ 0 (mod `) for all n ≤ b k12c, then f ≡ 0 (mod `). Furthermore,
by (4.1), ` is exceptional for r if and only if ∆rδ` |U` ≡ 0 (mod `). Applying
Lemma 3.2 together with (3.1) shows that w(∆rδ` |U`) ≤ r(`− 1). Hence, to
verify the alleged exceptionality of ` for r, it suffices to check that the first
b r(`−1)

12 c coefficients of ∆rδ` |U` vanish modulo `.
Other computational methods may also be used. For example, using

methods different than ours, Kiming and Olsson [K-O, Theorem 4] deter-
mined all r for which ` ≤ 19 is exceptional. We also note that, in recent
work, Stanger [St, Theorem 1] used modular functions to develop a different
computational criteria. He used this criteria to classify all r for which a fixed
` ≤ 71 is exceptional.
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[S3] —, Sur la lacunarité des puissances de η, Glasgow Math. J. 27 (1985), 203–221.
[St] A. D. Stanger, Exceptional congruences for powers of the partition function,

Ramanujan J., to appear.
[SwD] H. P. F. Swinnerton-Dyer, On `-adic representations and congruences for co-

efficients of modular forms, in: Lecture Notes in Math. 350, Springer, 1973,
1–55.

Department of Mathematics
University of Illinois
Urbana, IL 61801, U.S.A.
E-mail: boylan@math.uiuc.edu

Received on 17.2.2003 (4466)


