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A congruence involving the quotients of Euler
and its applications (II)

by

T. X. Car, X. D. Fu and X. Zuou (Hangzhou)

1. Introduction. In [1], the first author showed that for any odd n > 1,

(n—1)/2
1
(1) ~ = —2g5(n) + ng3(n) (modn?),
7":1
(r;n)=1
where
i¢(n) _ 1 , .
QZ(n) — Ta (Zvn) ]

is Euler’s quotient of n with base i. In particular, if n is prime, (1) becomes
Lehmer’s famous congruence (cf. [2] or [3])

> % = —22(p) + pa3(p) (modp?),

which, along with some other congruences, plays an important role in study-
ing the first case of Fermat’s last theorem. In this paper, we wish to general-
ize some other congruences of Lehmer to arbitrary positive integer moduli.

THEOREM 1. Ifn is odd, then
[n/2] 1

@) Y o =) - ) (modn?),  (3n)=1
r=1
(r,n)=1

Ln/3]

() Y =g as(n) — nad(n) (modn?), (3,m)=1
r=1

(r,n)=1
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1 3 3
(4) Z a4 q2(n) — 3 ngs(n) (modn?), (3,n)=1
r=1
(r,n)=1
[n/6)
1 1 1 1 1
(5) > &, = 320+ 76l - gnqg(n) -3 ngZ(n) (modn?),
r=1
s (15,n) = 1.

As an application of Theorem 1, we have the following result.

THEOREM 2. Ifn is odd, then

o ()™

(=1)#3()(32M0+1 _1)/2 (mod n?), (3,n) =1,

dn
d—1\"D g et 2 _
(7) H(Ld/@) = (—1)% (3.2 2) (modn?), (3,n)=1,
d— 1\ g2 gom 1 _ 2
(8) E(Ld/ﬁJ) = (—1)%(™(2 +3 5)/2 (modn?),
(15,n) =1,
where

din
is the generalized Fuler totient function.

REMARK. We shall prove in Lemma 4 below that (—1)%<(") = —1 only
when n is a prime power p* with p = 2 (mod 3) fore =3, p =5 or 7 (mod 8)
fore=4,and p=7 or 11 (mod12) for e = 6.

COROLLARY 1. If p,q are distinct odd primes, then

()57 1)) s

() =0 -2 5 i) e

pqg—1 1 p—1 q—1
(rsg) =z @00+ 3007 =500} () (o
However, we have not been able to generalize the following formula of

Lehmer to arbitrary positive integer moduli:

lp/4] 1
> 5= (-1)P~V/24F, 5 (modp)

r=1

[\)

\V)
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for any prime p > 5, where Fs, is the 2nth Euler number which can be
defined by the generating function

& 2n

secx = Z(—l)"Egn i

n=0 W

What we prove is the following result.

™
f; < .
or |x| 5

THEOREM 3. If p is an odd prime and [ > 1, then
Lp' /4]
S L= (), { (modp!)  forp =5,
o (mod 3"=1)  for p = 3.

2. Auxiliary results

LEMMA 1. Ifp > 5 is a prime and k > 2, [, t are positive integers, and
s is the least positive residue of p' modulo t, then

Lp'/t] 2%—1 21
_ t s 2k
9) (p'—tr)? 1 = o {B2k_BQk (—)+p—< )B%—z} (mod p?),

2
= t t 2
lp'/t] 2%
t 2k +1 s
10 b )2k = !By — B Z dp3-!
(10) ;(P r) 2k+1{ - P Baw — B | (modp™ ™),
B
(11) p(éi(pil) =1 (modp?),
p_

where By, is the nth Bernoulli number.
Proof. It is well-known that
Byi1(z+1) — Byyi(z) = (v + 1)2”.

Welet 2 = (p'—rt)/t (r = 1,...,|p'/t]), and add all the resulting equations;
after cancellation we obtain

(12) L%J(pl —tr)’ = vi : {BUH (Z%l) — Byt <§> }

r=1

where we have written s for the least positive residue of p! modulo ¢. From
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and the von Staudt—Clausen theorem for k£ > 2 we have

! 2k
sz(%) sz+ ( >sz 5 (modp?),

! 2k +1 _
B2k+1<%> = By, ; p' (modp® ).

Taking v = 2k and v = 2k + 1 in (12), from the above congruences we get
(9) and (10) respectively.

Now we prove (11). Taking 2k = ¢(p?) and ¢ = 1 in (10), noting that
Bsk1+1(1) = 0, we have

p'-1 P
1 l _
(13) Z row*) = Z(pl — )P = plB¢(pzz) (mod p*~1).
r=1 r=1
(rp)=1

By using the fundamental congruence

2a(P*) + a(0*) = qup(p*) (mod p*),

we have
pl—1 o) I 21
1) Y g = Thertenl) . el
(rpet
= —¢(p")wy (modp),
where
Wy = ( H 1+ 1)/pl
1<i<pl,pti
is the generalized Wilson quotient. Note that
p-1 p'-1
(15) Z T¢(p21) _ Z 1+ qr(le)p%)'
e (r)=1
Combining (13)—(15), we have
p-1
P B¢ 2y = 1=¢(p modp3l*1),

r=1
(rp)=1
and (11) is obtained.
LEMMA 2 ([2]). Ifv is even, e = 2,3,4, or 6, then

pe) = () =T gy

qle
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where q is a prime factor of e. If v is odd and e = 4, then

1 3 vE, 1
() = o(3) -5

LEMMA 3. If p > 5 is a prime, l,d > 1, e > 2, pfe, d = £1 (mode)
then

|dp'/e] 1 [p'/e]
Z 2l).
— dp' —er
pir
Proof. Let
[ ! e
Ldpz/:J 1 - Lpz/:J 1
— dp' — er — pl—er’
pir pir

By expanding the summands as geometric series, we have

Ldp'/e] 1 Ldp'/e] 1 Ldp'/e] 1 [p'/e] 1

; dpt —er ;pl—er+ ; pl—er_;pl—er

pir pir ptr pir
B B 1 p difej 1 Ldi/:ej 1
- pt—er

r=[p'/e]+1
P)W" pir
ldp'/e] 1 Ldp'/e) Ldp'/e]

_ (d=1)p L p 11 1 2
== L @ETa X gt 2 med)
=1 r=lp!fe+1 e+
ptr ptr pir

For any prime p > 5, let ¢ be the least positive residue of d modulo e; t = 1

or e — 1. Noting that pfe implies p' — (| (e — 1)p!/e| +1) = [p'/e], we derive
that
B 1 p [tp'/e] o Ltp'/e] 1
D=- Z > =
r=|p!/e]+1
p’[?" pir

P! [tp'/e]

1 1 1 "
e( Z r+ Z r+d0pl> (modp™),
r=[p'/e]+1 r=1
ptr pir

where dy = (d — t)/e. Recalling the well-known congruences
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| 1
~ =0 (modp?), — =0 (mod p!),
r r
r=1 r=1
pir ptr
ift=1 we get
Lp'/el
d—1 d 1
D:{—( 5 )+—0}pl —QEO(modpQZ),
e e —r
pir
and if t = e — 1 we have
L(e=1)p'/e] 1 P 1 Lp'/e] 1
[ _ _ 21
p Z ﬁZ—P Z ﬁZ—P ) (mod p™),
r=1 r=[(e~1)p!/e+1] r=1
pr‘ pf'r pir
L(e=1)p/e] 1 [P /el 1 P 1
! _
Y = (Yt X a5
r=p!/e|+1 r=1 r=|(e=1)p'/e]+1
pir pir pir
Lp'/e]
=2 3 = (modp?),
r=1
ptr
! L(e=1)p!/e] L(e=1)p!/e]
1 1 1
Z r Z r+dopt Z <pl—7“+7’+dopl>
r:|_pl/ej+l r=1
ptr pM ptr
L(e=1)p'/e] Lp'/e] 1
_ [ 21
=—(1+dy)p zzl 3= (1 + do)p’ 2:1 2 (mod p™),
ptr ptr
therefore,
Lp!/e]
_fd-1 2 1 ! 1 9
ptr
LEMMA 4. Let e =2,3,4 or 6, n be odd, 31n fore =3 or 6. Then
(_1)¢e(n) -1

only when n is a prime power p* with p = 3 (mod4) fore = 2, p = 2
(mod3) fore=3,p=3 or5 (mod8) fore=4, and p =7 or 11 (mod 12)
for e =6.

Proof. Let pi* ---p%* be the standard factorization of n. If e = 2, we
assume that p; = t; (mod4), t; = £1. Then



Congruence involving the quotients of Euler 209

ﬁl ﬁs ﬁl ﬁs
B Pt ep B 1— 7. ¢
b= Y {J_E_LJ: y ool
a;—1<8;<a; a;—1<8;<a;
1<i<s 1<i<s
ﬁl ﬁs
1-—t¢ 1—t¢
. Eope gy 2285 (0d ),
2 2
a;—1<B; <oy
1<i<s
Since for any 1 < j <s,
Bj Bj
1-—-¢7 1-t7
i _ J
> == X 1) X —
a;—1<8;<a; o;—1<8;<ay; a;—1<8;<a;
1<i<s 1<i<s, i#j
/6.
1-t7
— 2871 J
Z 2 ’
a;—1<B;<a;
we have
ﬁl ,Bs
1-—t¢ 1—t
— os—1 1 s
am=r{ ¥ e v 28
a1—1<B1<a; as—1<Bs<as
=251 Z (mod 2),
1<i<s
ti=—1
where we use the fact that for any odd aq,...,as,
1—ai--- 1— 1—
a; == 2a1+”" % (mod2),

and ¢o(n) is odd only when n is a prime power p' with p = 3 (mod4).
If e = 3, we assume that p; = t; (mod6), t; = 1. Then

/81 Bs B1 Bs

a;—1<B;<ay a;—1<B8;<a;
1<i<s 1<i<s

1t 1t
3 { AN

a;—1<B; <oy

1<i<s
1— 1—¢2

= 25_1 S v d

{ ¥ Sres ¥ 05

a1 —1<B1<aq as—1<Bs<as
=951 Z (mod 2),

1<i<s

ti=—1

and ¢3(n) is odd only when n is a prime power p' with p = 2 (mod 3).
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If e = 4, we assume that p; = t; (mod8), t; = &1 or +3. Then

G

a;—1<B;<ay;
1<i<s
- ¥ (L=t 0B =ty 1)
a;—1<B;<a; 8
1<i<s
O k(G A it 9 )
o 8 8
a;—1<B;<a;
1<i<s
1 (1—t)B -1 1
=2 Z Z L 5 Lo =257 Z 1 (mod2),
1<i<s a;—1<B;<a 1<i<s
ti=—1lor—3
where we use the fact that for any odd aq,...,as,
1_?_.3_?_. 1—a:))(3 - a;
( Hz_l azl:( H’L—l a’l) = Z ( al)é al) (mod2),

1<i<s

and ¢4(n) is odd only when n is a prime power p! with p =5 or 7 (mod8).
If e = 6, we assume that p; = t; (mod 12), t; = +1, or +5. Then

ps(n) = Z {MJ

a;—1<B; <oy
1<i<s

3 (L=t (5=t #d)
12

a;—1<B; <oy
1<i<s

B B1 Bs Bs
R (L IR LR 2]

12 12
a;—1<8;<a;
1<i<s

Bi Bi
=251 Z Z (-1 igﬁ — ) =251 Z 1 (mod?2),

1<i<s a;—1<f;<a; 1<i<s
ti=—1lor—5

where we use the fact that for any a; = +1 or £5 (mod 12), 1 <i < s,

(LIl a)(5 Tl ai) _ (1 —ai)(5—a)
BT == 12 (mod2),

1<i<s

and ¢g(n) is odd only when n is a prime power p! with p = 7 or 11 (mod 12).
This completes the proof of Lemma 4. =
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3. Proof of Theorem 1

Proof of (2). We first assume that n = p' with prime p > 5. Taking t = 2
and 2k = ¢(p*) in (9), by using Lemma 2 with e = 2 and (11), we have

(r'-1)/2 1 (r'—1)/2 )
1 = L gp)or™)-1
W Y = X W
pir 1
= a(”) = 0:(0) — 5 B (modp™).
Now, let n = p'm, p > 3, m > 1, p{m. By Lemma 3 and (16),
(n—1)/2 1 (n—1)/2 1 (n—1)/2 1
17 = —
(17) ; n—2r ; n—2r Tz::l n—2r
(ryn)=1 ptr pir
qlr
(n—1)/2 1
_1)®
oot (=) ; n —2r
ptr
q1"'(Ig|7'
(»'-1)/2
1 1
= 1—-
( CI> 2 pt—2r
qlm r=1
ptr
_ ¢(m) 1
== @0) - 5'EE) ) (modp™),
where ¢; (1 <1i < g) are the prime factors of m.
On the other hand,
1+ I \\o(m) _ 1
pm
m m —1
= ¢( )q2(pl) ¢( )(¢( ) )plq%<pl) (modpzl),
2
naj(n) = n( w0!)) = T o)) (mods®),
hence
1 d(m 1
(18) o) - §ngn) = 2 <CJ2 - BN mod ).
Combining (17) with (18) yields (2).

Proof of (3). Similarly, we first assume that n = p! with prime p > 5.
Taking ¢t = 3 and 2k = ¢(p*) in (9), by using Lemma 2 with e = 3 and (11),
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we have
(P —-1)/3] 1 L(pt—1)/3] -
1 = I _ 3.\0(0*)-1
( 9) ; pl — 3’[" vt (p 37’)
pir
_ 1 oy _ 1 ] L oo 01 2
= §Q3(p ) = 5(]3(1? ) — qu(p )p" (mod p*).

If n = p'm, p > 5, m > 1, pfm, 3tm, noting that m = £1 (mod 6), by using
Lemma 3 and (19), we can prove (3) in a way similar to (2).

Proof of (4). Taking t = 4 and 2k = ¢(p*) in (9), by using Lemma 2
with e =4 and (11), we have

L(p'~1)/4] 1 L(p'~1)/4] )
2 = b gy -1
(20) ;1 T 2 (p' —4r)
pir

= 1 @)+ 60™) = 66 - 5 @0 (mod ),

If n = plm, p > 5, m > 1, pfm, noting that m = +1 (mod4), by using
Lemma 3 and (20), we can prove (4) in a way similar to (2).

Proof of (5). Taking t = 6 and 2k = ¢(p*) in (9), by using Lemma 2
with e = 6 and (11), we have

Lw'-v/e) L' ~1)/6] -
21 = L 6r)o™)—1
(21) ; o 6r 2 (p" —6r)
ptr

1 1 1
a(p') + 1 g3 (p') — gplqg(p’) — gplq§(pl) (mod p?).

If n=pm, p>7, m>1, ptm, noting that 2¢n, 3fn, m = +1 (mod6), by
using Lemma 3 and (21), we can prove (5) once again as above.

4. Proof of Theorem 2. Define

Then
[n/e] [n/e]
P VgL PO
r=1 din r=1 dln din
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where
ld/e] d—r
T, = .
y ];[1 .
(r,d)=1

Using the M&bius inversion formula, we have

d—1 p(n/d)
7 — T AP — ( )
H ¢ H Ld/e]
On the other hand,
[n/e] n_r o [n/e] n
22 TYL = = (-1 be(n 1— —
(22) Il == 1 (1-2)
(r,n)=1 (r,n)=1
[n/e] 1
= (—1)¢e<”>{1—n —}
r=1 "
(r,n)=1
o [n/e] 1
— (_1)9e(n 2
=(-1) {1+en ; n—er}(mOdn)’
(r,n)=1

where

(B SEED 3 WO Y P B |

( ) r=1 d|(r,n) dln
rn)=1

and applying Lemma 4 and (2)—(4) to (22), respectively, we complete the

proof of Theorem 2.

If we set d = pg in Theorem 2, then Corollary 1 can be derived easily
with the help of Lemma 4.

5. Proof of Theorem 3. Taking t = 4 and 2k = ¢(p') — 2 in (10), and
using the von Staudt—Clausen theorem, we have

[p'/4] [p*/4]
(23) Y 1o ST oreh=2 = M { (modp')  forp>5,
r=1 r? r=1 ¢( ) -1 (mod 3l_1) for p = 3,

ptr

where we have written s for the least positive residue of p' modulo 4. By
using Lemma 2, we have
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!
s 1yyg (6(0") = D) Egpy_o
(24) B¢(pl)_1<1> = —(=1)P-V/ P .
Applying (23) to (24) yields
1p'/4]

1 . (mod p') forp>5
— = (-1)P-D/YE { ’
Z r? (=1) o(p) -2 (mod3'~1) for p = 3,

r=1
pir

which completes the proof of Theorem 3.
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