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Introduction. There are many different methods of expansion and en-
coding (representation) of real numbers by using a finite or an infinite alpha-
bet A. The s-adic expansions, continued fractions, f -expansions, the Lüroth
expansions etc. are widely used in mathematics (see, e.g., [17]). Each repre-
sentation has its own features and generates its own “geometry” and metric
theory. To each representation there is associated a system of cylindrical sets,
partitioning the unit interval (or the real line). From the ratios of the lengths
of cylindrical sets the basic metric relations follow (in the form of equalities
and inequalities) which are crucial for the development of the corresponding
metric theory, i.e., a theory about measure (e.g., Jordan, Lebesgue, Haus-
dorff, Hausdorff–Billingsley, . . . ) of sets of real numbers defined by charac-
teristic properties of their digits in the corresponding representation (see,
e.g., [1, 2, 6, 9, 10, 15, 17]).

The present paper is devoted to the investigation of the expansion of
real numbers in the first Ostrogradsky series (introduced by M. V. Ostro-
gradsky (1801–1862), a well known Ukrainian mathematician). In this case
the alphabet A coincides with the set N of positive integers.

The expansion

(1) x =
1

q1
−

1

q1q2
+ · · · +

(−1)n−1

q1q2 . . . qn
+ · · · ,

where the qn are positive integers and qn+1 > qn for all n, is said to be the
expansion of x in the first Ostrogradsky series. The expansion

(2) x =
1

q1
−

1

q2
+ · · · +

(−1)n−1

qn
+ · · · ,

where the qn are positive integers and qn+1 ≥ qn(qn + 1) for all n, is said
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to be the expansion of x in the second Ostrogradsky series. Each irrational
number has a unique expansion of the form (1) or (2). Rational numbers
have two different finite representations of the above forms (see, e.g., [16]).

Equality (1) can be rewritten as

(3) x =
1

g1
−

1

g1(g1 + g2)
+ · · · +

(−1)n−1

g1(g1 + g2) . . . (g1 + · · · + gn)
+ · · · ,

where g1 = q1, gn+1 = qn+1− qn for any n ∈ N. The expression (3) is said to

be the O
1
-representation and the number gn = gn(x) is the nth O

1
-symbol

of x.

Shortly before his death, M. V. Ostrogradsky found two algorithms for
the representation of real numbers via alternating series of the form (1)
and (2), but he did not publish them. Short unpublished remarks of Ostro-
gradsky concerning the above representations have been found by E. Ya. Re-
mez [16]. Some similarities between the Ostrogradsky series and continued
fractions have been pointed out in the same paper. E. Ya. Remez also dealt
with applications of the Ostrogradsky series to numerical solution of alge-
braic equations. In the editorial comments to the book [6] B. V. Gnedenko
has pointed out that there are no fundamental investigations of properties of
the above mentioned representations. Analogous problems were studied by
W. Sierpiński [18] and T. A. Pierce [11] independently. Some algorithms for
representation of real numbers by means of positive and alternating series
were proposed in [18]. Two of these algorithms lead to the Ostrogradsky
series (1) and (2). An algorithm leading to the representation of irrational
numbers in the form (1) has also been considered in [11]. An algorithm for
a general alternating series expansion for real numbers in terms of rationals
has been considered in [5], where the so-called alternating Lüroth and mod-
ified Engel-type expansions were also studied. This algorithm also leads to
expansions of real numbers in Ostrogradsky series.

Let us mention some papers devoted to applications of the Ostrogradsky
series. Connections between the Ostrogradsky algorithms and the algorithm
for continued fractions have been established in [4]. This book also con-
tains generalizations of the above algorithms. In [7] different types of p-adic
continued fractions have been constructed on the basis of p-adic analogs of
the Euclid and Ostrogradsky algorithms. Combining the algorithms of En-
gel and Ostrogradsky in a special way, the same author [8] has constructed
an algorithm for representation of real numbers via series which converge
faster than the corresponding Engel and Ostrogradsky series. The paper
[19] is devoted to the investigation of the first Ostrogradsky algorithm and
to the determination of the expectation of the random variables (qj + 1)ν ,
ν ≥ 0, and rn =

∑∞
j=n+1 (−1)j+1/q1 . . . qj , where the qj = qj(α) are ran-

dom variables depending on the random variable α, uniformly distributed
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on the unit interval. In the same paper a generalization of the Ostrogradsky
algorithm to approximations in Banach spaces has been proposed.

In this paper we continue to study the “geometry” of the representation
generated by the first Ostrogradsky series [3, 13, 14]. In Section 1 we prove

basic metric relations for the O
1
-representation and compare them with the

corresponding relations for continued fractions. Section 2 is devoted to the

study of the set C[O
1
, {Vn}], consisting of the real numbers whose nth O

1
-

symbols take values from the set Vn ⊂ N, for each n ∈ N. Conditions for the

set C[O
1
, {Vn}] to be of zero resp. positive Lebesgue measure λ are found. In

particular, we prove that λ(C[O
1
, {Vn}]) > 0 if Vn = V = {m+1, m+2, . . . },

where m is an arbitrary positive integer. This marks an essential difference

between the metric theories of continued fractions and O
1
-representations.

1. Representations of real numbers by the Ostrogradsky series

Definition 1. A finite or an infinite expression

(4)
∑

n

(−1)n−1

q1 . . . qn
=

1

q1
−

1

q1q2
+ · · · ,

where the qn are positive integers and qn+1 > qn for all n, is called the
first Ostrogradsky series (hereafter, the Ostrogradsky series). The numbers
qn are called the elements of the Ostrogradsky series (4).

We denote the expression (4) briefly by O1(q1, . . . , qn) if it contains a
finite number of terms, and we speak in this case of a finite Ostrogradsky
series. We write O1(q1, q2, . . . ) in the case of infinitely many terms.

It is known (see, e.g., [16]) that every Ostrogradsky series is convergent
and its sum belongs to [0, 1], and any real number x ∈ (0, 1) can be repre-
sented in the form (4). If x is irrational then the expression (4) is unique and
it has an infinite number of terms. If x is rational then it can be represented
in the form (4) in two different ways:

x = O1(q1, . . . , qn−1, qn, qn + 1) = O1(q1, . . . , qn−1, qn + 1).

We can find the elements of the Ostrogradsky series for a given number
x using the following algorithm:

1 = q1x + α1 (0 ≤ α1 < x),

1 = q2α1 + α2 (0 ≤ α2 < α1),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 = qnαn−1 + αn (0 ≤ αn < αn−1),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Let
g1 = q1, gn+1 = qn+1 − qn for any n ∈ N.

Then one can rewrite (4) in the form

(5)
∑

n

(−1)n−1

g1(g1 + g2) . . . (g1 + · · · + gn)
=

1

g1
−

1

g1(g1 + g2)
+ · · · .

We denote the expression (5) by O
1
(g1, g2, . . . ). A representation of a number

x ∈ (0, 1) by (5) is called the O
1
-representation and gn = gn(x) is the nth

O
1
-symbol of x.
Let c1, . . . , cm be a fixed sequence of positive integers.

Definition 2. The set O
1
[c1...cm], which is the closure of the set of all

x ∈ (0, 1) whose first m O
1
-symbols are c1, . . . , cm is said to be the cylindrical

set (cylinder) of rank m with base (c1, . . . , cm), i.e.,

O
1
[c1...cm] = ({x : x = O

1
(g1(x), . . . ), gk(x) = ck, 1 ≤ k ≤ m})cl.

It is not hard to prove that O
1
[c1...cm] is a closed interval of length

(6) |O
1
[c1...cm]| =

1

σ1 . . . σm(σm + 1)
,

where σk =
∑k

i=1 ci.

Remark. We shall denote by O
1
(c1...cm) the interior of O

1
[c1...cm].

Let us mention that the cylindrical set O
1
[11...1
︸︷︷︸

m

] has the largest length

among all cylindrical sets of rank m, namely

|O
1
[11...1
︸︷︷︸

m

]| =
1

(m + 1)!
,

and there exist cylindrical sets of different ranks with the same length. For
instance,

|O
1
[1c]| = |O

1
[c+1]|, |O

1
[1c2c3...cm]| = |O

1
[(c2+1)c3...cm]|.

Lemma 1. For any given s ∈ N, the ratio of the lengths of the cylindrical

sets O
1
[c1...cms] and O

1
[c1...cm] is

(7)
|O

1
[c1...cms]|

|O
1
[c1...cm]|

=
a

(a + s − 1)(a + s)
= fs(a),

where a = 1 + σm. Moreover ,

(8) fs(a) ≤
1

2(2s − 1)
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and for m ≥ s − 1,

(9)
|O

1
[c1...cms]|

|O
1
[c1...cm]|

≤
m + 1

(m + s)(m + s + 1)
.

Proof. Equality (7) follows directly from (6). Consider

fs(x) =
x

(x + s − 1)(x + s)

as a function of x ≥ 1. This function increases on [1,
√

(s − 1)s] and de-

creases on [
√

(s − 1)s,∞). Since a takes only positive integer values, we
have

max
a∈N

fs(a) = fs(s − 1) = fs(s) =
1

2(2s − 1)
.

So, inequality (8) holds.
As fs(x) decreases on (s,∞), we have fs(a) ≤ fs(m+1), so inequality (9)

holds.

Corollary. If c1 + · · · + cm = s1 + · · · + sk then

|O
1
[c1...cms]|

|O
1
[c1...cm]|

=
|O

1
[s1...sks]|

|O
1
[s1...sk]|

.

Remark. Let ∆c.f.
c1...cm

be a cylindrical set generated by the continued
fraction representation of real numbers. It is well known (see, e.g., [6]) that

(10)
|∆c.f.

c1...cms|

|∆c.f.
c1...cm

|
=

1

s2
·

1 + Qm−1

Qm

(
1 + Qm−1

sQm

)(
1 + 1

s + Qm−1

sQm

) ,

where Qk is the denominator of the kth convergent of the continued fraction
[c1, c2, . . . ], i.e.,

Qk = ckQk−1 + Qk−2 with Q0 = 1, Q1 = c1.

From (10) it follows that

1

3s2
<

|∆c.f.
c1...cms|

|∆c.f.
c1...cm

|
<

2

s2

for any sequence (c1, . . . , cm) and for any s ∈ N. For the O
1
-representation

we have fs(a) → 0 as a → ∞, and Lemma 1 shows the fundamental differ-
ence between metric relations in the representation of numbers by the first
Ostrogradsky series and by continued fractions.

Lemma 2. Let O
1
[c1...cm] be a fixed cylindrical set. Then

λ
( k⋃

s=1

O
1
[c1...cms]

)

=
k

σm + k + 1
|O

1
[c1...cm]|.
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Proof. From (6) it follows that

λ
( k⋃

s=1

O
1
[c1...cms]

)

=
k∑

s=1

|O
1
[c1...cms]|

=
1

σ1 . . . σm

k∑

s=1

1

(σm + s)(σm + s + 1)

=
1

σ1 . . . σm

(
1

σm + 1
−

1

σm + k + 1

)

=
1

σ1 . . . σm(σm + 1)
·

k

σm + k + 1

= |O
1
[c1...cm]|

k

σm + k + 1
,

which proves Lemma 2.

Corollary 1. For any k ∈ N and for any sequence (c1, . . . , cm),

1

σm + 2
|O

1
[c1...cm]| ≤ λ

( k⋃

s=1

O
1
[c1...cms]

)

≤
k

m + k + 1
|O

1
[c1...cm]|.

Remark. If V ⊂ N, then it is evident that
∑

s∈V

|O
1
[c1...cms]| = |O

1
[c1...cm]| −

∑

s∈N\V

|O
1
[c1...cms]|.

Corollary 2. Let O
1
[c1...cm] be a cylindrical set. Then

λ
( ∞⋃

c=k+1

O
1
[c1...cmc]

)

=
σm + 1

σm + k + 1
|O

1
[c1...cm]|.

Corollary 3. For any k ∈ N and for any sequence (c1, . . . , cm)

m + 1

m + k + 1
|O

1
[c1...cm]| ≤ λ

( ∞⋃

c=k+1

O
1
[c1...cmc]

)

≤
σm + 1

σm + 2
|O

1
[c1...cm]|.

2. The set C[O
1
, {Vn}]. In this section we shall study the metric prop-

erties of the set C[O
1
, {Vn}], which is the closure of the set {x : gn(x) ∈

Vn, n ∈ N}, consisting of the real numbers x ∈ [0, 1] whose O
1
-symbols sat-

isfy the condition gn(x) ∈ Vn, where {Vn} is a fixed sequence of nonempty
subsets of N.

It is evident that

(1) if Vn = N for all n ∈ N, then C[O
1
, {Vn}] = [0, 1],

(2) if Vn = N for all n > n0, then C[O
1
, {Vn}] is a union of segments.
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We are interested only in the case where Vn 6= N for infinitely many n.
Let

Fk =
( ⋃

c1∈V1

. . .
⋃

ck∈Vk

O
1
[c1...ck]

)cl
,

where cl stands for closure, let F0 = [0, 1] and let F k+1 = Fk \ Fk+1. It is
not hard to prove that

C[O
1
, {Vn}] =

∞⋂

k=1

Fk.

It is a perfect set (that is, a closed set without isolated points). If Vn 6= N

for infinitely many n, then it is a nowhere dense set. Then

λ(Fk) =
∑

c1∈V1

. . .
∑

ck∈Vk

1

σ1 . . . σk(σk + 1)
,

λ(F k+1) =
∑

c1∈V1

. . .
∑

ck∈Vk

∑

s/∈Vk+1

1

σ1 . . . σk(σk + s)(σk + s + 1)

=
∑

c1∈V1

. . .
∑

ck∈Vk

(
1

σ1 . . . σk

∑

s/∈Vk+1

1

(σk + s)(σk + s + 1)

)

,

and from the continuity of Lebesgue measure it follows that

λ(C[O
1
, {Vn}]) = lim

k→∞
λ(Fk).

Lemma 3. The Lebesgue measure of C[O
1
, {Vn}] is 0 if and only if

∞∑

k=1

λ(F k+1)

λ(Fk)
= ∞.

Proof. We have

λ(C[O
1
, {Vn}]) = lim

k→∞
λ(Fk+1) = lim

k→∞

λ(Fk+1)

λ(Fk)
·

λ(Fk)

λ(Fk−1)
· . . . ·

λ(F1)

λ(F0)

=
∞∏

k=0

λ(Fk+1)

λ(Fk)
=

∞∏

k=0

λ(Fk) − λ(F k+1)

λ(Fk)

=

∞∏

k=0

(

1 −
λ(F k+1)

λ(Fk)

)

= 0

if and only if
∞∑

k=1

λ(F k+1)

λ(Fk)
= ∞,

since 0 ≤ λ(F k+1)/λ(Fk) < 1.
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First of all we shall study the problem of determining the Lebesgue

measure of C[O
1
, V ] = C[O

1
, {Vn}] with Vn = V , a fixed proper subset of

positive integers. The sets C[O
1
, V ] with

(1) V = {1, . . . , m},
(2) V = {m + 1, m + 2, . . . },
(3) V = {1, 3, 5, . . . }

are the simplest among C[O
1
, V ].

Let us solve the first problem in a more general setting.

Theorem 1. If Vk contains nk symbols (k ∈ N) and

lim
k→∞

n1 . . . nk

(k + 1)!
= 0

then λ(C[O
1
, {Vk}]) = 0.

Proof. From the properties of cylindrical sets it follows that

λ(Fk) =
∑

vi∈Vi

i=1,k

|O
1
[v1...vk]| ≤

n1 . . . nk

(k + 1)!

and

λ(C[O
1
, {Vk}]) = lim

k→∞
λ(Fk) ≤ lim

k→∞

n1 . . . nk

(k + 1)!
= 0.

Corollary. If nk ≤ m (for any k ∈ N) for some fixed m, then we have

λ(C[O
1
, {Vk}]) = 0.

Theorem 2. Let Vk = {1, . . . , mk}, mk ∈ N. If
∑∞

k=1 1/mk = ∞, then

λ(C[O
1
, {Vn}]) = 0.

Proof. Let O
1
[c1...ck] be a fixed cylindrical set of rank k. Then

∑

c/∈Vk+1

|O
1
(c1...ckc)| =

1

σ1 . . . σk

∞∑

c=mk+1+1

1

(σk + c)(σk + c + 1)

=
1

σ1 . . . σk(σk + mk+1 + 1)
.

Since
1

σk + mk+1 + 1
>

1

(mk+1 + 1)(σk + 1)
,

we have
∑

c/∈Vk+1

|O
1
(c1...ckc)| >

1

mk+1 + 1
|O

1
[c1...ck]|.
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Summing over all c1 ∈ V1, . . . , ck ∈ Vk, we have

λ(F k+1) >
1

mk+1 + 1
λ(Fk), i.e.,

λ(F k+1)

λ(Fk)
>

1

mk+1 + 1

for any k ∈ N, and the statement follows directly from Lemma 3.

Let E be the set of all real numbers with bounded O
1
-symbols, i.e.,

x ∈ E iff there exists a constant Kx such that gk(x) ≤ Kx for all k ∈ N.

Theorem 3. The Lebesgue measure of E is 0.

Proof. For m ∈ N, consider the set Em = {x : gk(x) ≤ m, ∀k ∈ N} of

uniformly m-bounded symbols. It is not hard to see that Em = C[O
1
, {Vk}]

with Vk ={1, . . . , m}. From Theorem 2 it follows that λ(C[O
1
, {Vk}]) = 0.

Since E =
⋃∞

m=1 Em and λ(Em) = 0, we have the desired conclusion.

Corollary. For Lebesgue almost all x ∈ [0, 1],

lim
k→∞

gk(x) = ∞.

Now consider the case where Vk = {vk +1, vk +2, . . . } and {vk} is a fixed
sequence of positive integers.

Lemma 4. Let O
1
[c1...cn] be a fixed cylindrical set or , if n = 0, the unit

interval [0, 1]; let {vk} be a fixed sequence of positive integers, let Vk =
{vk + 1, vk + 2, . . . }, and let

F c1...cn

k := Fn+k ∩ O
1
[c1...cn] =

⋃

cn+1>vn+1

. . .
⋃

cn+k>vn+k

O
1
[c1...cncn+1...cn+k],

F
c1...cn

k+1 := F c1...cn

k \ F c1...cn

k+1 =
⋃

cn+1>vn+1

. . .
⋃

cn+k>vn+k

vn+k+1⋃

s=1

O
1
(c1...cncn+1...cn+ks).

Then

(11)
λ(F

c1...cn

k+1 )

λ(F
c1...cn

k )
<

1

2
·
vn+k+1

vn+k
.

Proof. Let O
1
(c1...cn+k−1)

be a cylindrical interval of rank n + k− 1. Then

∑

s/∈Vn+k

|O
1
(c1...cn+k−1s)| =

vn+k∑

s=1

1

σ1 . . . σn+k−1(σn+k−1 + s)(σn+k−1 + s + 1)

=
1

σ1 . . . σn+k−1

(
1

σn+k−1 + 1
−

1

σn+k−1 + vn+k + 1

)

=
vn+k

σ1 . . . σn+k−1(σn+k−1 + 1)(σn+k−1 + vn+k + 1)
.
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For the same cylindrical interval we have
∑

l∈Vn+k

∑

s/∈Vn+k+1

|O
1
(c1...cn+k−1ls)|

=
∞∑

l=vn+k+1

1

σ1 . . . σn+k−1(σn+k−1 + l)

(
1

σn+k−1 + l + 1

−
1

σn+k−1 + l + vn+k+1 + 1

)

=
1

σ1 . . . σn+k−1

∞∑

l=vn+k+1

(
1

(σn+k−1 + l)(σn+k−1 + l + 1)

−
1

(σn+k−1 + l)(σn+k−1 + l + vn+k+1 + 1)

)

=
1

σ1 . . . σn+k−1

(
1

σn+k−1 + vn+k + 1

−
1

1 + vn+k+1

vn+k+1+1
∑

i=1

1

σn+k−1 + vn+k + i

)

=
vn+k

σ1 . . . σn+k−1(σn+k−1 + 1)(σn+k−1 + vn+k + 1)
Xk.

Let us estimate the expression

Xk =
(σn+k−1 + 1)(σn+k−1 + vn+k + 1)

vn+k

(
1

σn+k−1 + vn+k + 1

−
1

1 + vn+k+1

1+vn+k+1∑

i=1

1

σn+k−1 + vn+k + i

)

=
σn+k−1 + 1

vn+k

(

1 −
1

1 + vn+k+1

1+vn+k+1∑

i=1

σn+k−1 + vn+k + 1

σn+k−1 + vn+k + i

)

=
σn+k−1 + 1

vn+k

(

1 −
1

1 + vn+k+1

1+vn+k+1∑

i=1

(

1 −
i − 1

σn+k−1 + vn+k + i

))

=
σn+k−1 + 1

vn+k
·

1

1 + vn+k+1

1+vn+k+1∑

i=2

i − 1

σn+k−1 + vn+k + i
.

Now let us estimate the sum

1

n0 + 1
+

2

n0 + 2
+ · · · +

mk

n0 + mk
,
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where n0 and mk > 1 are positive integers. Let

Ck :=
1

n0 + 1
+

1

n0 + 2
+ · · · +

1

n0 + mk

and consider the matrix











1
n0+1

1
n0+2

1
n0+3 . . . 1

n0+mk

1
n0+1

1
n0+2

1
n0+3 . . . 1

n0+mk

1
n0+1

1
n0+2

1
n0+3 . . . 1

n0+mk

...
...

...
...

...
1

n0+1
1

n0+2
1

n0+3 . . . 1
n0+mk












.

The sum of its elements is mkCk. The sum of all elements on the main
diagonal is Ck. The sum of all elements above the diagonal is less than the
sum of those below the diagonal (for any element above the diagonal, the
symmetrical element is greater).

The sum of all off-diagonal elements is (mk − 1)Ck. So, the sum of all
elements above the diagonal is less than (mk − 1)Ck/2, and the sum of all
elements above or on the diagonal is equal to

1

n0 + 1
+

2

n0 + 2
+ · · · +

mk

n0 + mk
<

mk − 1

2
Ck + Ck =

mk + 1

2
Ck.

So,

1

n0 + 1
+

2

n0 + 2
+ · · · +

mk

n0 + mk

<
mk + 1

2

(
1

n0 + 1
+

1

n0 + 2
+ · · · +

1

n0 + mk

)

.

Therefore,

Xk =
σn+k−1 + 1

vn+k
·

1

1 + vn+k+1

vn+k+1∑

i=1

i

(σn+k−1 + vn+k + 1) + i

<
σn+k−1 + 1

vn+k
·

1

1 + vn+k+1
·
vn+k+1 + 1

2

vn+k+1∑

i=1

1

σn+k−1 + vn+k + i + 1

=
1

2vn+k

vn+k+1∑

i=1

σn+k−1 + 1

σn+k−1 + vn+k + i + 1
<

1

2
·
vn+k+1

vn+k
.

So,

∑

l∈Vn+k

∑

s/∈Vn+k+1

|O
1
(c1...cn+k−1ls)| <

1

2
·
vn+k+1

vn+k

∑

l/∈Vn+k

|O
1
(c1...cn+k−1l)|.
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Summing over all cn+1 ∈ Vn+1, . . . , cn+k−1 ∈ Vn+k−1, we have

λ(F
c1...cn

k+1 ) <
1

2
·
vn+k+1

vn+k
λ(F

c1...cn

k ),

which proves the lemma.

Corollary 1. Let Vk = {vk + 1, vk + 2, . . . }, vk ∈ N. Then

λ(F k+1) <
1

2
·
vk+1

vk
λ(F k).

Corollary 2. Let Vk = V = {m + 1, m + 2, . . . }, m ∈ N. Then

λ(F
c1...cn

k+1 ) <
1

2
λ(F

c1...cn

k )

for any positive integer k and any c1 ∈ V , . . . , cn ∈ V , and therefore,

λ(F k+1) <
1

2
λ(F k).

Theorem 4. Let {vk} be a fixed sequence of positive integers, and let

Vk = {vk + 1, vk + 2, . . . }.

If there exists k0 ∈ N such that

vk+1/vk ≤ C0 < 2 for any k > k0,

then λ(C[O
1
, {Vk}]) > 0.

Proof. Fix O
1
[c1...cn] with n > k0 and ci ∈ Vi. We shall prove that the set

∆c1...cn
= C[O

1
, {Vk}] ∩ O

1
[c1...cn]

has positive Lebesgue measure. To this end, consider O
1
[c1...cn+1], cn+1 >

vn+1, and the corresponding subset

∆c1...cn+1
= C[O

1
, {Vk}] ∩ O

1
[c1...cn+1].

From Lemma 4 it follows that

λ(F
c1...cn+1

k+1 ) <
1

2
·
vn+k+1

vn+k
λ(F

c1...cn+1

k ) ≤
1

2
C0λ(F

c1...cn+1

k )

<
1

2
C0 ·

1

2
·

vn+k

vn+k−1
λ(F

c1...cn+1

k−1 ) ≤

(
C0

2

)2

λ(F
c1...cn+1

k−1 ) · · ·

≤ (C0/2)kλ(F
c1...cn+1

1 )

for any k ∈ N. Using Lemma 2, we have

λ(F
c1...cn+1

1 ) =

vn+2∑

s=1

|O
1
(c1...cn+1s)| =

vn+2

σn+1 + vn+2 + 1
· |O

1
[c1...cn+1]|.
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So,

λ(∆c1...cn+1
) = |O

1
[c1...cn+1]| −

∞∑

k=1

λ(F
c1...cn+1

k )

> |O
1
[c1...cn+1]| −

∞∑

k=1

(C0/2)k−1λ(F
c1...cn+1

1 )

= |O
1
[c1...cn+1]| ·

(

1 −
2

2 − C0
·

vn+2

σn+1 + vn+2 + 1

)

.

Since the numbers c1, . . . , cn, vn+2, C0 are fixed, and cn+1 > vn+1, there
exists c∗ ∈ N such that

1 −
2

2 − C0
·

vn+2

σn+1 + vn+2 + 1
> 0

for any cn+1 > c∗. Hence, λ(∆c1...cn+1
) > 0 for any cn+1 > c∗, and therefore,

λ(C[O
1
, {Vk}]) > λ(∆c1...cn

) > λ(∆c1...cn+1
) > 0.

Corollary 1. Let Pn(x) = anxn+an−1x
n−1+· · ·+a1x

1+a0 with n ∈ N,

ai ∈ Z and Pn(x) > 0 for any x ∈ N. If vk = Pn(k), then λ(C[O
1
, {Vk}]) > 0.

Corollary 2. If the sequence {vk} is bounded , then λ(C[O
1
, {Vk}])

> 0.

Remark. Let us compare Theorem 4 with the corresponding proposi-
tion from the theory of continued fractions. Let C[c.f., {Vn}] be the closure
of the set of all real numbers

x = [a1(x), a2(x), . . . ],

whose continued fraction’s elements an(x) satisfy an(x) ∈ Vn for any n ∈ N

(here {Vn} is a fixed sequence of nonempty subsets of N as above). For
example, if Vn = V = N \ {1} for any n ∈ N, then λ(C[c.f., {Vn}]) = 0

(see, e.g., [6, 12]), but λ(C[O
1
, {Vn}]) > 0. So, Theorem 4 indicates an

essential difference between the metric theories of continued fractions and
O

1
-representations.

Theorem 5. Let m ∈ N and V = N \ {1, . . . , m}. Then

(12) λ(C[O
1
, V ]) >

1

(m + 1)2
.

Proof. Consider an arbitrary cylindrical set O
1
[c1] such that c1 ∈ V . From

Corollary 2 to Lemma 4 it follows that

λ(F
c1
k+1) <

1

2k
λ(F

c1
1 ).
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So, we have

λ(∆c1) = |O
1
[c1]| −

∞∑

k=1

λ(F
c1
k ) > |O

1
[c1]| − λ(F

c1
1 )

∞∑

k=0

1

2k
= |O

1
[c1]| − 2λ(F

c1
1 ).

Since

λ(F
c1
1 ) =

m∑

c=1

|O
1
(c1c)| =

m

c1 + m + 1
|O

1
[c1]| ≤

m

2m + 2
|O

1
[c1]|,

it follows that

λ(∆c1) >
1

m + 1
|O

1
[c1]|.

So,

λ(C[O
1
, V ]) =

∞∑

c1=m+1

λ(∆c1) >
1

m + 1

∞∑

c1=m+1

|O
1
[c1]| =

1

(m + 1)2
.

Finally, consider a more general case where Vk = V = N \ {a1, a2, . . . }
and {an} is an arbitrary increasing sequence of positive integers.

Theorem 6. Let {an} be an increasing sequence of positive integers

with an+1 − an ≤ d for some fixed positive integer d ≥ 2, and any n ∈ N. If

Vk = V = N \ {a1, a2, . . . }, then λ(C[O
1
, V ]) = 0.

Proof. Fix a cylindrical set O
1
[c1...ck]. Then

∑

c/∈V

|O
1
(c1...ckc)| =

1

σ1 . . . σk

∞∑

n=1

1

(σk + an)(σk + an + 1)

>
1

σ1 . . . σk

∞∑

n=1

1

(σk + a′n)(σk + a′n + d)
=

1

d
·

1

σ1 . . . σk(σk + a1)
,

where a′1 = a1 and a′n+1 = a′n + d ≥ an+1 for any positive integer n. Since

1

σk + a1
≥

1

a1(σk + 1)
,

we have
∑

c/∈V

|O
1
(c1...ckc)| >

1

a1d
|O

1
[c1...ck]|.

Summing over all c1 ∈ V, . . . , ck ∈ V , we have

λ(F k+1) >
1

a1d
λ(Fk), i.e.,

λ(F k+1)

λ(Fk)
>

1

a1d
for any k ∈ N, and the statement follows directly from Lemma 3.

Corollary 1. If Vk = V = {b1, b2, . . .} with bn+1 − bn ≥ 2, then

λ(C[O
1
, V ]) = 0.

Corollary 2. If V ={1, 3, 5, . . . } or V ={2, 4, 6, . . . } then λ(C[O
1
, V ])

= 0.
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