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Inverse Additive Number Theory. XI.
Long arithmetic progressions in sets with small sumsets
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Gregory A. Freiman (Tel Aviv)

This paper continues the series of papers on Inverse Additive Number
Theory published in 1955–1964 (see references [84]–[92], [98] in [2]).

Throughout the paper, we work with the set A ⊂ Z of cardinality |A| =
k ≥ 3. We assume that

A = {a0 = 0 < a1 < · · · < ak−1}
and that the greatest common divisor of the numbers from A is 1. Let T
denote the cardinality of the set 2A = A + A of all pairwise sums a + b of
numbers from A. Notice that T ≥ 2k − 1.

In [1] (see also the textbook [3, p. 204]), we proved the following result.

Theorem 1. For 0 ≤ b < k−2 and T = 2k−1+b, the set A is contained
in

(1) L = {0, 1, 2, . . . , k + b− 1}.

Let us give several examples of such sets for the maximal value of b =
k − 3, T = 3k − 4 and k = 8:

A = {0, 2, 4, 6, 8, 10, 11, 12},(2)
A = {0, 2, 4, 6, 7, 8, 10, 12},(3)
A = {0, 6, 7, 8, 9, 10, 11, 12}.(4)

The fact that a set A with a small doubling (small T ) may be included in a
short interval reflects only part of the whole picture.

In order to formulate the main result of the paper we define several new
notions.

Let e denote the maximal a ∈ [0, ak−1] with a /∈ 2A; if the interval
[0, ak−1] is included in 2A, then we put e = −1.
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Let c denote the minimal a ∈ [0, ak−1] with a+ak−1 /∈ 2A; if the interval
[ak−1, 2ak−1] is included in 2A, then we put c = ak−1 + 1.

In Lemma 6 we show that one always has

e < c.

We also need the following definition: the set A is called stable if

2A ∩ [0, ak−1] = A.

Examples of stable sets: {0, 6}, {0, 2, 4, 6}, {0, 3, 4, 5}.
Define

B = A ∪ (ak−1 + A).

We have B ⊂M1, where M1 = [0, 2ak−1].
Let C be a set of integers. If x ∈ [min C, max C] \ C, then we say that

x is a hole in C. For example, in (2) we have A ⊆ M = [0, 12] and the set
of holes is {1, 3, 5, 7, 9}. Note that if a is a hole in A, then (a, a + ak−1) is a
pair of holes in B; in what follows we will use only such pairs, i.e. a /∈ A.

We can now formulate the main result of this paper:

Theorem 2. In the setting of Theorem 1, we have

J = [e + 1, c + ak−1 − 1] ⊂ 2A,

and
|J | ≥ 2k − 1 + 2d,

where d is the number of holes in A in the open interval (e, c).

The most interesting result is when we assume that the interval contain-
ing A has the maximal length for a given T . The following assertion is a
consequence of Theorem 2:

Corollary 1. If T = |A + A| = 2k − 1 + b where 0 ≤ b < k − 2 and if

ak−1 = k − 1 + b,

then

(a) A1 = A ∩ [0, e + 1] is stable, i.e. A ∩ [0, e] = 2A ∩ [0, e],
(b) A2 = ak−1 − ([c− 1, ak−1] ∩A) is stable,
(c) J = [e + 1, c + ak−1 − 1] ⊂ 2A,
(d) I = [e + 1, c− 1] ⊂ A.

We see that in this case the set A may be partitioned into three parts,

A = A1 ∪ I ∪ (ak−1 −A2),

where A1 and A2 are stable, and I is an interval, and the set 2A may be
partitioned into three parts,

2A = A1 ∪ J ∪ (2ak−1 −A2),

where J is an interval.



Sets with small sumsets 327

We define the length of an interval of integers (or of an arithmetic pro-
gression) to be the number of his elements. So, the length of L in (1) is
|L| = |[0, k + b− 1]| = k + b.

We denote by M or M(A) the minimal interval containing A. From
Theorem 1 it follows that

(5) ak−1 = k − 1 + b′,

where

(6) b′ ≤ b.

Thus, the length of M = [0, ak−1] is equal to k + b′. We will now estimate b′

from below. From A ⊂ [0, k − 1 + b′] it follows that

2A ⊆ 2[0, k − 1 + b′] = [0, 2k − 2 + 2b′]

and
|2A| ≤ |[0, 2k − 2 + 2b′]| = 2k − 1 + 2b′.

Thus, from |2A| = T = 2k − 1 + b, we get

(7) b′ ≥ b/2.

From A ⊂ M = [0, ak−1] and (5), we see that the number of holes in A
is equal to b′. We have

(8) B ⊂M1 = [0, 2ak−1].

From |B| = 2k − 1 and

(9) |M1| = 2ak−1 + 1 = 2(k − 1 + b′) + 1 = 2k − 1 + 2b′,

it follows that the number of holes in B is equal to 2b′.
The following Lemmas 2–6 will be used in the proof of Theorem 2.

Lemma 2. For each pair (a, a + ak−1) of holes in B we have either

(10) a ∈ 2A,

or

(11) a + ak−1 ∈ 2A.

Proof. Let us look at A as a set of residues modulo ak−1. Our modulus,
ak−1, has k + b′−1 ≤ k + b−1 ≤ 2k−4 residues, and the sets A (mod ak−1)
and a − A (mod ak−1) contain k − 1 residues each, because the numbers 0
and ak−1 are congruent modulo ak−1. Thus, the sets of residues A and a−A
have a non-zero intersection, and therefore

(12) a ∈ 2A (mod ak−1).

But in the set of integers the residue a is represented by a or by a + ak−1. If
neither of these numbers belongs to 2A then this contradicts (12). Therefore
we have (10) or (11).
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For the pair (a, a + ak−1) of Lemma 2, one of the numbers of the pair
belongs to 2A. And the other one?

Definition. If both numbers in the pair (a, a+ak−1) belong to 2A, i.e.
(10) and (11) are valid, we call the pair unstable. This pair is called stable if
one of the numbers of the pair does not belong to 2A, and this number will
be called a stable hole. If

(13) a /∈ 2A,

the pair will be called left ; if

(14) a + ak−1 /∈ 2A,

the pair will be called right.
The number and location of pairs of different types depends to a large

extent, as we will see, on the structure of both 2A and A.
The number

b′ = ak−1 − k + 1

represents the number of holes in A and at the same time the number of
pairs of holes (a, a + ak−1) in B.

Lemma 3. In B, there are 2b′−b stable pairs of holes and b−b′ unstable
pairs of holes.

Proof. The number of holes in B is equal to 2b′. To get all 2k − 1 + b
numbers of 2A we have to add, to the 2k−1 numbers of B, b more numbers,
which are holes in B, so that the number of stable holes is equal to 2b′ − b,
and the same is the number of stable pairs (one stable hole in a stable pair).
The whole number of pairs of holes in B is equal to b′. The number of
unstable pairs is equal to

b′ − (2b′ − b) = b− b′.

In the next two lemmas, which are immediate consequences of the pigeon-
hole principle, we begin to explain why the holes in A under the conditions
of Theorem 1 are concentrated in the neighborhoods of the endpoints of
M = [0, ak−1].

Lemma 4. If a /∈ 2A, then the number of holes of A which belong to the
interval [0, a] is greater than or equal to [a/2 + 1].

Lemma 5. The number of holes in A which belong to an interval I =
[a, ak−1] when a + ak−1 is a right stable hole is greater than or equal to
[(ak−1 − a)/2 + 1].

We are now ready to prove that the numbers in the set of left stable
holes are smaller than the numbers in the set of right stable holes; the set of
numbers between these two sets in A contains only holes which are unstable,
and this ensures the existence of a long interval in 2A.
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Lemma 6. We have
e < c.

Proof. We know that e is stable in a left stable pair and so e /∈ 2A,
and from the fact that c is stable in a right stable pair (c, c + ak−1), we get
c + ak−1 /∈ 2A.

If e = c, then the pair (e, e + ak−1) would have neither element in 2A, in
contradiction to Lemma 1.

Suppose now, contrary to the conclusion, that e > c.

The number of holes in A is equal to b′. We will estimate this number
from below, using estimates of the values e and c.

Now we build a finite sequence of pairs of numbers

(15) (c1, e1), . . . , (ci, ei)

in the following manner.
Define c1 = c, e1 = e. Suppose that the pair (cj , ej) is already built,

where cj is a stable point from a right stable pair and ej is a stable point
from a left stable pair. There are the following possibilities:

(i) There exists a left stable pair (a, a + ak−1) such that cj < a < ej .
(ii) Case (i) is not valid but there exists a right stable pair (a, a+ak−1)

such that cj < a < ej .
(iii) Cases (i) and (ii) are not valid.

In case (i) put cj+1 = cj , ej+1 = a; if (ii) is true put cj+1 = a, ej+1 = ej ;
if (iii) is true put j = i, and the sequence is built. Let us mention that the
sequence (15) was built in such a way that

cj < ej , j = 1, . . . , i, [c1, e1] ⊃ · · · ⊃ [ci, ei].

Denote by x the number of holes in A which belong to the interval (ci, ei).
All these holes, because of the manner in which we built them, are unstable,
and we have, because of Lemma 4, an estimate

(16) x ≤ b− b′.

We clearly have

(17) x ≤ ei − ci − 1.

The holes in A which are in the interval [ci, ei] are perhaps counted twice
when we estimate the number of holes in A belonging to [1, ei] with the help
of Lemma 4 and when we estimate the number of holes in A belonging to
[ci, ak−1] with the help of Lemma 5. Putting all what has been said together
we obtain the inequality

b′ ≥ (ei + 1)/2 + (ak−1 − ci + 1)/2− x− 2.
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In view of (5), we get

b′ ≥ (k + b′)/2 + (ei − ci)/2− 3/2− x

and therefore
b′ ≥ k + ei − ci − 3− 2x.

Using (17) we get

b′ ≥ k − 2− x + ei − ci − 1− x ≥ k − 2− x.

Because of (16) we have

0 ≥ k − b + (b− b′)− x− 2 ≥ k − b− 2 ≥ k − (k − 3)− 2 = 1,

a contradiction.

Proof of Theorem 2. We will now use Lemmas 4–6 to estimate the length
of the interval contained in 2A. We will show that

(18) J = [e + 1, c + ak−1 − 1] ⊂ 2A

and

(19) |J | ≥ 2k − 1 + 2d,

where d is the number of holes in A in the interval (e, c).
We first prove that (18) is valid. Let f ∈ J . If f ∈ B then f ∈ 2A, because

B ⊆ 2A. If f /∈ B, then f is one of the numbers of the pair (a, a + ak−1). If
this pair is unstable, then both numbers in it belong to 2A and so f ∈ 2A.
If this pair is left stable, then a /∈ 2A and a ≤ e. Thus, f = a + ak−1 ∈ 2A.
If this pair is right stable, then a + ak−1 /∈ 2A and a ≥ c. Thus, f = a ∈ 2A.

We now prove the estimate (19). From (18) and (5) we get

(20) |J | = c + ak−1 − 1− e = k − 2 + b′ + c− e.

We now estimate c− e from below. For this we will estimate the number P
of holes in A which are less than e or larger than c. For the number P1 of
holes which are less than e we have, according to Lemma 4,

(21) P1 ≥ (e + 1)/2,

and for the number P2 of holes which are greater than c we have, according
to Lemma 5,

(22) P2 ≥ (ak−1 − c + 1)/2.

The sets P1 and P2 have an empty intersection, in view of Lemma 6, and
thus, in view of (21) and (22),

(23) P ≥ P1 + P2 ≥ (e + 1)/2 + (k − 1 + b′ − c + 1)/2.

We will get an estimate of P from above by taking the number of all pairs
b′ minus the number d of those a which are holes in A in the interval (e, c).
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Thus,
b′ − d ≥ (e + k + b′ − c + 1)/2

and

(24) c− e ≥ k + b′ + 1− 2(b′ − d) = k + 2d + 1− b′.

Because of (24) we get from (20)

|J | ≥ k − 2 + b′ + k + 2d + 1− b′ = 2k + 2d− 1.

Proof of Corollary 1. We have b′ = b. Thus the set of unstable pairs is
empty, every point of the interval [e + 1, c + ak−1 − 1] belongs to 2A.

The elements of [0, e + 1] which are holes in A may belong only to a left
stable pair, and so the set

A1 = [0, e + 1] ∩A

is stable. A similar reasoning may be applied to A2.

Example.
A = {0, 2, 4, 6, 7, 8, 9, 10, 14}.

We have here e = 5, c = 11, the set A1 = {0, 2, 4, 6} is stable, the set
A2 = {0, 4} is stable, J = [6, 24] and I = {6, 7, 8, 9, 10}.
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