Power sums of Hecke eigenvalues and application

by

J. Wu (Jinan and Nancy)

1. Introduction. Let $k \geq 2$ be an even integer and $N \geq 1$ be squarefree. Denote by $\mathrm{H}_{k}^{*}(N)$ the set of all normalized Hecke primitive eigencuspforms of weight k for the congruence modular group

$$
\Gamma_{0}(N):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): c \equiv 0(\bmod N)\right\}
$$

Here the normalization is taken to have $\lambda_{f}(1)=1$ in the Fourier series of $f \in \mathrm{H}_{k}^{*}(N)$ at the cusp ∞,

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty} \lambda_{f}(n) n^{(k-1) / 2} e^{2 \pi i n z} \quad(\operatorname{Im} z>0) \tag{1.1}
\end{equation*}
$$

Inherited from the Hecke operators, the normalized Fourier coefficient $\lambda_{f}(n)$ satisfies the relation

$$
\begin{equation*}
\lambda_{f}(m) \lambda_{f}(n)=\sum_{\substack{d \mid(m, n) \\(d, N)=1}} \lambda_{f}\left(\frac{m n}{d^{2}}\right) \tag{1.2}
\end{equation*}
$$

for all integers $m, n \geq 1$. In particular, $\lambda_{f}(n)$ is multiplicative.
Following Deligne [4], for any prime number p there are two complex numbers $\alpha_{f}(p)$ and $\beta_{f}(p)$ such that

$$
\begin{cases}\alpha_{f}(p)=\varepsilon_{f}(p) p^{-1 / 2}, \quad \beta_{f}(p)=0 & \text { if } p \mid N \tag{1.3}\\ \left|\alpha_{f}(p)\right|=\alpha_{f}(p) \beta_{f}(p)=1 & \text { if } p \nmid N\end{cases}
$$

and

$$
\begin{equation*}
\lambda_{f}\left(p^{\nu}\right)=\frac{\alpha_{f}(p)^{\nu+1}-\beta_{f}(p)^{\nu+1}}{\alpha_{f}(p)-\beta_{f}(p)} \tag{1.4}
\end{equation*}
$$

[^0]for all integers $\nu \geq 1$, where $\varepsilon_{f}(p)= \pm 1$. Hence $\lambda_{f}(n)$ is real and satisfies Deligne's inequality
\[

$$
\begin{equation*}
\left|\lambda_{f}(n)\right| \leq d(n) \tag{1.5}
\end{equation*}
$$

\]

for all integers $n \geq 1$, where $d(n)$ is the divisor function. In particular, for each prime number $p \nmid N$ there is $\theta_{f}(p) \in[0, \pi]$ such that

$$
\begin{equation*}
\lambda_{f}(p)=2 \cos \theta_{f}(p) . \tag{1.6}
\end{equation*}
$$

See e.g. [9] for basic analytic facts about modular forms.
Positive real moments of Hecke eigenvalues were first studied by Rankin ([16], [17]). For $f \in \mathrm{H}_{k}^{*}(N)$ and $r \geq 0$, consider the sum of the $2 r$ th powers of $\left|\lambda_{f}(n)\right|$:

$$
\begin{equation*}
S_{f}^{*}(x ; r):=\sum_{n \leq x}\left|\lambda_{f}(n)\right|^{2 r} . \tag{1.7}
\end{equation*}
$$

The method of Rankin [17] illustrates how to obtain optimal lower and upper bounds for $S_{f}^{*}(x ; r)$ if we only know that the associated Dirichlet series

$$
\begin{equation*}
F_{r}(s):=\sum_{n \geq 1}\left|\lambda_{f}(n)\right|^{2 r} n^{-s} \quad(\operatorname{Re} s>1) \tag{1.8}
\end{equation*}
$$

is invertible for $\operatorname{Re} s \geq 1$ (i.e. holomorphic and nonzero for $\operatorname{Re} s \geq 1$) when $r=1,2$. (The invertibility in these two cases is known by Moreno \& Shahidi [15].) Rankin's result ([17, Theorem 1]) states that

$$
\begin{equation*}
x(\log x)^{\delta_{r}^{\mp}} \ll S_{f}^{*}(x ; r) \ll x(\log x)^{\delta_{r}^{ \pm}} \quad\left(r \in \mathcal{R}^{\mp}\right) \tag{1.9}
\end{equation*}
$$

for $x \geq x_{0}(f, r)$, where

$$
\mathcal{R}^{-}:=[0,1] \cup[2, \infty), \quad \mathcal{R}^{+}:=[1,2],
$$

and

$$
\delta_{r}^{-}:=2^{r-1}-1, \quad \delta_{r}^{+}:=\frac{2^{r-1}}{5}\left(2^{r}+3^{2-r}\right)-1 .
$$

The implied constants in (1.9) depend on f and r.
On the other hand, if the Sato-Tate conjecture holds for a newform f, then

$$
\begin{equation*}
S_{f}^{*}(x ; r) \sim C_{r}(f) x(\log x)^{\theta_{r}} \quad(x \rightarrow \infty), \tag{1.10}
\end{equation*}
$$

where $C_{r}(f)$ is a positive constant depending on f, r, and

$$
\theta_{r}:=\frac{4^{r} \Gamma(r+1 / 2)}{\sqrt{\pi} \Gamma(r+2)}-1 .
$$

We remark that this conjecture has been proved for elliptic curves over \mathbb{Q} with multiplicative reduction at some prime (cf. [1, 21, 7]).

Very recently, Tenenbaum [23] improved Rankin's exponent $\delta_{1 / 2}^{+} \approx-0.065$ to $\varrho_{1 / 2}^{+} \approx-0.118$ (see (1.13) below for the definition of ϱ_{r}^{+}), as an application of his general result on the mean values of multiplicative functions and the fact that $F_{3}(s)$ and $F_{4}(s)$ are invertible for $\operatorname{Re} s \geq 1$, proven in the remarkable work of Kim \& Shahidi [11]. Although the result ([23, Corollary]) is stated only for Ramanujan's τ-function, it is apparent that Tenenbaum's method applies to establish the upper bound for $S_{f}^{*}(x ; r)$ in (1.11) below. It should be pointed out that Tenenbaum's approach is different from that of Rankin and does not give a lower bound for $S_{f}^{*}(x ; r)$.

The first aim of this paper is to improve the lower and upper bounds in (1.9), by generalizing Rankin's method to incorporate the aforementioned results of Kim \& Shahidi on $F_{3}(s)$ and $F_{4}(s)$.

Theorem 1. For any $f \in \mathrm{H}_{k}^{*}(N)$, we have

$$
\begin{equation*}
x(\log x)^{\varrho_{r}^{\mp}} \ll S_{f}^{*}(x ; r) \ll x(\log x)^{\varrho_{r}^{ \pm}} \quad\left(r \in \mathscr{R}^{\mp}\right) \tag{1.11}
\end{equation*}
$$

for $x \geq x_{0}(f, r)$, where

$$
\begin{equation*}
\mathscr{R}^{-}:=[0,1] \cup[2,3] \cup[4, \infty), \quad \mathscr{R}^{+}:=[1,2] \cup[3,4], \tag{1.12}
\end{equation*}
$$

and

$$
\left\{\begin{align*}
\varrho_{r}^{-}:= & \frac{3^{r-1}-1}{2} \tag{1.13}\\
\varrho_{r}^{+}:= & \frac{102+7 \sqrt{21}}{210}\left(\frac{6-\sqrt{21}}{5}\right)^{r} \\
& +\frac{102-7 \sqrt{21}}{210}\left(\frac{6+\sqrt{21}}{5}\right)^{r}+\frac{4^{r}}{35}-1 .
\end{align*}\right.
$$

The implied constants in (1.11) depend on f and r.
The upper bound part in (1.11) is essentially due to Tenenbaum [23], since his method with a minor modification allows us to obtain this result. The lower bound part is new.

The following table illustrates progress on Rankin's (1.9) and the difference from the conjectured values (1.10).

r	0	0.5	1	1.5	2	2.5	3	3.5	4
δ_{r}^{-}	-0.5	-0.292	0	0.414	1	1.828	3	4.656	7
ϱ_{r}^{-}	-0.333	-0.211	0	0.366	1	2.098	4	7.294	13
θ_{r}	0	-0.151	0	0.358	1	2.104	4	7.278	13
ϱ_{r}^{+}	0	-0.118	0	0.350	1	2.111	4	7.257	13
δ_{r}^{+}	0	-0.065	0	0.289	1	2.526	5.666	12.017	24.777

In order to detect sign changes or cancellations among $\lambda_{f}(n)$, it is natural to study the summatory function

$$
\begin{equation*}
S_{f}(x):=\sum_{n \leq x} \lambda_{f}(n) \tag{1.14}
\end{equation*}
$$

and compare it with (1.11). Investigation of the upper estimate for $S_{f}(x)$ has a long history. In 1927, Hecke [8] showed

$$
S_{f}(x) \ll_{f} x^{1 / 2}
$$

for all $f \in \mathrm{H}_{k}^{*}(N)$ and $x \geq 1$. Subsequent improvements came with the use of the identity

$$
\frac{1}{\Gamma(r+1)} \sum_{n \leq x}(x-n)^{r} a_{f}(n)=\frac{1}{(2 \pi)^{3}} \sum_{n \geq 1}\left(\frac{x}{n}\right)^{(k+3) / 2} a_{f}(n) J_{k+3}(4 \pi \sqrt{n x})
$$

where $a_{f}(n):=\lambda_{f}(n) n^{(k-1) / 2}$ and $J_{k}(t)$ is the first kind Bessel function. Such an identity was first given by Wilton [26] for Ramanujan's τ-function, and later generalized by Walfisz [24] to other forms. Let ϑ be a constant satisfying

$$
\left|\lambda_{f}(n)\right| \ll n^{\vartheta} \quad(n \geq 1)
$$

Walfisz proved that

$$
\begin{equation*}
S_{f}(x) \ll_{f} x^{(1+\vartheta) / 3} \quad(x \geq 1) \tag{1.15}
\end{equation*}
$$

Inserting into (1.15) the values of ϑ from the historical record yields

$$
S_{f}(x)<_{f, \varepsilon} \begin{cases}x^{11 / 24+\varepsilon} & (\text { Kloosterman [12]) } \\ x^{4 / 9+\varepsilon} & (\text { Davenport [2], Salié [19]) } \\ x^{5 / 12+\varepsilon} & (\text { Weil [25]), } \\ x^{1 / 3+\varepsilon} & \text { (Deligne [4]), }\end{cases}
$$

for any $\varepsilon>0$. Hafner \& Ivić [6, Theorem 1] removed the factor x^{ε} of Deligne's result. On the other hand, by combining Walfisz' method with his idea in the study of (1.7), Rankin [18] showed that

$$
\begin{equation*}
S_{f}(x) \ll_{f, \varepsilon} x^{1 / 3}(\log x)^{\delta_{1 / 2}^{+}+\varepsilon} \tag{1.16}
\end{equation*}
$$

for any $\varepsilon>0$ and $x \geq 2$.
Here we propose a better bound, by combining Walfisz' method [24] and Tenenbaum's approach [23]. It is worth pointing out that Tenenbaum's method is not only to improve $\delta_{1 / 2}^{+}$to $\varrho_{1 / 2}^{+}$but also remove the ε in (1.16).

Theorem 2. For $f \in \mathrm{H}_{k}^{*}(N)$, we have

$$
\begin{equation*}
S_{f}(x) \ll x^{1 / 3}(\log x)^{\varrho_{1 / 2}^{+}} \tag{1.17}
\end{equation*}
$$

for $x \geq 2$, where the implied constant depends on f.

In the opposite direction, Hafner \& Ivić [6, Theorem 2] proved that there is a positive constant D such that

$$
S_{f}(x)=\Omega_{ \pm}\left(x^{1 / 4} \exp \left\{\frac{D\left(\log _{2} x\right)^{1 / 4}}{\left(\log _{3} x\right)^{3 / 4}}\right\}\right)
$$

where $\log _{r}$ denotes the r-fold iterated logarithm.
As an application of Theorems 1 and 2, we consider the quantities

$$
\begin{equation*}
\mathscr{N}_{f}^{ \pm}(x):=\sum_{\substack{n \leq x \\ \lambda_{f}(n) \gtrless 0}} 1 . \tag{1.18}
\end{equation*}
$$

Very recently Kohnen, Lau \& Shparlinski [13, Theorem 1] proved

$$
\begin{equation*}
\mathscr{N}_{f}^{ \pm}(x) \ggg{ }_{f} \frac{x}{(\log x)^{17}} \tag{1.19}
\end{equation*}
$$

for $\left.x \geq x_{0}(f){ }^{1}\right)$.
Here we propose a better bound.
Corollary 1. For any $f \in \mathrm{H}_{k}^{*}(N)$, we have

$$
\mathscr{N}_{f}^{ \pm}(x) \gg \frac{x}{(\log x)^{1-1 / \sqrt{3}}}
$$

for $x \geq x_{0}(f)$, where the implied constant depends on f. If we assume SatoTate's conjecture, then the exponent $1-1 / \sqrt{3} \approx 0.422$ can be improved to $2-16 /(3 \pi) \approx 0.302$.

In a joint paper with Lau [14], we shall remove the logarithmic factor by a completely different method.
2. Method of Rankin. Let $k \geq 2$ be an even integer, $N \geq 1$ be squarefree, $f \in \mathrm{H}_{k}^{*}(N)$ and $r>0$. Following Rankin's idea [17], we shall find two optimal multiplicative functions $\lambda_{f, r}^{ \pm}(n)$ such that

$$
\begin{equation*}
\lambda_{f, r}^{\mp}\left(p^{\nu}\right) \leq\left|\lambda_{f}\left(p^{\nu}\right)\right|^{2 r} \leq \lambda_{f, r}^{ \pm}\left(p^{\nu}\right) \quad\left(r \in \mathscr{R}^{\mp}\right) \tag{2.1}
\end{equation*}
$$

for all primes p and integers $\nu \geq 1$; furthermore, their associated Dirichlet series $\Lambda_{f, r}^{ \pm}(s)$ (see (2.8) below) in the half-plane $\operatorname{Re} s \geq 1$ will be controlled by $F_{j}(s)$ for $j=1, \ldots, 4$. Then we can apply Tauberian theorems to obtain the asymptotic behaviour of the summatory functions of $\lambda_{f, r}^{ \pm}(n)$.
2.1. Construction of $\lambda_{f, r}^{ \pm}(n)$. For $\boldsymbol{a}:=\left(a_{1}, \ldots, a_{4}\right) \in \mathbb{R}^{4}$ and $r>0$, consider the function

$$
\begin{equation*}
h_{r}(t ; \boldsymbol{a}):=t^{r}-a_{1} t-a_{2} t^{2}-a_{3} t^{3}-a_{4} t^{4} \quad(0 \leq t \leq 1) \tag{2.2}
\end{equation*}
$$

[^1]and let
\[

$$
\begin{equation*}
\kappa_{-}:=\frac{1}{4}, \quad \eta_{-}:=\frac{3}{4}, \quad \kappa_{+}:=\frac{6-\sqrt{21}}{20}, \quad \eta_{+}:=\frac{6+\sqrt{21}}{20} . \tag{2.3}
\end{equation*}
$$

\]

In Subsection 2.3, we shall explain the reason behind this choice.
Lemma 2.1. If the function $h_{r}(t ; \boldsymbol{a})$ defined by (2.2) satisfies

$$
h_{r}^{\prime}\left(\kappa_{-} ; \boldsymbol{a}\right)=h_{r}^{\prime}\left(\eta_{-} ; \boldsymbol{a}\right)=h_{r}\left(\kappa_{-} ; \boldsymbol{a}\right)=h_{r}\left(\eta_{-} ; \boldsymbol{a}\right)=0
$$

then

$$
\begin{equation*}
a_{j}=a_{j}^{-}:=\frac{P_{j}^{-}\left(\kappa_{-}, \eta_{-}\right)-P_{j}^{-}\left(\eta_{-}, \kappa_{-}\right)}{\left(\kappa_{-}-\eta_{-}\right)^{3}} \tag{2.4}
\end{equation*}
$$

for $1 \leq j \leq 4$, where

$$
\begin{aligned}
& P_{1}^{-}(\kappa, \eta):=\{(4-r) \kappa+(r-2) \eta\} \kappa^{r-1} \eta^{2}, \\
& P_{2}^{-}(\kappa, \eta):=\left\{(2 r-8) \kappa^{2}+(1-r) \kappa \eta+(1-r) \eta^{2}\right\} \kappa^{r-2} \eta, \\
& P_{3}^{-}(\kappa, \eta):=\left\{(4-r) \kappa^{2}+(4-r) \kappa \eta+2(r-1) \eta^{2}\right\} \kappa^{r-2}, \\
& P_{4}^{-}(\kappa, \eta):=\{(r-3) \kappa+(1-r) \eta\} \kappa^{r-2} .
\end{aligned}
$$

Proof. This can be done by routine calculation.
LEMMA 2.2. If the function $h_{r}(t ; \boldsymbol{a})$ defined by (2.2) is such that

$$
\left\{\begin{array}{l}
h_{r}^{\prime}\left(\kappa_{+} ; \boldsymbol{a}\right)=h_{r}^{\prime}\left(\eta_{+} ; \boldsymbol{a}\right)=0 \\
h_{r}\left(\kappa_{+} ; \boldsymbol{a}\right)=h_{r}\left(\eta_{+} ; \boldsymbol{a}\right)=h_{r}(1 ; \boldsymbol{a})
\end{array}\right.
$$

then

$$
\begin{equation*}
a_{j}=a_{j}^{+}:=\frac{P_{j}^{+}\left(\kappa_{+}, \eta_{+}\right)-P_{j}^{+}\left(\eta_{+}, \kappa_{+}\right)}{\left(\kappa_{+}-1\right)^{2}\left(\eta_{+}-1\right)^{2}\left(\kappa_{+}-\eta_{+}\right)^{3}} \tag{2.5}
\end{equation*}
$$

for $1 \leq j \leq 4$, where

$$
\begin{aligned}
P_{1}^{+}(\kappa, \eta):= & r \kappa^{r-1} \eta(\kappa-1)(\eta-\kappa)(\kappa \eta+2 \kappa+\eta)(\eta-1)^{2} \\
& +2\left(\kappa^{r}-1\right) \kappa \eta(\eta-1)^{2}\left(2 \kappa \eta+4 \kappa-\eta^{2}-2 \eta-3\right) \\
P_{2}^{+}(\kappa, \eta):= & r \kappa^{r-1}(\kappa-1)(\kappa-\eta)(\eta-1)^{2}\left(2 \kappa \eta+\kappa+\eta^{2}+2 \eta\right) \\
+ & \left(\eta^{r}-1\right)(\kappa-1)^{2}\left(8 \kappa \eta^{2}+4 \eta^{2}-\eta \kappa^{2}-2 \kappa \eta-3 \eta-\kappa^{3}-2 \kappa^{2}-3 \kappa\right), \\
P_{3}^{+}(\kappa, \eta):= & r \kappa^{r-1}(\kappa-1)(\kappa+2 \eta+1)(\eta-\kappa)(\eta-1)^{2} \\
& +2\left(\kappa^{r}-1\right)\left(2 \kappa^{2}+2 \kappa \eta-\eta^{2}-2 \eta-1\right)(\eta-1)^{2} \\
P_{4}^{+}(\kappa, \eta):= & r \kappa^{r-1}(\kappa-1)(\kappa-\eta)(\eta-1)^{2}+\left(\eta^{r}-1\right)(\kappa-1)^{2}(3 \eta-\kappa-2)
\end{aligned}
$$

Proof. This is done by routine calculation as well.
Lemma 2.3. Let $\boldsymbol{a}^{ \pm}:=\left(a_{1}^{ \pm}, \ldots, a_{4}^{ \pm}\right)$, where the values of $a_{i}^{ \pm}$are given in Lemmas 2.1 and 2.2. Then for $0 \leq t \leq 1$ we have

$$
h_{r}\left(t ; \boldsymbol{a}^{-}\right) \gtrless 0 \quad \text { and } \quad h_{r}\left(t ; \boldsymbol{a}^{+}\right) \lessgtr h_{r}\left(1 ; \boldsymbol{a}^{+}\right) \quad \text { for } \quad r \in \mathscr{R}^{\mp} .
$$

Proof. We have

$$
h_{r}^{(4)}\left(t ; \boldsymbol{a}^{-}\right)=r(r-1)(r-2)(r-3) t^{r-4}-24 a_{4}^{-},
$$

so $h_{r}^{(4)}\left(t ; \boldsymbol{a}^{-}\right)$has at most one zero for $t>0$ and $h_{r}^{(i)}\left(t ; \boldsymbol{a}^{-}\right)$has at most $5-i$ zeros for $t>0(i=3,2,1,0)$. Since $h_{r}\left(\kappa_{-} ; \boldsymbol{a}^{-}\right)=h_{r}\left(\eta_{-} ; \boldsymbol{a}^{-}\right)=h_{r}\left(0 ; \boldsymbol{a}^{-}\right)$, it follows that $h_{r}^{\prime}\left(\xi_{-} ; \boldsymbol{a}^{-}\right)=h_{r}^{\prime}\left(\xi_{-}^{\prime} ; \boldsymbol{a}^{-}\right)=0$ for some $\xi_{-} \in\left(0, \kappa_{-}\right)$and $\xi_{-}^{\prime} \in\left(\kappa_{-}, \eta_{-}\right)$. Therefore $\xi_{-}, \kappa_{-}, \xi_{-}^{\prime}$ and η_{-}are the only zeros of $h_{r}^{\prime}\left(t ; \boldsymbol{a}^{-}\right)$ in $(0,1)$.

Now

$$
\begin{aligned}
h_{r}^{\prime \prime}\left(\kappa_{-} ; \boldsymbol{a}^{-}\right) & =8 \cdot 4^{-r}\left(2 r^{2}-2 r+3+2 r 3^{r-2}-11 \cdot 3^{r-2}\right), \\
h_{r}^{\prime \prime}\left(\eta_{-} ; \boldsymbol{a}^{-}\right) & =8 \cdot 4^{-r}\left(2 r^{2}-6 r-3-2 r 3^{r}+43 \cdot 3^{r-2}\right)
\end{aligned}
$$

From these, it is easy to verify that

$$
h_{r}^{\prime \prime}\left(\kappa_{-} ; \boldsymbol{a}^{-}\right), h_{r}^{\prime \prime}\left(\eta_{-} ; \boldsymbol{a}^{-}\right) \begin{cases}\gtrless 0 & \text { if } r \in \mathscr{R}^{\mp} \\ =0 & \text { if } r=1,2,3,4\end{cases}
$$

where $\mathscr{\mathscr { R }}^{\mp}$ denotes the interior of \mathscr{R}^{\mp}. Hence $h_{r}\left(t ; \boldsymbol{a}^{-}\right)$takes its minimum (maximum, respectively) values in $[0,1]$ at $0, \kappa_{-}, \eta_{-}$when $r \in \mathscr{\mathscr { R }}^{-}\left(r \in \mathscr{\mathscr { R }}^{+}\right.$, respectively). Moreover, $h_{r}\left(t ; \boldsymbol{a}^{-}\right)$has local maxima (minima, respectively) at $\xi_{-}, \xi_{-}^{\prime}$ when $r \in \stackrel{\mathscr{R}}{ }_{-}\left(r \in \stackrel{\check{R}}{ }^{+}\right.$, respectively). This proves the assertion about $h_{r}\left(t ; \boldsymbol{a}^{-}\right)$.

Similarly we can prove the corresponding result on $h_{r}\left(t ; \boldsymbol{a}^{+}\right)$.
Now we define the multiplicative function $\lambda_{f, r}^{ \pm}(n)$ by

$$
\lambda_{f, r}^{\mp}\left(p^{\nu}\right):= \begin{cases}\sum_{0 \leq j \leq 4} 2^{2(r-j)} a_{j}^{\mp} \lambda_{f}(p)^{2 j} & \text { if } \nu=1 \text { and } r>0, \tag{2.6}\\ 0 & \text { if } \nu \geq 2 \text { and } r \in \mathscr{R}^{\mp} \\ \left|\lambda_{f}\left(p^{\nu}\right)\right|^{2 r} & \text { if } \nu \geq 2 \text { and } r \in \mathscr{R}^{ \pm}\end{cases}
$$

where

$$
\begin{equation*}
a_{0}^{-}:=0 \quad \text { and } \quad a_{0}^{+}:=1-a_{1}^{+}-a_{2}^{+}-a_{3}^{+}-a_{4}^{+} . \tag{2.7}
\end{equation*}
$$

In view of (1.6), we can apply Lemma 2.3 with $t=\left|\cos \theta_{f}(p)\right|$ to deduce that the inequality (2.1) holds for all primes p and integers $\nu \geq 1$. By multiplicativity, this inequality also holds for all integers $n \geq 1$ (in place of p^{ν}).
2.2. Dirichlet series associated to $\lambda_{f, r}^{ \pm}(n)$. For $f \in \mathrm{H}_{k}^{*}(N), r>0$ and $\operatorname{Re} s>1$, we define

$$
\begin{equation*}
\Lambda_{f, r}^{ \pm}(s):=\sum_{n \geq 1} \lambda_{f, r}^{ \pm}(n) n^{-s} \tag{2.8}
\end{equation*}
$$

Next we shall study their analytic properties in the half-plane $\operatorname{Re} s \geq 1$ by using the higher order symmetric power L-functions $L\left(s, \operatorname{sym}^{m} f\right)$ associated to $f \in \mathrm{H}_{k}^{*}(N)$, due to Gelbart \& Jacquet [5] for $m=2$, and Kim \& Shahidi ([10], [11]) for $m=3,4,5,6,7,8$. Here the symmetric m th power associated to f is defined as

$$
L\left(s, \operatorname{sym}^{m} f\right):=\prod_{p} \prod_{0 \leq j \leq m}\left(1-\alpha_{f}(p)^{m-j} \beta_{f}(p)^{j} p^{-s}\right)^{-1}
$$

for $\operatorname{Re} s>1$, where $\alpha_{f}(p)$ and $\beta_{f}(p)$ are given by (1.3) and (1.4). According to the references mentioned above, the function $L\left(s, \operatorname{sym}^{m} f\right)$ for $m=2,3, \ldots, 8$ is invertible for $\operatorname{Re} s \geq 1$.

We start by studying $F_{1}(s), F_{2}(s), F_{3}(s)$ and $F_{4}(s)$, where $F_{r}(s)$ is defined by (1.8).

Lemma 2.4. Let $k \geq 2$ be an even integer, $N \geq 1$ be squarefree and $f \in \mathrm{H}_{k}^{*}(N)$. For $j=1,2,3,4$ and $\operatorname{Re} s>1$, we have

$$
\begin{equation*}
F_{j}(s)=\zeta(s)^{m_{j}} G_{j}(s) H_{j}(s) \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
m_{1}:=1, \quad m_{2}:=2, \quad m_{3}:=5, \quad m_{4}:=14 \tag{2.10}
\end{equation*}
$$

and

$$
\begin{aligned}
& G_{1}(s):=L\left(s, \operatorname{sym}^{2} f\right) \\
& G_{2}(s):=L\left(s, \operatorname{sym}^{2} f\right)^{3} L\left(s, \operatorname{sym}^{4} f\right) \\
& G_{3}(s):=L\left(s, \operatorname{sym}^{2} f\right)^{9} L\left(s, \operatorname{sym}^{4} f\right)^{5} L\left(s, \operatorname{sym}^{6} f\right) \\
& G_{4}(s):=L\left(s, \operatorname{sym}^{2} f\right)^{34} L\left(s, \operatorname{sym}^{4} f\right)^{20} L\left(s, \operatorname{sym}^{6} f\right)^{7} L\left(s, \operatorname{sym}^{8} f\right)
\end{aligned}
$$

are invertible for $\operatorname{Re} s \geq 1$. Here the function $H_{j}(s)$ admits a Dirichlet series convergent absolutely in $\operatorname{Re} s>1 / 2$ and $H_{j}(s) \neq 0$ for $\operatorname{Re} s=1$.

Proof. Write x for the trace of a local factor of $L(s, f)$ (i.e. $\left.\alpha_{f}(p)+\beta_{f}(p)\right)$, and denote by $T_{n}(x)$ the polynomial which is the trace of its nth symmetric power. Then

$$
\begin{aligned}
& T_{2}=x^{2}-1 \\
& T_{4}=x^{4}-3 x^{2}+1 \\
& T_{6}=x^{6}-5 x^{4}+6 x^{2}-1 \\
& T_{8}=x^{8}-7 x^{6}+15 x^{4}-10 x^{2}+1
\end{aligned}
$$

from which we deduce

$$
\begin{aligned}
& x^{2}=1+T_{2} \\
& x^{4}=2+3 T_{2}+T_{4} \\
& x^{6}=5+9 T_{2}+5 T_{4}+T_{6} \\
& x^{8}=14+34 T_{2}+20 T_{4}+7 T_{6}+T_{8}
\end{aligned}
$$

This implies (2.9). By the results on $L\left(s, \operatorname{sym}^{m} f\right)$ mentioned above, $G_{j}(s)$ is invertible for $\operatorname{Re} s \geq 1$.

Lemma 2.5. Let $k \geq 2$ be an even integer, $N \geq 1$ be squarefree and $f \in \mathrm{H}_{k}^{*}(N)$. For $r>0$ and $\operatorname{Re} s>1$, we have

$$
\begin{equation*}
\Lambda_{f, r}^{ \pm}(s)=\zeta(s)^{\varrho_{r}^{ \pm}+1} H_{f, r}^{ \pm}(s) \tag{2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\varrho_{r}^{ \pm}:=2^{2 r-8}\left(2^{8} a_{0}^{ \pm}+2^{6} a_{1}^{ \pm}+2^{4} \cdot 2 a_{2}^{ \pm}+2^{2} \cdot 5 a_{3}^{ \pm}+14 a_{4}^{ \pm}\right)-1 \tag{2.12}
\end{equation*}
$$

and $H_{f, r}^{ \pm}(s)$ is invertible for $\operatorname{Re} s \geq 1$.
Proof. By definition (2.6), for $\operatorname{Re} s>1$ we can write

$$
\Lambda_{f, r}^{-}(s)=\prod_{p}\left(1+\sum_{0 \leq j \leq 4} 2^{2(r-j)} a_{j}^{-} \lambda_{f}(p)^{2 j} p^{-s}\right)=\prod_{0 \leq j \leq 4} F_{j}(s)^{2^{2(r-j)} a_{j}^{-}} H_{r}^{-}(s)
$$

for $r \in \mathscr{R}^{-}$, and

$$
\begin{aligned}
\Lambda_{f, r}^{-}(s) & =\prod_{p}\left(1+\sum_{0 \leq j \leq 4} 2^{2(r-j)} a_{j}^{-} \lambda_{f}(p)^{2 j} p^{-s}+\sum_{\nu \geq 2}\left|\lambda_{f}\left(p^{\nu}\right)\right|^{2 r} p^{-\nu s}\right) \\
& =\prod_{0 \leq j \leq 4} F_{j}(s)^{2^{2(r-j)} a_{j}^{-}} H_{r}^{-}(s)
\end{aligned}
$$

for $r \in \mathscr{R}^{+}$, where $F_{0}(s)=\zeta(s)$ is the Riemann zeta-function and $H_{r}^{-}(s)$ is a Dirichlet series absolutely convergent for $\operatorname{Re} s>1 / 2$ such that $H_{r}^{-}(s) \neq 0$ for $\operatorname{Re} s=1$. Now the desired result with the "-" sign follows from Lemma 2.4. The other part can be treated in the same way.
2.3. Optimization of $\lambda_{f, r}^{ \pm}(p)$ and choice of $\kappa_{ \pm}, \eta_{ \pm}$. If we regard $\kappa_{ \pm}, \eta_{ \pm}$ as parameters, the $\varrho_{r}^{ \pm}$given by (2.12) are functions of those parameters. We choose $\left(\kappa_{ \pm}, \eta_{ \pm}\right)$in $(0,1)^{2}$ optimally (they must be solutions of $\partial \varrho_{r}^{ \pm} / \partial \kappa=0$ and $\partial \varrho_{r}^{ \pm} / \partial \eta=0$), which can be done by using formal calculation via Maple. Their values are given by (2.3).
3. Proof of Theorem 1. In view of Lemma 2.5 and a classical fact on $\zeta(s)$, we can write

$$
\begin{equation*}
\Lambda_{f, r}^{ \pm}(s)=\frac{H_{f, r}^{ \pm}(1)}{(s-1) \varrho_{r}^{ \pm}+1}+g_{f, r}^{ \pm}(s) \tag{3.1}
\end{equation*}
$$

in some neighbourhood of $s=1$ with $\operatorname{Re} s>1$, where $H_{f, r}^{ \pm}(1) \neq 1$ and $g_{f, r}^{ \pm}(s)$ is holomorphic at $s=1$. Since $\lambda_{f, r}^{ \pm}(n) \geq 0$, we can apply Delange's tauberian theorem [3] to write

$$
\begin{equation*}
\sum_{n \leq x} \lambda_{f, r}^{ \pm}(n) \sim H_{f, r}^{ \pm}(1) x(\log x)^{\varrho_{r}^{ \pm}} \quad(x \rightarrow \infty) \tag{3.2}
\end{equation*}
$$

Now Theorem 1 follows from (2.1) and (3.2).
4. Proof of Theorem 2. By (3.1), it follows that

$$
\prod_{p}\left(1+\sum_{\nu \geq 1} \frac{\lambda_{f, r}^{ \pm}\left(p^{\nu}\right)}{p^{\nu \sigma}}\right)=\frac{H_{f, r}^{ \pm}(1)}{(\sigma-1)^{\varrho_{r}^{ \pm}+1}}+g_{f, r}^{ \pm}(\sigma)
$$

for $\sigma>1$. From this, $(2.6),(2.7)$ and Deligne's inequality, we deduce that

$$
\sum_{p} \frac{\lambda_{f, r}^{ \pm}(p)}{p^{\sigma}}=\left(\varrho_{r}^{ \pm}+1\right) \log (\sigma-1)^{-1}+C_{f, r}^{ \pm}+o(1) \quad(\sigma \rightarrow 1+)
$$

where $C_{f, r}^{ \pm}$is some constant.
On the other hand, the prime number theorem implies, by partial integration, that

$$
\sum_{p} p^{-\sigma}=\log (\sigma-1)^{-1}+C+o(1) \quad(\sigma \rightarrow 1+)
$$

where C is an absolute constant. Thus the preceding relation can be written as

$$
\begin{equation*}
\sum_{p} \frac{\lambda_{f, r}^{ \pm}(p)-\left(\varrho_{r}^{ \pm}+1\right)}{p^{\sigma}}=C_{f, r}^{ \pm}+\left(\varrho_{r}^{ \pm}+1\right) C+o(1) \quad(\sigma \rightarrow 1+) \tag{4.1}
\end{equation*}
$$

According to Exercise II.7.8 of [22], the formula (4.1) implies

$$
\sum_{p} \frac{\lambda_{f, r}^{ \pm}(p)-\left(\varrho_{r}^{ \pm}+1\right)}{p}=C_{f, r}^{ \pm}+\left(\varrho_{r}^{ \pm}+1\right) C
$$

Hence

$$
\sum_{p \leq x} \frac{\lambda_{f, r}^{ \pm}(p)}{p}=\left(\varrho_{r}^{ \pm}+1\right) \log _{2} x+C_{f, r}^{ \pm}+\left(\varrho_{r}^{ \pm}+1\right) C+o(1) \quad(x \rightarrow \infty)
$$

Now we apply a well known result of Shiu [20] and (2.1) to write

$$
\begin{align*}
\sum_{x \leq n \leq x+z}\left|\lambda_{f}(n)\right|^{2 r} & \ll \frac{z}{\log x} \exp \left(\sum_{p \leq x} \frac{\left|\lambda_{f}(p)\right|^{2 r}}{p}\right) \tag{4.2}\\
& \ll \frac{z}{\log x} \exp \left(\sum_{p \leq x} \frac{\lambda_{f, r}^{+}(p)}{p}\right) \\
& \ll z(\log x)^{\varrho_{r}^{+}}
\end{align*}
$$

for $r \in \mathscr{R}^{-}$, any $\varepsilon>0, x \geq x_{0}(\varepsilon)$ and $x^{1 / 4} \leq z \leq x$. We use this with $r=1 / 2$ in (9) of [18]; then the first term on the right-hand side of (10) of [18] is replaced by $x^{1 / 2} z^{-1 / 2}(\log x)^{\varrho_{1 / 2}^{+}}$. Applying (4.2) with $r=1 / 2$ again to the second term on the right-hand side of (10) of [18] yields

$$
S_{f}(x) \ll x^{1 / 2} z^{-1 / 2}(\log x)^{\varrho_{1 / 2}^{+}}+z(\log x)^{\varrho_{1 / 2}^{+}}
$$

Taking $z=x^{1 / 3}$, we obtain the required result when the level is $N=1$. The general case can be treated in much the same way as indicated in [18].
5. Proof of Corollary 1. By comparing (1.17) and the lower bound part in (1.11) with $r=1 / 2$, it is easy to deduce that

$$
\sum_{\substack{n \leq x \\ \lambda_{f}(n) \gtrless 0}}\left|\lambda_{f}(n)\right| \gg_{f} x(\log x)^{\varrho_{1 / 2}^{-}}
$$

for $x \geq x_{0}(f)$. Since $\varrho_{1 / 2}^{-}=-(1-1 / \sqrt{3}) / 2$ and $\varrho_{1}^{+}=0$, a simple application of the Cauchy-Schwarz inequality yields the desired estimate.

The second assertion can be obtained by noticing that $\theta_{1 / 2}=8 /(3 \pi)-1$.
Acknowledgments. The author would like to thank Winfried Kohnen for sending the paper [13] and Yuk Kam Lau for his many suggestions that improved the writing of this paper.

References

[1] L. Clozel, M. Harris and R. Taylor, Automorphy for some ℓ-adic lifts of automorphic $\bmod \ell$ Galois representations, preprint.
[2] H. Davenport, On certain exponential sums, J. Reine Angew. Math. 169 (1932), 158-176.
[3] H. Delange, Généralisation du théorème de Ikehara, Ann. Sci. École Norm. Sup. 71 (1954), 213-242.
[4] P. Deligne, La conjecture de Weil, I, II, Publ. Math. IHES 48 (1974), 273-308, 52 (1981), 313-428.
[5] S. Gelbart and H. Jacquet, A relation between automorphic representations of GL(2) and GL(3), Ann. Sci. École Norm. Sup. (4) 11 (1978), 471-542.
[6] J. L. Hafner and A. Ivić, On sums of Fourier coefficients of cusp forms, Enseign. Math. (2) 35 (1989), 375-382.
[7] M. Harris, N. Shepherd-Barron and R. Taylor, A family of Calabi-Yau varieties and potential automorphy, preprint.
[8] E. Hecke, Theorie der Eisensteinsche Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik, Abh. Math. Sem. Univ. Hamburg 5 (1927), 199-224.
[9] H. Iwaniec, Topics in Classical Automorphic Forms, Grad. Stud. Math. 17, Amer. Math. Soc., Providence, RI, 1997.
[10] H. H. Kim and F. Shahidi, Functorial products for $\mathrm{GL}_{2} \times \mathrm{GL}_{3}$ and the symmetric cube for GL_{2} (with an appendix by C. J. Bushnell and G. Henniart), Ann. of Math. (2) 155 (2002), 837-893.
[11] -, —, Cuspidality of symmetric powers with applications, Duke Math. J. 112 (2002), 177-197.
[12] H. D. Kloosterman, Asymptotische Formeln für die Fourierkoeffizienten ganzer Modulformen, Abh. Math. Sem. Univ. Hamburg 5 (1927), 337-352.
[13] W. Kohnen, Y.-K. Lau and I. E. Shparlinski, On the number of sign changes of Hecke eigenvalues of newforms, J. Austral. Math. Soc. 85 (2008), 87-94.
[14] Y.-K. Lau and J. Wu, The number of Hecke eigenvalues of same signs, Math. Z., to appear.
[15] C. J. Moreno and F. Shahidi, The fourth moment of Ramanujan τ-function, Math. Ann. 266 (1983), 233-239.
[16] R. A. Rankin, Sums of powers of cusp form coefficients, ibid. 263 (1983), 227-236.
[17] -, Sums of powers of cusp form coefficients, II, ibid. 272 (1985), 593-600.
[18] -, Sums of cusp form coefficients, in: Automorphic Forms and Analytic Number Theory (Montréal, PQ, 1989), Univ. Montréal, Montréal, QC, 1990, 115-121.
[19] H. Salié, Zur Abschätzung der Fourierkoeffizienten ganzer Modulformen, Math. Z. 36 (1933), 263-278.
[20] P. Shiu, A Brun-Titchmarsh theorem for multiplicative functions, J. Reine Angew. Math. 313 (1980), 161-170.
[21] R. Taylor, Automorphy for some ℓ-adic lifts of automorphic mod ℓ Galois representations, II, preprint, 2006.
[22] G. Tenenbaum (en collaboration avec J. Wu), Exercices corrigés de théorie analytique et probabiliste des nombres, Cours Spécialisés 2, Soc. Math. France, 1996.
[23] G. Tenenbaum, Remarques sur les valeurs moyennes de fonctions multiplicatives, Enseign. Math. (2) 53 (2007), 155-178.
[24] A. Walfisz, Über die Koeffizientensummen einiger Modulformen, Math. Ann. 108 (1933), 75-90.
[25] A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 204-207.
[26] J. R. Wilton, A note on Ramanujan's arithmetical function $\tau(n)$, Proc. Cambridge Philos. Soc. 25 (1928), 121-129.

School of Mathematical Sciences
Shandong Normal University
Jinan, Shandong 250100, China

Institut Élie Cartan Nancy (IECN), CNRS
Nancy-Université, INRIA Boulevard des Aiguillettes, B.P. 239 54506 Vandœuvre-lès-Nancy, France E-mail: wujie@iecn.u-nancy.fr

[^0]: 2000 Mathematics Subject Classification: 11F30, 11F66.
 Key words and phrases: Fourier coefficients of automorphic forms, Dirichlet series.

[^1]: $\left({ }^{1}\right)$ It is worth indicating that they gave explicit values for the implied constant in \ll and for $x_{0}(f)$.

