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Power sums of Hecke eigenvalues and application
by

J. Wu (Jinan and Nancy)

1. Introduction. Let k > 2 be an even integer and N > 1 be squarefree.
Denote by Hj (IV) the set of all normalized Hecke primitive eigencuspforms
of weight k for the congruence modular group

T(N) = {(a Z) € SLy(Z) : ¢ = 0 (mod N)}.

c

Here the normalization is taken to have A¢(1) = 1 in the Fourier series of
f € Hi(N) at the cusp oo,

(1.1) Zx\f pkF=D/2e2mnz (I 2 > 0).

Inherited from the Hecke operators, the normalized Fourier coefficient Af(n)
satisfies the relation

(1.2) Ap(m) = ) Af( )

d|(m,n)
(d,N)=1
for all integers m,n > 1. In particular, A(n) is multiplicative.
Following Deligne [4], for any prime number p there are two complex
numbers a(p) and Fr(p) such that

(1.3) { ag(p) =er(pp~"%  Brp) =0 ifp|N,
s (p)] = a;(p)Bs(p) =1 ifpt N,

and

(1.4) )\f(py) _a ( )V—H ﬁf(p)V—H

af(p) — Br(p)
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for all integers v > 1, where e¢(p) = £1. Hence A¢(n) is real and satisfies
Deligne’s inequality

(1.5) [Ar(n)] < d(n)

for all integers n > 1, where d(n) is the divisor function. In particular, for
each prime number p{ N there is 67(p) € [0, 7] such that

(1.6) Af(p) = 2cosbf(p).

See e.g. [9] for basic analytic facts about modular forms.

Positive real moments of Hecke eigenvalues were first studied by Rankin
([16], [17]). For f € Hy(N) and r > 0, consider the sum of the 2rth powers
of \(n)]:

(L.7) Si(air) == 3 As(n)

The method of Rankin [17] illustrates how to obtain optimal lower and upper
bounds for S}(x;r) if we only know that the associated Dirichlet series

(1.8) Fo(s) ==Y _[Af(n)'n™ (Res>1)
n>1

is invertible for Res > 1 (i.e. holomorphic and nonzero for Res > 1) when
r = 1,2. (The invertibility in these two cases is known by Moreno & Shahidi
[15].) Rankin’s result ([17, Theorem 1]) states that

§F

(1.9) z(log )™ < S}(w;7) < z(log x)&t (reRT)
for © > xo(f,r), where

R :=[0,1]U[2,00), R":=[1,2],
and

r—1

2
oo =271, &= = (24 32T — 1.

The implied constants in (1.9) depend on f and r.
On the other hand, if the Sato—Tate conjecture holds for a newform f,
then

(1.10) Si(x;r) ~ Co(fz(logz)?  (z — 00),
where C,.(f) is a positive constant depending on f,r, and
97« = w -1
VrL(r+2)
We remark that this conjecture has been proved for elliptic curves over QQ
with multiplicative reduction at some prime (cf. [1, 21, 7]).
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Very recently, Tenenbaum [23] improved Rankin’s exponent 5;?2 ~—0.065

to QT/Q ~ —0.118 (see (1.13) below for the definition of g;'), as an application
of his general result on the mean values of multiplicative functions and
the fact that F3(s) and Fu(s) are invertible for Res > 1, proven in the
remarkable work of Kim & Shahidi [11]. Although the result ([23, Corollary])
is stated only for Ramanujan’s 7-function, it is apparent that Tenenbaum’s
method applies to establish the upper bound for SJ’Z(:U; r) in (1.11) below. It
should be pointed out that Tenenbaum’s approach is different from that of
Rankin and does not give a lower bound for S}(z;r).

The first aim of this paper is to improve the lower and upper bounds in
(1.9), by generalizing Rankin’s method to incorporate the aforementioned
results of Kim & Shahidi on F5(s) and Fy(s).

THEOREM 1. For any f € Hf(N), we have

(1.11) z(logz)? < St(z;r) < x(log Jr:)git (rez")
for x > xo(f,r), where
(1.12) A~ :=10,1]U[2,3]U[4,00), X" :=][1,2]U][3,4],
and
( 3r—1 -1
QT’ = 2 )
102+ 7v21 (6 — V21"
+ .
(1.13) or : 510 ( - )
102 — 721 (6 21\" 4"
+ V2L 6+ VRINT AT
\ 210 5) 35

The implied constants in (1.11) depend on f and r.

The upper bound part in (1.11) is essentially due to Tenenbaum [23],
since his method with a minor modification allows us to obtain this result.
The lower bound part is new.

The following table illustrates progress on Rankin’s (1.9) and the differ-
ence from the conjectured values (1.10).

r 0 0.5 1 15 2 25 3 3.5 4
57 —05 —0202 0 0414 1 1.828 3 4.656

or —0333 —0211 0 0.366 1 2.098 4 7.294 13
0, 0 —0.151 0 0.358 1 2.104 4 7.278 13
orF 0 —-0.118 0 0.350 1 2.111 4 7.257 13
5t 0 —0.065 0 0289 1 2526 5666 12.017 24.777
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In order to detect sign changes or cancellations among A¢(n), it is natural
to study the summatory function

(1.14) Sp(x) =Y As(n)

and compare it with (1.11). Investigation of the upper estimate for Sy(x)
has a long history. In 1927, Hecke [8] showed

Sp(x) <5 ot/

for all f € H;(N) and = > 1. Subsequent improvements came with the use
of the identity

1 . 1 T
) ) = g

n<x

(k+3)/2
) arsatanyi),

where af(n) := A\p(n)n*~1/2 and Ji(t) is the first kind Bessel function.
Such an identity was first given by Wilton [26] for Ramanujan’s 7-function,
and later generalized by Walfisz [24] to other forms. Let ¥ be a constant
satisfying

Ar(n)| < n?  (n>1).
Wallfisz proved that
(1.15) Sp(x) <5 aIDB (> 1),
Inserting into (1.15) the values of 9 from the historical record yields

xM/24+e (Kloosterman [12]),

z/9te  (Davenport [2], Salié [19]),

2P+ (Weil [25]),

z/3+¢  (Deligne [4]),

for any e > 0. Hafner & Ivi¢ [6, Theorem 1] removed the factor z¢ of Deligne’s

result. On the other hand, by combining Walfisz’ method with his idea in
the study of (1.7), Rankin [18] showed that

Sf(x) <Lfe

(1.16) S1(x) < pe 23 (log )12t

for any € > 0 and = > 2.

Here we propose a better bound, by combining Walfisz” method [24]
and Tenenbaum’s approach [23]. It is worth pointing out that Tenenbaum’s
method is not only to improve 5;?2 to 91*/2 but also remove the € in (1.16).

THEOREM 2. For f € Hj.(N), we have

(1.17) Si(x) < 23 (log )42

for x > 2, where the implied constant depends on f.



Power sums of Hecke eigenvalues 337

In the opposite direction, Hafner & Ivié¢ [6, Theorem 2| proved that there
is a positive constant D such that
D(logy x)'/ })

Se(x) = 24 ($1/4eXp{ (log $)3/4
3

where log, denotes the r-fold iterated logarithm.
As an application of Theorems 1 and 2, we consider the quantities

(1.18) N (@)= Y L

n<x

Ar(n)20

Very recently Kohnen, Lau & Shparlinski [13, Theorem 1] proved

(1.19) N () > Tog )T

for x > xo(f) ().
Here we propose a better bound.

COROLLARY 1. For any f € Hi(N), we have
x

(log z) /3
for x > xo(f), where the implied constant depends on f. If we assume Sato—

Tate’s conjecture, then the exponent 1 — 1/v/3 ~ 0.422 can be improved to
2 —16/(3m) ~ 0.302.

In a joint paper with Lau [14], we shall remove the logarithmic factor by
a completely different method.

N (x) >

2. Method of Rankin. Let £ > 2 be an even integer, N > 1 be
squarefree, f € Hy (V) and r > 0. Following Rankin’s idea [17], we shall find
two optimal multiplicative functions )\?T(n) such that

(2.1) (") < NP S ARGV (r e %)

for all primes p and integers v > 1; furthermore, their associated Dirichlet
series Air(s) (see (2.8) below) in the half-plane Res > 1 will be controlled
by Fj(s) for j =1,...,4. Then we can apply Tauberian theorems to obtain
the asymptotic behaviour of the summatory functions of Afm (n).

2.1. Construction of )\ijr(n). For a := (aj,...,a4) € R* and r > 0,
consider the function
(2.2) he(t;a) ==t —ait — ast? — agt® —agt*  (0<t<1)

(1) It is worth indicating that they gave explicit values for the implied constant in <
and for zo(f).
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and let

08  moml g3 e 2 82VE 64V
. - n-: + 20 U 20

In Subsection 2.3, we shall explain the reason behind this choice.
LEMMA 2.1. If the function h,(t;a) defined by (2.2) satisfies
hy(k—;a) = hp(n-;a) = he(k—;a) = hy(n—;a) =0,
then
Pr(kon-) =P, (n-, k)
(k- —n-)?

(2.4) aj =aj =

for 1 < j <4, where

P (r,7) = {(4 =)+ (r = 2)n}s"""n?,
Py (r,1) == {(2r = 8)r* + (L — r)rn + (1 — )’k
Py (r,17) = {(4 = r)&® + (4 = r)rn +2(r = i’ }s" 2,

Py (#,n) = {(r = 3)s + (L —r)n}s">
Proof. This can be done by routine calculation. =

LEMMA 2.2. If the function h,.(t;a) defined by (2.2) is such that
{ h(ky;a) = h.(ny;a) = 0,
hr (k435 a) = hy(n4+;a) = he(L; @),
then
(2.5) a = at = P]‘Jr("?+’77+) - Pf(77+a k)
' T (kg = 120y — 1) (ks — )3
for 1 <5 <4, where
Py (k,1) := r&"" (s — 1)(n — &) (kn + 26 + 1) (n — 1)?
+2(k" = 1)kn(n — ) (261 4 4k —1? — 2n — 3),
Py (w,) = r&"" (k= 1)( —n)(n — 1)*(260 + & +n* + 21)
( —1)(k— 1)2(81177 +477 —nK? — 28m — 3n — K® — 2k% — 3K),
Py (k,m) =" (5 = D)(k + 27+ 1)(n — &) (n — 1)
+2(K" = 1)(262 + 26m — 0> — 20— 1)(n — 1)%,
Py (kym) = re" e = Dk =n)(n = 1)* + (" = (k= 1)*(3n — & - 2).
Proof. This is done by routine calculation as well. m
LEMMA 2.3. Let a*t := (ali,...,aff), where the values of al:-IE are given
in Lemmas 2.1 and 2.2. Then for 0 <t <1 we have

hy(t;a”) =0 and h.(t;a") < h.(1;a") for rec%T.
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Proof. We have
WO(ta”) =r(r = 1)(r = 2)(r = 3)t"" — 2Aay,

so b (t;a™) has at most one zero for ¢ > 0 and e (t;a™) has at most 5—4
zeros for t > 0 (i = 3,2,1,0). Since hy(k—;a~) = h,(n—;a~) = h(0;a™),
it follows that hl(é_;a~) = hl.(§_;a~) = 0 for some - € (0,k_) and
¢ € (k—,n-). Therefore {_, k_, & and n_ are the only zeros of hl.(t;a™)
in (0,1).
Now
Rl (k_sa™)=8-47"(2r% —2r +34+2r3"2 — 11-3"2),
Rl(n_;a™)=8-47"(2r® — 6r —3 — 2r3" +43-3"2).
From these, it is easy to verify that
>0 i Vo
i@ W sa){ S0 HTEX
—0 ifr=1,23,4,
where %F denotes the interior of ZF. Hence hr(t;a™) takes its minimum

(maximum, respectively) values in [0,1] at 0, k_, n— when r € s (re a8
respectively). Moreover, h,(t;a~) has local maxima (minima, respectively)

at £, & when r € B~ (r e ﬂ%ﬂ respectively). This proves the assertion
about h,(t;a™).
Similarly we can prove the corresponding result on h,.(t;a™). =

Now we define the multiplicative function )\ir(n) by

Z 22(T_j)a;!:)\f(p)2j if v=1andr >0,

26 A00=1," P
’ Hyv>2andre ,
A (") if v > 2 and r € 7,
where
(2.7) ag =0 and af :=1—af —af —ad —aj.

In view of (1.6), we can apply Lemma 2.3 with ¢t = [cosf¢(p)| to deduce
that the inequality (2.1) holds for all primes p and integers v > 1. By
multiplicativity, this inequality also holds for all integers n > 1 (in place
of p¥).

2.2. Dirichlet series associated to )\ijr(n). For f € H;(N), r > 0 and
Res > 1, we define

(2.8) AT (s) =) AT, (n)n".

n>1
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Next we shall study their analytic properties in the half-plane Res > 1 by
using the higher order symmetric power L-functions L(s,sym™ f) associated
to f € Hj(N), due to Gelbart & Jacquet [5] for m = 2, and Kim & Shahidi
([10], [11]) for m = 3,4,5,6,7,8. Here the symmetric mth power associated
to f is defined as

L(s,sym™f) =[] TI (0 —=ay®™78;(p)p~*)""

p 0<j<m

for Res > 1, where ay¢(p) and [f(p) are given by (1.3) and (1.4). Ac-
cording to the references mentioned above, the function L(s,sym™f) for
m=2,3,...,8is invertible for Res > 1.

We start by studying Fi (s), Fa(s), F53(s) and Fy(s), where F.(s) is defined
by (1.8).

LEMMA 2.4. Let k > 2 be an even integer, N > 1 be squarefree and
feH{(N). Forj=1,2,3,4 and Res > 1, we have

(2.9) Fj(s) = ((s)™Gj(s)H;(s),
where
(2.10) mq = 1, mo = 2, ms3 = 5, my ‘= 14,
and

Gi(s) := L(s,sym*f),

Go(s) := L(s, sym2f)3L(s, sym4f),

Gs(s) := L(s,sym*f)? L(s,sym* f)° L(s, sym° f),

(

are invertible for Res > 1. Here the function H;(s) admits a Dirichlet series
convergent absolutely in Res > 1/2 and H;(s) # 0 for Res = 1.

Proof. Write x for the trace of a local factor of L(s, f) (i.e. a¢(p)+0B¢(p)),
and denote by T),(z) the polynomial which is the trace of its nth symmetric
power. Then

T2 = 1‘2 - 1,

Ty =2t — 322 + 1,

Ts = 2% — 5z + 622 — 1,

Ty = a8 — 725 + 152 — 1022 + 1,
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from which we deduce
2?=1+ 15,
=243 + Ty,
28 =5+ 9T, + 5Ty + T,
28 = 14 4 34Ty + 20Ty + 7T5 + Ts.

This implies (2.9). By the results on L(s,sym™ f) mentioned above, G;(s)
is invertible for Res > 1. =

LEMMA 2.5. Let kK > 2 be an even integer, N > 1 be squarefree and
feH{(N). Forr >0 and Res > 1, we have

+
(2.11) AT, (s) = ()7 M HS (s),
where
(2.12) of = 2% 8 (2% + 28T + 2% 20 + 2% - 5aF + 14aT) — 1
and H}tr(s) is invertible for Res > 1.

Proof. By definition (2.6), for Res > 1 we can write

A;T(S)ZH(H S 220D as Ap(p ) [T Fi> % Hy (s)

P 0<5<4 0<j<4
for r € Z~, and
H(1+ 222(rja)\f ZJp +Z’)\f ‘27" l/s)
0<j<4 v>2
[T B (s)
0<j<4

for r € #%, where Fy(s) = ((s) is the Riemann zeta-function and H, (s) is a
Dirichlet series absolutely convergent for Re s > 1/2 such that H (s) # 0 for
Re s = 1. Now the desired result with the “—” sign follows from Lemma 2.4.
The other part can be treated in the same way.

2.3. Optimization of )\?ﬂ“(p) and choice of k+,n+. If we regard k4, n4
as parameters, the Qf given by (2.12) are functions of those parameters. We
choose (mi, n+) in (0,1)2 optimally (they must be solutions of dg;" /0K = 0
and 0g;" /On = 0), which can be done by using formal calculation via Maple.
Their values are given by (2.3).

3. Proof of Theorem 1. In view of Lemma 2.5 and a classical fact on
¢(s), we can write

HE (1
(3.) A% (5) = (fl)(l g5, (6)
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in some neighbourhood of s = 1 with Res > 1, where HjE (1) # 1 and

gfr( s) is holomorphic at s = 1. Since A% 7(n) 2 0, we can apply Delange’s
tauberian theorem [3] to write

(3.2) > A (D (logz)?"  (z — o0).

n<x

Now Theorem 1 follows from (2.1) and (3.2). =

4. Proof of Theorem 2. By (3.1), it follows that

Hp (1)
H( Z f7 pve ) B (o —fi)@$+1 +g]fr(a)

v>1

for o > 1. From this, (2.6), (2.7) and Deligne’s inequality, we deduce that
Z f’ (¢F + Dlog(o — 1)1+ CE +o(1) (00— 1+4),

where C;Er is some constant.

On the other hand, the prime number theorem implies, by partial inte-
gration, that

S p = logle ~ 1) Ok ofl) (o= 14),

where C' is an absolute constant. Thus the preceding relation can be written
as

(4.1) Z AP <Q’" D _ Cr+ (o +1)C+o0(1) (0 —14).

According to Exercise 11.7.8 of [22], the formula (4.1) implies

7" (QT‘ + ]‘)
Z i =C, + (e +1)C.
Hence

PP f’ = (oF + D)logyx +CF, + (0f +1)C+o(1) (z — o).

p<lz
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Now we apply a well known result of Shiu [20] and (2.1) to write

2r
(4.2) S ) € o —exp (Z @)™ >

r<n<x+z p<x

wa(E57)

p<zx
< z(log :B)QT

for r € #, any € > 0, x > x¢(e) and xl/% < 2 < x. We use this with
r =1/2 in (9) of [18]; then the first term on the right-hand side of (10) of

+
[18] is replaced by z'/2271/2(log z)%/2. Applying (4.2) with r = 1/2 again
to the second term on the right-hand side of (10) of [18] yields

Sf(.l?) < $1/2Z71/2(10g CC)QIF/Q —+ Z(log x)‘gir/Z_

Taking z = z'/3, we obtain the required result when the level is N = 1. The

general case can be treated in much the same way as indicated in [18]. =

5. Proof of Corollary 1. By comparing (1.17) and the lower bound
part in (1.11) with » = 1/2, it is easy to deduce that

Y. ()] > z(logz)®r
n<x
Ap(n)20
for x > x0(f). Since 01/0 = —(1—1//3)/2 and of = 0, a simple application
of the Cauchy—Schwarz inequality yields the desired estimate.
The second assertion can be obtained by noticing that ¢ , =8/(37)—1. =
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