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Power sums of Hecke eigenvalues and application
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1. Introduction. Let k ≥ 2 be an even integer andN ≥ 1 be squarefree.
Denote by H∗k(N) the set of all normalized Hecke primitive eigencuspforms
of weight k for the congruence modular group

Γ0(N) :=
{(

a b

c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
.

Here the normalization is taken to have λf (1) = 1 in the Fourier series of
f ∈ H∗k(N) at the cusp ∞,

(1.1) f(z) =
∞∑
n=1

λf (n)n(k−1)/2e2πinz (Im z > 0).

Inherited from the Hecke operators, the normalized Fourier coefficient λf (n)
satisfies the relation

(1.2) λf (m)λf (n) =
∑

d|(m,n)
(d,N)=1

λf

(
mn

d2

)

for all integers m,n ≥ 1. In particular, λf (n) is multiplicative.
Following Deligne [4], for any prime number p there are two complex

numbers αf (p) and βf (p) such that

(1.3)

{
αf (p) = εf (p)p−1/2, βf (p) = 0 if p |N ,

|αf (p)| = αf (p)βf (p) = 1 if p - N ,

and

(1.4) λf (pν) =
αf (p)ν+1 − βf (p)ν+1

αf (p)− βf (p)
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for all integers ν ≥ 1, where εf (p) = ±1. Hence λf (n) is real and satisfies
Deligne’s inequality

(1.5) |λf (n)| ≤ d(n)

for all integers n ≥ 1, where d(n) is the divisor function. In particular, for
each prime number p - N there is θf (p) ∈ [0, π] such that

(1.6) λf (p) = 2 cos θf (p).

See e.g. [9] for basic analytic facts about modular forms.
Positive real moments of Hecke eigenvalues were first studied by Rankin

([16], [17]). For f ∈ H∗k(N) and r ≥ 0, consider the sum of the 2rth powers
of |λf (n)|:

(1.7) S∗f (x; r) :=
∑
n≤x
|λf (n)|2r.

The method of Rankin [17] illustrates how to obtain optimal lower and upper
bounds for S∗f (x; r) if we only know that the associated Dirichlet series

(1.8) Fr(s) :=
∑
n≥1

|λf (n)|2rn−s (Re s > 1)

is invertible for Re s ≥ 1 (i.e. holomorphic and nonzero for Re s ≥ 1) when
r = 1, 2. (The invertibility in these two cases is known by Moreno & Shahidi
[15].) Rankin’s result ([17, Theorem 1]) states that

(1.9) x(log x)δ
∓
r � S∗f (x; r)� x(log x)δ

±
r (r ∈ R∓)

for x ≥ x0(f, r), where

R− := [0, 1] ∪ [2,∞), R+ := [1, 2],

and

δ−r := 2r−1 − 1, δ+r :=
2r−1

5
(2r + 32−r)− 1.

The implied constants in (1.9) depend on f and r.
On the other hand, if the Sato–Tate conjecture holds for a newform f ,

then

(1.10) S∗f (x; r) ∼ Cr(f)x(log x)θr (x→∞),

where Cr(f) is a positive constant depending on f, r, and

θr :=
4rΓ (r + 1/2)√
π Γ (r + 2)

− 1.

We remark that this conjecture has been proved for elliptic curves over Q
with multiplicative reduction at some prime (cf. [1, 21, 7]).
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Very recently, Tenenbaum [23] improved Rankin’s exponent δ+1/2≈−0.065
to %+

1/2 ≈ −0.118 (see (1.13) below for the definition of %+
r ), as an application

of his general result on the mean values of multiplicative functions and
the fact that F3(s) and F4(s) are invertible for Re s ≥ 1, proven in the
remarkable work of Kim & Shahidi [11]. Although the result ([23, Corollary])
is stated only for Ramanujan’s τ -function, it is apparent that Tenenbaum’s
method applies to establish the upper bound for S∗f (x; r) in (1.11) below. It
should be pointed out that Tenenbaum’s approach is different from that of
Rankin and does not give a lower bound for S∗f (x; r).

The first aim of this paper is to improve the lower and upper bounds in
(1.9), by generalizing Rankin’s method to incorporate the aforementioned
results of Kim & Shahidi on F3(s) and F4(s).

Theorem 1. For any f ∈ H∗k(N), we have

(1.11) x(log x)%
∓
r � S∗f (x; r)� x(log x)%

±
r (r ∈ R∓)

for x ≥ x0(f, r), where

(1.12) R− := [0, 1] ∪ [2, 3] ∪ [4,∞), R+ := [1, 2] ∪ [3, 4],

and

(1.13)



%−r :=
3r−1 − 1

2
,

%+
r :=

102 + 7
√

21
210

(
6−
√

21
5

)r
+

102− 7
√

21
210

(
6 +
√

21
5

)r
+

4r

35
− 1.

The implied constants in (1.11) depend on f and r.

The upper bound part in (1.11) is essentially due to Tenenbaum [23],
since his method with a minor modification allows us to obtain this result.
The lower bound part is new.

The following table illustrates progress on Rankin’s (1.9) and the differ-
ence from the conjectured values (1.10).

r 0 0.5 1 1.5 2 2.5 3 3.5 4

δ−r −0.5 −0.292 0 0.414 1 1.828 3 4.656 7

%−r −0.333 −0.211 0 0.366 1 2.098 4 7.294 13

θr 0 −0.151 0 0.358 1 2.104 4 7.278 13

%+
r 0 −0.118 0 0.350 1 2.111 4 7.257 13

δ+r 0 −0.065 0 0.289 1 2.526 5.666 12.017 24.777
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In order to detect sign changes or cancellations among λf (n), it is natural
to study the summatory function

(1.14) Sf (x) :=
∑
n≤x

λf (n)

and compare it with (1.11). Investigation of the upper estimate for Sf (x)
has a long history. In 1927, Hecke [8] showed

Sf (x)�f x
1/2

for all f ∈ H∗k(N) and x ≥ 1. Subsequent improvements came with the use
of the identity

1
Γ (r + 1)

∑
n≤x

(x− n)raf (n) =
1

(2π)3
∑
n≥1

(
x

n

)(k+3)/2

af (n)Jk+3(4π
√
nx),

where af (n) := λf (n)n(k−1)/2 and Jk(t) is the first kind Bessel function.
Such an identity was first given by Wilton [26] for Ramanujan’s τ -function,
and later generalized by Walfisz [24] to other forms. Let ϑ be a constant
satisfying

|λf (n)| � nϑ (n ≥ 1).

Walfisz proved that

(1.15) Sf (x)�f x
(1+ϑ)/3 (x ≥ 1).

Inserting into (1.15) the values of ϑ from the historical record yields

Sf (x)�f,ε


x11/24+ε (Kloosterman [12]),
x4/9+ε (Davenport [2], Salié [19]),
x5/12+ε (Weil [25]),
x1/3+ε (Deligne [4]),

for any ε > 0. Hafner & Ivić [6, Theorem 1] removed the factor xε of Deligne’s
result. On the other hand, by combining Walfisz’ method with his idea in
the study of (1.7), Rankin [18] showed that

(1.16) Sf (x)�f,ε x
1/3(log x)δ

+
1/2

+ε

for any ε > 0 and x ≥ 2.
Here we propose a better bound, by combining Walfisz’ method [24]

and Tenenbaum’s approach [23]. It is worth pointing out that Tenenbaum’s
method is not only to improve δ+1/2 to %+

1/2 but also remove the ε in (1.16).

Theorem 2. For f ∈ H∗k(N), we have

(1.17) Sf (x)� x1/3(log x)%
+
1/2

for x ≥ 2, where the implied constant depends on f .
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In the opposite direction, Hafner & Ivić [6, Theorem 2] proved that there
is a positive constant D such that

Sf (x) = Ω±

(
x1/4 exp

{
D(log2 x)1/4

(log3 x)3/4

})
,

where logr denotes the r-fold iterated logarithm.
As an application of Theorems 1 and 2, we consider the quantities

(1.18) N ±
f (x) :=

∑
n≤x

λf (n)≷ 0

1.

Very recently Kohnen, Lau & Shparlinski [13, Theorem 1] proved

(1.19) N ±
f (x)�f

x

(log x)17

for x ≥ x0(f) (1).
Here we propose a better bound.

Corollary 1. For any f ∈ H∗k(N), we have

N ±
f (x)� x

(log x)1−1/
√

3

for x ≥ x0(f), where the implied constant depends on f . If we assume Sato–
Tate’s conjecture, then the exponent 1 − 1/

√
3 ≈ 0.422 can be improved to

2− 16/(3π) ≈ 0.302.

In a joint paper with Lau [14], we shall remove the logarithmic factor by
a completely different method.

2. Method of Rankin. Let k ≥ 2 be an even integer, N ≥ 1 be
squarefree, f ∈ H∗k(N) and r > 0. Following Rankin’s idea [17], we shall find
two optimal multiplicative functions λ±f,r(n) such that

(2.1) λ∓f,r(p
ν) ≤ |λf (pν)|2r ≤ λ±f,r(p

ν) (r ∈ R∓)

for all primes p and integers ν ≥ 1; furthermore, their associated Dirichlet
series Λ±f,r(s) (see (2.8) below) in the half-plane Re s ≥ 1 will be controlled
by Fj(s) for j = 1, . . . , 4. Then we can apply Tauberian theorems to obtain
the asymptotic behaviour of the summatory functions of λ±f,r(n).

2.1. Construction of λ±f,r(n). For a := (a1, . . . , a4) ∈ R4 and r > 0,
consider the function

(2.2) hr(t; a) := tr − a1t− a2t
2 − a3t

3 − a4t
4 (0 ≤ t ≤ 1)

(1) It is worth indicating that they gave explicit values for the implied constant in �
and for x0(f).
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and let

(2.3) κ− :=
1
4
, η− :=

3
4
, κ+ :=

6−
√

21
20

, η+ :=
6 +
√

21
20

.

In Subsection 2.3, we shall explain the reason behind this choice.

Lemma 2.1. If the function hr(t; a) defined by (2.2) satisfies

h′r(κ−; a) = h′r(η−; a) = hr(κ−; a) = hr(η−; a) = 0,

then

(2.4) aj = a−j :=
P−j (κ−, η−)− P−j (η−, κ−)

(κ− − η−)3

for 1 ≤ j ≤ 4, where

P−1 (κ, η) := {(4− r)κ+ (r − 2)η}κr−1η2,

P−2 (κ, η) := {(2r − 8)κ2 + (1− r)κη + (1− r)η2}κr−2η,

P−3 (κ, η) := {(4− r)κ2 + (4− r)κη + 2(r − 1)η2}κr−2,

P−4 (κ, η) := {(r − 3)κ+ (1− r)η}κr−2.

Proof. This can be done by routine calculation.

Lemma 2.2. If the function hr(t; a) defined by (2.2) is such that{
h′r(κ+; a) = h′r(η+; a) = 0,

hr(κ+; a) = hr(η+; a) = hr(1; a),

then

(2.5) aj = a+
j :=

P+
j (κ+, η+)− P+

j (η+, κ+)
(κ+ − 1)2(η+ − 1)2(κ+ − η+)3

for 1 ≤ j ≤ 4, where

P+
1 (κ, η) := rκr−1η(κ− 1)(η − κ)(κη + 2κ+ η)(η − 1)2

+ 2(κr − 1)κη(η − 1)2(2κη + 4κ− η2 − 2η − 3),

P+
2 (κ, η) := rκr−1(κ− 1)(κ− η)(η − 1)2(2κη + κ+ η2 + 2η)

+ (ηr − 1)(κ− 1)2(8κη2 + 4η2 − ηκ2 − 2κη − 3η − κ3 − 2κ2 − 3κ),
P+

3 (κ, η) := rκr−1(κ− 1)(κ+ 2η + 1)(η − κ)(η − 1)2

+ 2(κr − 1)(2κ2 + 2κη − η2 − 2η − 1)(η − 1)2,

P+
4 (κ, η) := rκr−1(κ− 1)(κ− η)(η − 1)2 + (ηr − 1)(κ− 1)2(3η − κ− 2).

Proof. This is done by routine calculation as well.

Lemma 2.3. Let a± := (a±1 , . . . , a
±
4 ), where the values of a±i are given

in Lemmas 2.1 and 2.2. Then for 0 ≤ t ≤ 1 we have

hr(t; a−) ≷ 0 and hr(t; a+) ≶ hr(1; a+) for r ∈ R∓.
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Proof. We have

h(4)
r (t; a−) = r(r − 1)(r − 2)(r − 3)tr−4 − 24a−4 ,

so h(4)
r (t; a−) has at most one zero for t > 0 and h(i)

r (t; a−) has at most 5− i
zeros for t > 0 (i = 3, 2, 1, 0). Since hr(κ−; a−) = hr(η−; a−) = hr(0; a−),
it follows that h′r(ξ−; a−) = h′r(ξ

′
−; a−) = 0 for some ξ− ∈ (0, κ−) and

ξ′− ∈ (κ−, η−). Therefore ξ−, κ−, ξ′− and η− are the only zeros of h′r(t; a
−)

in (0, 1).
Now

h′′r(κ−; a−) = 8 · 4−r(2r2 − 2r + 3 + 2r3r−2 − 11 · 3r−2),

h′′r(η−; a−) = 8 · 4−r(2r2 − 6r − 3− 2r3r + 43 · 3r−2).

From these, it is easy to verify that

h′′r(κ−; a−), h′′r(η−; a−)

{
≷ 0 if r ∈ R

◦ ∓,

= 0 if r = 1, 2, 3, 4,

where R∓
◦

denotes the interior of R∓. Hence hr(t; a−) takes its minimum
(maximum, respectively) values in [0, 1] at 0, κ−, η− when r ∈ R−

◦
(r ∈ R+

◦
,

respectively). Moreover, hr(t; a−) has local maxima (minima, respectively)
at ξ−, ξ′− when r ∈ R−

◦
(r ∈ R+

◦
, respectively). This proves the assertion

about hr(t; a−).
Similarly we can prove the corresponding result on hr(t; a+).

Now we define the multiplicative function λ±f,r(n) by

(2.6) λ∓f,r(p
ν) :=


∑

0≤j≤4

22(r−j)a∓j λf (p)2j if ν = 1 and r > 0,

0 if ν ≥ 2 and r ∈ R∓,

|λf (pν)|2r if ν ≥ 2 and r ∈ R±,

where

(2.7) a−0 := 0 and a+
0 := 1− a+

1 − a
+
2 − a

+
3 − a

+
4 .

In view of (1.6), we can apply Lemma 2.3 with t = |cos θf (p)| to deduce
that the inequality (2.1) holds for all primes p and integers ν ≥ 1. By
multiplicativity, this inequality also holds for all integers n ≥ 1 (in place
of pν).

2.2. Dirichlet series associated to λ±f,r(n). For f ∈ H∗k(N), r > 0 and
Re s > 1, we define

(2.8) Λ±f,r(s) :=
∑
n≥1

λ±f,r(n)n−s.
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Next we shall study their analytic properties in the half-plane Re s ≥ 1 by
using the higher order symmetric power L-functions L(s, symmf) associated
to f ∈ H∗k(N), due to Gelbart & Jacquet [5] for m = 2, and Kim & Shahidi
([10], [11]) for m = 3, 4, 5, 6, 7, 8. Here the symmetric mth power associated
to f is defined as

L(s, symmf) :=
∏
p

∏
0≤j≤m

(1− αf (p)m−jβf (p)jp−s)−1

for Re s > 1, where αf (p) and βf (p) are given by (1.3) and (1.4). Ac-
cording to the references mentioned above, the function L(s, symmf) for
m = 2, 3, . . . , 8 is invertible for Re s ≥ 1.

We start by studying F1(s), F2(s), F3(s) and F4(s), where Fr(s) is defined
by (1.8).

Lemma 2.4. Let k ≥ 2 be an even integer , N ≥ 1 be squarefree and
f ∈ H∗k(N). For j = 1, 2, 3, 4 and Re s > 1, we have

(2.9) Fj(s) = ζ(s)mjGj(s)Hj(s),

where

(2.10) m1 := 1, m2 := 2, m3 := 5, m4 := 14,

and

G1(s) := L(s, sym2f),

G2(s) := L(s, sym2f)3L(s, sym4f),

G3(s) := L(s, sym2f)9L(s, sym4f)5L(s, sym6f),

G4(s) := L(s, sym2f)34L(s, sym4f)20L(s, sym6f)7L(s, sym8f)

are invertible for Re s ≥ 1. Here the function Hj(s) admits a Dirichlet series
convergent absolutely in Re s > 1/2 and Hj(s) 6= 0 for Re s = 1.

Proof. Write x for the trace of a local factor of L(s, f) (i.e. αf (p)+βf (p)),
and denote by Tn(x) the polynomial which is the trace of its nth symmetric
power. Then

T2 = x2 − 1,

T4 = x4 − 3x2 + 1,

T6 = x6 − 5x4 + 6x2 − 1,

T8 = x8 − 7x6 + 15x4 − 10x2 + 1,
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from which we deduce

x2 = 1 + T2,

x4 = 2 + 3T2 + T4,

x6 = 5 + 9T2 + 5T4 + T6,

x8 = 14 + 34T2 + 20T4 + 7T6 + T8.

This implies (2.9). By the results on L(s, symmf) mentioned above, Gj(s)
is invertible for Re s ≥ 1.

Lemma 2.5. Let k ≥ 2 be an even integer , N ≥ 1 be squarefree and
f ∈ H∗k(N). For r > 0 and Re s > 1, we have

(2.11) Λ±f,r(s) = ζ(s)%
±
r +1H±f,r(s),

where

(2.12) %±r := 22r−8(28a±0 + 26a±1 + 24 · 2a±2 + 22 · 5a±3 + 14a±4 )− 1

and H±f,r(s) is invertible for Re s ≥ 1.

Proof. By definition (2.6), for Re s > 1 we can write

Λ−f,r(s) =
∏
p

(
1 +

∑
0≤j≤4

22(r−j)a−j λf (p)2jp−s
)

=
∏

0≤j≤4

Fj(s)2
2(r−j)a−j H−r (s)

for r ∈ R−, and

Λ−f,r(s) =
∏
p

(
1 +

∑
0≤j≤4

22(r−j)a−j λf (p)2jp−s +
∑
ν≥2

|λf (pν)|2rp−νs
)

=
∏

0≤j≤4

Fj(s)2
2(r−j)a−j H−r (s)

for r ∈ R+, where F0(s) = ζ(s) is the Riemann zeta-function and H−r (s) is a
Dirichlet series absolutely convergent for Re s > 1/2 such that H−r (s) 6= 0 for
Re s = 1. Now the desired result with the “−” sign follows from Lemma 2.4.
The other part can be treated in the same way.

2.3. Optimization of λ±f,r(p) and choice of κ±, η±. If we regard κ±, η±
as parameters, the %±r given by (2.12) are functions of those parameters. We
choose (κ±, η±) in (0, 1)2 optimally (they must be solutions of ∂%±r /∂κ = 0
and ∂%±r /∂η = 0), which can be done by using formal calculation via Maple.
Their values are given by (2.3).

3. Proof of Theorem 1. In view of Lemma 2.5 and a classical fact on
ζ(s), we can write

(3.1) Λ±f,r(s) =
H±f,r(1)

(s− 1)%
±
r +1

+ g±f,r(s)
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in some neighbourhood of s = 1 with Re s > 1, where H±f,r(1) 6= 1 and
g±f,r(s) is holomorphic at s = 1. Since λ±f,r(n) ≥ 0, we can apply Delange’s
tauberian theorem [3] to write

(3.2)
∑
n≤x

λ±f,r(n) ∼ H±f,r(1)x(log x)%
±
r (x→∞).

Now Theorem 1 follows from (2.1) and (3.2).

4. Proof of Theorem 2. By (3.1), it follows that

∏
p

(
1 +

∑
ν≥1

λ±f,r(p
ν)

pνσ

)
=

H±f,r(1)

(σ − 1)%
±
r +1

+ g±f,r(σ)

for σ > 1. From this, (2.6), (2.7) and Deligne’s inequality, we deduce that

∑
p

λ±f,r(p)

pσ
= (%±r + 1) log(σ − 1)−1 + C±f,r + o(1) (σ → 1+),

where C±f,r is some constant.
On the other hand, the prime number theorem implies, by partial inte-

gration, that ∑
p

p−σ = log(σ − 1)−1 + C + o(1) (σ → 1+),

where C is an absolute constant. Thus the preceding relation can be written
as

(4.1)
∑
p

λ±f,r(p)− (%±r + 1)

pσ
= C±f,r + (%±r + 1)C + o(1) (σ → 1+).

According to Exercise II.7.8 of [22], the formula (4.1) implies

∑
p

λ±f,r(p)− (%±r + 1)

p
= C±f,r + (%±r + 1)C.

Hence∑
p≤x

λ±f,r(p)

p
= (%±r + 1) log2 x+ C±f,r + (%±r + 1)C + o(1) (x→∞).
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Now we apply a well known result of Shiu [20] and (2.1) to write∑
x≤n≤x+z

|λf (n)|2r � z

log x
exp
(∑
p≤x

|λf (p)|2r

p

)
(4.2)

� z

log x
exp
(∑
p≤x

λ+
f,r(p)

p

)
� z(log x)%

+
r

for r ∈ R−, any ε > 0, x ≥ x0(ε) and x1/4 ≤ z ≤ x. We use this with
r = 1/2 in (9) of [18]; then the first term on the right-hand side of (10) of

[18] is replaced by x1/2z−1/2(log x)%
+
1/2 . Applying (4.2) with r = 1/2 again

to the second term on the right-hand side of (10) of [18] yields

Sf (x)� x1/2z−1/2(log x)%
+
1/2 + z(log x)%

+
1/2 .

Taking z = x1/3, we obtain the required result when the level is N = 1. The
general case can be treated in much the same way as indicated in [18].

5. Proof of Corollary 1. By comparing (1.17) and the lower bound
part in (1.11) with r = 1/2, it is easy to deduce that∑

n≤x
λf (n)≷ 0

|λf (n)| �f x(log x)%
−
1/2

for x ≥ x0(f). Since %−1/2 = −(1−1/
√

3)/2 and %+
1 = 0, a simple application

of the Cauchy–Schwarz inequality yields the desired estimate.
The second assertion can be obtained by noticing that θ1/2 =8/(3π)−1.

Acknowledgments. The author would like to thank Winfried Kohnen
for sending the paper [13] and Yuk Kam Lau for his many suggestions that
improved the writing of this paper.

References

[1] L. Clozel, M. Harris and R. Taylor, Automorphy for some `-adic lifts of automorphic
mod ` Galois representations, preprint.

[2] H. Davenport, On certain exponential sums, J. Reine Angew. Math. 169 (1932),
158–176.
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[24] A. Walfisz, Über die Koeffizientensummen einiger Modulformen, Math. Ann. 108

(1933), 75–90.
[25] A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 204–207.
[26] J. R. Wilton, A note on Ramanujan’s arithmetical function τ(n), Proc. Cambridge

Philos. Soc. 25 (1928), 121–129.

School of Mathematical Sciences
Shandong Normal University
Jinan, Shandong 250100, China
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