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1. Introduction. In cyclotomic theory over Q, ideal class groups and
class numbers of Q(ζpn) and its maximal real subfield Q(ζpn)+ are important
objects; especially, there are many results on the relative class group and the
relative class number. In [Ha], Hazama expressed the relative class number
as the determinant of the Dem’yanenko matrix up to a simple factor. It
was pointed out by Reyssat that the Dem’yanenko matrix is also related
to the signatures of the cyclotomic units. Putting these together, Schwarz
[S] obtained results on the parity of h−p , an immediate corollary being the
well-known result that if h+

p is even then h−p is even. In [J], Jha found bases
of the Stickelberger ideal I and its minus part I−. Let R be the integral
group ring of the Galois group. From the group structure of R−/I−, he also
obtained some result on the exponent of the relative ideal class group.

Let A = Fq[T ] be the ring of polynomials over a finite field Fq with q
elements, and k = Fq(T ). Let ∞ be the place of k associated to (1/T ) and
k∞ be the completion of k at∞. Clearly k∞ = Fq((1/T )). For each nonzero
M ∈ A, one uses the Carlitz module % to construct a field extension KM ,
called the Mth cyclotomic function field , and its maximal real subfield K+

M .
Let GM = Gal(KM/k) and G+

M = Gal(K+
M/k). Let OM and O+

M be the
integral closure of A in KM and K+

M , respectively. Let ClM and C̃lM be
the group of degree zero divisor classes of KM and the ideal class group of
OM , respectively. Let hM = |ClM | and h̃M = |C̃lM |, called the divisor class
number and the ideal class number of KM , respectively. For the maximal
real subfield K+

M , Cl
+
M , C̃l

+
M , h

+
M and h̃+

M are defined similarly. Let Cl−M and

C̃l−M be the minus parts of ClM and C̃lM , respectively. We call them the
relative divisor class group and relative ideal class group of KM , respectively.

Let h−M = |Cl−M | and h̃−M = |C̃l−M |, called the relative divisor class number
and relative ideal class number of KM , respectively. It is known that h−M =
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hM/h
+
M and h̃−M = h̃M/h̃

+
M . WhenM = Pn is a prime power, it is also known

[Y, Lemma 3] that h−M =(q−1)r−1h̃−M , where r=q(n−1) degP(qdegP−1)/(q−1).
In [JA], we introduced the Dem’yanenko matrix in the function field case
and expressed the relative ideal class number h̃−Pn as the determinant of this
matrix.

The organization of this paper is as follows. In Section 2, we find a basis of
the minus part I− of the Stickelberger ideal I (Lemma 2.1) and its transition
matrix with respect to some basis of the minus partR− of the group ringR =
Z[G], which is the Dem’yanenko matrix (Proposition 2.3). By an analytic
method, we show that the determinant of the Dem’yanenko matrix is equal
to h̃−Pn (Proposition 2.6). We also find a matrix whose determinant gives us
the relative divisor class number h−Pn (Proposition 2.5).

In Section 3, adopting ideas of Iwasawa [I] and Jha [J], we give some
results on the exponent of the relative divisor class group Cl−Pn .
Using the invariants of R−/I− and these results, we determine the group
structure of the relative divisor class group Cl−Pn for some special cases
(Examples 1, 2).

In Section 4, we show that the sign of cyclotomic units coincides with the
sign of the polynomial which acts on cyclotomic units. Using this result, we
obtain a result on the 2-parity between h̃−Pn and h̃+

Pn for q = 3 (Theorem 4.4),
as an analog of Schwarz [S]. Let l be any prime divisor of q−1. For general q,
this result should be extended on the l-parity between h̃−Pn and h̃+

Pn .

2. Dem’yanenko matrix and relative class number. For M ∈ A,
it is well known that the Galois group GM of KM over k is isomorphic to
(A/M)∗. Let σA be an element of GM defined by σA(λ) = %A(λ) for any
nonzero M -torsion point λ. We write %A(λ) = λA for simplicity. Then the
isomorphism ϕ : (A/M)∗ → GM is given by ϕ(A mod M) = σA. Under this
isomorphism, J = {σα : α ∈ F∗q} is the Galois group of KM over K+

M . For
any subset H of GM , let s(H) =

∑
σ∈H σ.

Let ĜM be the group of characters of GM with values in C. A character
χ of GM is called even if its restriction to J is trivial, and odd otherwise.
Let Ĝ+

M = {χ ∈ ĜM : χ is even} and Ĝ−M = ĜM \ Ĝ+
M . Any character χ of

GM can be viewed as a character of (A/M)∗, so the conductor Fχ of χ is
defined as a divisor of M .

For a nonzero polynomial M ∈ A, we let MM (resp. M+
M) be the set of

all the polynomials (resp. monic polynomials) in A with degree less than
the degree of M and prime to M . Let M−M = MM \ M+

M . Fix nonzero
M ∈ A. For each polynomial A prime to M , we let A ∈ MM be the unique
element such that A ≡ A mod M . For A ∈ A, we let sgn(A) be the leading
coefficient of A and sgnM (A) = sgn(A) when A is prime to M . For A ∈MM ,
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let A′ be the unique element of MM such that AA′ ≡ 1 mod M and let
Ã = A/sgnM (A) ∈M+

M .
From now on we assume M = P n, a power of a monic irreducible poly-

nomial P with n ≥ 1. We write K = KM and G = GM for simplicity. Let
R = Z[G], the integral group ring of G. It is well known [BK, R] that

h−M =
∏

χ odd

( ∑

A∈M+
M

χ(A)
)
.(2.1)

Let θM =
∑

τ∈GM ZM (0, τ)τ−1, where ZM (s, τ) is the partial zeta function
associated to τ . It is a Stickelberger element of the extension K/k. From
[JA, (3)], we can write θM as follows:

θM =
∑

A∈M+
M

σ−1
A −

s(G)
q − 1

.(2.2)

Let θ = s(G)/(q − 1). Let S be the G-submodule of Q[G] generated by
θM and θ and let I = S ∩ R, called the Stickelberger ideal of K (cf. [JA,
Definition 3.1]). We define S− = e−S ∩ S and I− = S− ∩ R = e−I ∩ I,
where e+ = s(J)/(q − 1) and e− = 1− e+. Let η =

∑
A∈M+

M
σ−1
A and “deg”

be the augmentation map on Q[G], i.e., deg(
∑

σ∈G aσσ) =
∑

σ∈G aσ for any∑
σ∈G aσσ ∈ Q[G].

Lemma 2.1. {(σA − 1)θM : A ∈M−M} forms a Z-basis of I−.

Proof. Since e−θM = θM and e−θ = 0, we have S− = RθM and I− =
RθM ∩R. Let I∗ be the Z-submodule of R generated by {σA−1 : A ∈MM}.
First we show that I− = I∗θM . Clearly I∗θM is contained in I−. Let x =∑

A∈MM aAσA ∈ R be such that xθM ∈ I−. Then (q − 1) |deg x because

xθM =
∑

A∈MM
aA(σA − 1)θM + (deg x)θM .

So to show that xθM ∈ I∗θM , it suffices to show that (q − 1)θM ∈ I∗θM .
But since s(J)θM = 0, we have (q− 1)θM =

∑
α∈F∗q (1− σα)θM ∈ I∗θM . For

any A ∈M+
M , s(J)(σA − 1)θM = 0. So

(σA − 1)θM = −
∑

16=α∈F∗q
((σαA − 1)θM − (σα − 1)θM ).

Thus {(σA−1)θM : A ∈M−M} generates I− as Z-module. But I− has Z-rank
|M−M | (cf. [Y, Lemma 6]). Thus it must be a Z-basis of I−.

Next we find a Z-basis of R− = R ∩ e−R.
Lemma 2.2. {(σα − 1)σA : 1 6= α ∈ F∗q and A ∈ M+

M} forms a Z-basis
of R−.
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Proof. Let j be a generator of J . Then it is easy to show that R− =
(1 − j)R. So (σα − 1)σA ∈ R− for any 1 6= α ∈ F∗q and A ∈ M+

M . Any
element of R− can be written as a Z-linear combination of elements of the
form (1− j)σασA with α ∈ F∗q and A ∈M+

M . But

(1− j)σασA = (σα − σα′)σA = (σα − 1)σA − (σα′ − 1)σA

for some α′ ∈ F∗q . So {(σα − 1)σA : 1 6= α ∈ F∗q and A ∈M+
M} generates R−

as Z-module. Since the cardinality of this set is equal to the Z-rank of R−,
we get the result.

We recall the definition of Dem’yanenko matrix in the function field case.
For A,B ∈M−M , we let 〈AB〉 = 1 if sgnM (AB) = 1 and 〈AB〉 = 0 otherwise.
Define DM = (〈AB〉)A,B, where A,B run through M−M .

Proposition 2.3. [R− : I−] = |detDM |.
Proof. Let

Y1 = {(σα − 1)σA : 1 6= α ∈ F∗q and A ∈M+
M},

Y2 = {(σA − 1)θM : A ∈M−M}.
Note that (σA − 1)θM = (σA − 1)(η − s(G)/(q − 1)) = (σ − 1)η. Thus from
[JA, (5)] and the proof of [JA, Theorem 3.1], we see that the transition
matrix of Y2 with respect to Y1 is DM . So we get the result.

The Dem’yanenko matrix DM gives the complete group structure of the
quotient R−/I−. In Section 3, we investigate the exponent of the relative
divisor class group Cl−M by using the quotient R−/I−.

The following lemma is a generalization of the Dedekind determinant
formula [W, Lemma 5.26].

Lemma 2.4. Let G be a finite abelian group and H be a subgroup of G.
Let f be a function on G with values in some field of characteristic 0. Let
R be a full set of representatives for G/H. For σ ∈ G, let σ be an element
of R with σH = σH. Then

∏

χ∈Ĝ\Ĝ/H

(∑

σ∈G
χ(σ)f(σ)

)
= det(f(στ−1)− f(στ−1))σ,τ ,

where σ, τ run through G \ R.

Proof. We follow almost all the notations of the proof of [W, Lemma
5.26]. We only modify W to be the subspace of V consisting of functions
h(X) with

∑
τ∈H h(στ) = 0 for all σ ∈ R, and for τ ∈ G, set

ψτ (X) = φτ (X)− 1
|H|

∑

σ∈H
φτσ(X).
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By comparing the transition matrices of T =
∑

σ∈G f(σ)σ with respect to
two bases {ψτ (X)}τ 6∈R and {χ(X)}

χ∈Ĝ\Ĝ/H , we get the lemma.

Rosen [R] obtained a determinant formula for the relative divisor class
number h−P and his formula was extended to the prime power case by Bae–
Kang [BK]. The following proposition provides us with another determinant
formula for h−M .

Proposition 2.5. h−M = |det(〈AB′〉 − 〈AB̃′〉)A,B∈M−M |.

Proof. From (2.1) and Lemma 2.4 with H = J andR = {σA : A ∈M+
M},

we have

h−M =
∏

χ odd

∑

A∈M+
M

χ(A)〈A〉 = |det(〈AB′〉 − 〈AB̃′〉)A,B∈M−M |.

Proposition 2.6. h̃−M = |det(〈AB′〉)A,B∈M−M | = |detDM |.

Proof. Let D = (〈AB′〉 − 〈AB̃′〉)A,B∈M−M and D1 = (〈AB′〉)A,B∈M−M .

First, we make a partition of the column indices M−M of D into r sets, say
X1, . . . ,Xr, such that X1 = F∗q \ {1} and if B1, B2 ∈ Xi, then B̃1 = B̃2

for each i. Then Xi = {αB̃ : 1 6= α ∈ F∗q} for some monic B̃ ∈ M+
M . It

is easy to see that the sum of columns with indices in Xi is (1 . . . 1)t for
i = 1 and (. . . 1− (q−1)〈AB̃′〉 . . .)t

A∈M−M
for i 6= 1. Here B is any polynomial

in Xi. Thus, by making elementary column operations on D, we find that
detD = ±(q − 1)r−1 detD2 where D2 is equal to D1 except for one column
in each Xi, i 6= 2, and any other column in D2 is (. . . 〈AB̃′〉 . . .)t

A∈M−M
for

some B ∈ Xi. Since

〈AB̃′0〉+
∑

B∈Xi
〈AB′〉 = 1(2.3)

for some B0 ∈ Xi, we can recover D1 from D2. This proves the first equality.
To get the second equality, for each i, polynomials in Xi are mapped

to a polynomial in Xj for some 1 ≤ j ≤ r via the map B 7→ B′ except
for at most one polynomial in Xi. So again from (2.3), we can change D1

to DM by elementary column operations. This completes the proof of the
proposition.

From Propositions 2.3 and 2.6, we have the following corollary which
was already proved by Yin [Y, Main Theorem] in the global function field
case.

Corollary 2.7. [R− : I−] = h̃−M .
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3. Exponent of the relative divisor class group Cl−M . Since G acts
on the divisor class group ClM , we may view ClM as an R-module. It is
well known (cf. [H, Theorem 1.1]) that the Stickelberger ideal I annihilates
ClM . The relative divisor class group Cl−M is defined as Cl−M = {c ∈ ClM :
cs(J) = 1}.

For χ ∈ Ĝ, let eχ = (1/|G|)∑A∈MM χ(A)σ−1
A ∈ C[G] be the idempotent

element associated to χ. Recall η =
∑

A∈M+
M
σ−1
A . Then we have

θMeχ = ηeχ = hχeχ

with hχ =
∑

A∈M+
M
χ(A). The following proposition is an analogue of Iwa-

sawa’s results [I, Theorems 7, 8]. The proof is almost immediate from the
number field case, so we leave it to the reader.

Proposition 3.1. With the above notations, we have:

(i) Let t be the exponent of R−/I−, and let N denote the least positive
integer such that N/hχ is an algebraic integer for every odd character χ.
Then N is a factor of (q − 1)t and t is a factor of |G|N .

(ii) The exponent of Cl−M is a factor of |G|N and the exponent of

Cl
(q−1)−s(J)
M is a factor of |G|N/(q − 1).
(iii) Suppose that Cl−M is a cyclic group. Then h−M is a factor of |G|N .

As t divides |R−/I−| = h̃−M , it follows that if (q − 1, h̃−M) = 1, then t
must be a factor of |G|N/(q − 1).

Let C0 = {c ∈ Cl−M : cq−1 = 1}. Clearly C0 is an R-submodule of Cl−M .
As in [J, Theorem 1.4], we have

Theorem 3.2. Every cyclic R-submodule of Cl−M/C0 is the homomor-
phic image of the quotient R−/I−. In particular , the exponent e of Cl−M
divides (q − 1)t, where t is the exponent of R−/I−.

Proof. Let j be a generator of J as before, so R− = (1 − j)R. If
(1 − j)f = (1 − j)g with f, g ∈ R, then (f − g) ∈ R+ = s(J)R. Thus
f − g = s(J)h for some h ∈ R and cf = cg+s(J)h = cg for c ∈ Cl−M . For
c ∈ Cl−M , we define a map τc : R− → Cl−M by (1 − j)f 7→ cf . Then τc
is a well-defined R-homomorphism of R− onto cR. For s ∈ I−, we have
(q − 1)s = ((q − 1) − s(J))s = (1 − j)hs for some h ∈ R. Since any ele-
ment of the Stickelberger ideal annihilates the divisor class group, we have
τc((q − 1)s) = τc((1 − j)hs) = chs = 1, i.e. τc(s)q−1 = 1. Thus I− ⊂ ker τc.
Therefore τc : R−/I− → Cl−M/C0 is a well-defined R-homomorphism and its
image is the R-cyclic submodule cR of Cl−M/C0. This completes the proof of
the theorem.

Let h−M =
∏
i l
ei
i be the prime factorization of h−M . The exponent e of

Cl−M is divisible by
∏
i li. Suppose that l is a simple prime factor of the
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exponent t of R−/I− with (l, q− 1) = 1. Then by Theorem 3.2, the l-Sylow
subgroup of Cl−M is an elementary abelian group.

Let S∞ be the set of infinite primes in K. Let D(S∞)0 be the group of
degree zero divisors supported on S∞ and P(S∞) be the group of principal
divisors supported on S∞. For the set S+

∞ of infinite primes of K+, D(S+
∞)0

and P(S+
∞) are defined similarly. Then we have the following commutative

diagram with exact rows:

0 D(S∞)0/P(S∞) ClM C̃lM 0

0 D(S+
∞)0/P(S+

∞) Cl+M C̃l+M 0,

// //

��

//

��

//

��
// // // //

where each column is induced from the norm map NK/K+ .
Let (D(S∞)0/P(S∞))− be the kernel of NK/K+ in D(S∞)0/P(S∞). From

the above diagram, we have the exact sequence of R-modules

0→ (D(S∞)0/P(S∞))− → Cl−M → C̃l−M → 0.(3.1)

Thus we see that the results on Cl−M (Proposition 3.1, Theorem 3.2) also
hold for the relative ideal class group C̃l−M .

As J is both the decomposition and the inertia group at∞, NK/K+(x) =
(q−1)x for x ∈ D(S∞). Thus as an abelian group (D(S∞)0/P(S∞))− has the
exponent dividing q−1. SinceD(S∞)0 is a free abelian group of rank r−1, the
order of (D(S∞)0/P(S∞))− divides (q−1)r−1. But from h−M = (q−1)r−1h̃−M
and (3.1), we see |(D(S∞)0/P(S∞))−| = (q − 1)r−1. Thus we have

Proposition 3.3. (D(S∞)0/P(S∞))− ∼= (Z/(q − 1))r−1. In particular ,
if (h̃−M , q − 1) = 1, we have

Cl−M
∼= (D(S∞)0/P(S∞))− ⊕ C̃l−M ∼= (Z/(q − 1))r−1 ⊕ C̃l−M .

Now we give some examples on the group structure of Cl−M . As the
k-isomorphisms T 7→ T + α with α ∈ F∗q send a monic irreducible polyno-
mial to another monic irreducible polynomial, it suffices to consider only
the polynomials up to these isomorphisms. We compute the invariants of
R−/I−, i.e., the invariants of the Dem’yanenko matrix DM using MAPLE.
The computation of invariants from the matrix becomes difficult as the size
of the matrix becomes larger.

Example 1. Suppose M = P with degP = 1. Then R− = I− by
Lemmas 2.1, 2.2 and so Cl−M is trivial.

Example 2. We give examples with q = 3, M = P , degP ≤ 4.
A simple calculation shows that h̃−M is prime to q − 1 if degP ≤ 4. Thus,
by Proposition 3.3, it suffices to determine the structure of C̃l−M .
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For degP = 2, T 2 + 1 is the only nonisomorphic monic irreducible poly-
nomial and h̃−

T 2+1 = 1. Thus C̃l−M is trivial and Cl−M
∼= Z/2⊕ Z/2⊕ Z/2.

For degP = 3, 4, there are 4 and 6 nonisomorphic monic irreducible
polynomials, respectively. Tables 1 and 2 show the order and the structure
of the relative ideal class group for each polynomial. When h̃−P is square-
free, obviously C̃l−P is cyclic. When h̃−P is not square-free, we compute the
invariants of R−/I−. If the exponent of R−/I− is square-free, then each l-
Sylow subgroup of C̃l−P is an elementary abelian l-group. We label such cases
“elementary” in Tables 1 and 2. If the exponent of R−/I− has a nonsimple
prime factor l, we cannot determine the l-Sylow subgroup of C̃l−P from our
results. In this case we only write the nonsimple factors of the exponent of
R−/I− in Tables 1 and 2.

Table 1. p = 3,degP = 3

P (T ) h̃−M C̃l−M
T 3 + T 2 + 2 5 · 79 cyclic

T 3 + 2T 2 + 1 3 · 131 cyclic

T 3 + 2T + 2 33 · 7 elementary

T 3 + 2T + 1 36 32

Table 2. p = 3,degP = 4

P (T ) h̃−M C̃l−M
T 4 + T + 2 241 · 641 · 881 · 532611841 cyclic

T 4 + 2T + 2 17 · 97 · 63648628175761 cyclic

T 4 + T 2 + 2 241 · 3329 · 65521 · 1322641 cyclic

T 4 + 2T 2 + 2 173 · 12046669609441 elementary

T 4 + T 2 + T + 1 172 · 337 · 853111437361 elementary

T 4 + T 2 + 2T + 1 172 · 13921 · 18743655761 172

Example 3. Let q = 7 and M = T 2. We have h̃−M = 23 · 132 · 118147
and the exponent of R−/I− is 2 · 13 · 118147. As (h̃−M , q − 1) = 2, we only
see that the l-Sylow subgroup of Cl−M is an elementary abelian l-group for
l 6= 2 and the 2-factor of the exponent of Cl−M is 2 or 4 from Theorem 3.2.

4. The signs of cyclotomic units. Recall that for 0 6= A ∈ A, sgn(A)
denotes the leading coefficient of A. This function can be extended to a sign
function (also denoted by “sgn”) on k∞, i.e., sgn : k∗∞ → F∗q which is the

identity on F∗q and trivial on U (1)
∞ . Here U (1)

∞ is the subgroup of 1-units of k∗∞.



Relative class number 99

Let P be an infinite prime of K and p be the infinite prime of K+ lying
below P. From [GR, Proposition 1.10], there exists a primitive M -torsion
point λ such that ordP(λ) = (d − 1)(q − 1) − 1, where d = degM . As p is
totally ramified in K, we also have ordp(λq−1) = (d − 1)(q − 1) − 1. Since
the completion (K+)p of K+ at p is isomorphic to k∞, we regard K+ as a
subfield of k∞ under this isomorphism.

Proposition 4.1. sgn(λA/λ) = sgnM (A) for 0 6= A ∈ A, (A,M) = 1.

Proof. Since λA = λA and sgnM (A) = sgnM (A), we may assume A ∈
MM with degA = d0 ≤ d − 1. Then λA/λ can be written as λA/λ =∑d0

i=0 c(A, i)λ
qi−1, where c(A, i) is a polynomial of degree (d0 − i)qi and

c(A, 0) = A, c(A, d0) = sgn(A). For 0 ≤ i ≤ d0, we have

ord∞(c(A, i)λq
i−1)

= − (d0 − i)qi +
qi − 1
q − 1

((d− 1)(q − 1)− 1)

=
1

q − 1
{qi((q − 1)(i− d0 + d− 1)− 1)− ((d− 1)(q − 1)− 1)}.

As (q − 1)(i − d0 + d − 1) − 1 ≥ 0 except for d0 = d − 1 and i = 0,
ord∞(c(A, i)λq

i−1) is an increasing function on i. Thus λA/λ = xA with
x = 1+

∑d0
i=1 c(A, i)λ

qi−1/A ∈ U (1)
∞ . Therefore sgn(λA/λ) = sgn(x) sgn(A) =

sgn(A).

Corollary 4.2. For A,B ∈M+
M , sgn(σB(λA/λ)) = sgnM (AB).

For a fixed generator α in F∗q , we define sgnα : k∗∞ → Z/(q − 1) as
sgn(x) = αsgnα(x) for x ∈ k∗∞. An element x of K+ is called totally positive
if sgnα(σ(x)) = 0 for any σ ∈ G+

M . Write M+
M = {A1, . . . , Ar} with A1 = 1

and σi = σAi . Let E be the group of units in OM and Ecyc be the group of
cyclotomic units [GR, Section 4]. Then

E = F∗q ×
r∏

i=2

〈εi〉 and Ecyc = F∗q ×
r∏

i=2

〈ξi〉,

where {εi}i is a system of fundamental units for E and ξi = λAi/λ. Let
ξ1 = ε1 = α. For i ≥ 2, we can write ξi as ξi = αni

∏
ε
cij
j with ni, cij ∈ Z.

Let A = (cij)ti,j≥2. Then

(ξ1, . . . , ξr) = (ε1, . . . , εr) ·
(

1 ∗
0 A

)

and so

(sgn(σk(ξi)))k,i = (sgn(σk(εi)))k,i ·
(

1 ∗
0 A

)
.(4.1)
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Note that the matrix A is uniquely determined modulo q − 1 in (4.1).
Now assume q = 3. Note that sgnα(σk(ξi)) becomes 〈AiAk〉+ 1 if i 6= 1

and 1 if i = 1. From (4.1), we have

(sgnα(σk(ξi)))k,i = (sgnα(σk(εi)))k,i ·
(

1 ∗
0 A

)
in F2.(4.2)

Lemma 4.3. Let EM = (sgnα(σk(ξi)))k,i. Then |det EM | ≡ h̃−M mod 2.

Proof. Since α has order 2, we have DM = (〈AiAk〉)i,k. By adding the
first column of DM to the other columns, we change DM into EM in F2. Now
the lemma follows from Proposition 2.6.

Let E+ (resp. E+
cyc) denote the subgroup of totally positive units in E

(resp. Ecyc). Then, as in [S, Theorem 1], we get the following theorem.

Theorem 4.4. The following are equivalent :

(i) 2 | h̃−M .
(ii) E+

cyc 6= E2
cyc.

(iii) 2 | h̃+
M or E+ 6= E2.

Proof. Consider a homomorphism

φ : E → Fr2, x 7→ (sgnα(σ1(x)), . . . , sgnα(σr(x))).

Since E+ (resp. E+
cyc) is the kernel of φ in E (resp. Ecyc), we have |E/E+| =

2d1 and |Ecyc/E
+
cyc| = 2d2 , where d1 = rank(sgnα(σk(εi)))k,i and d2 =

rank(sgnα(σk(ξi)))k,i. Now the result follows from (4.2), Lemma 4.3 and
the fact that |detA| = h̃+

M (cf. [GR, Main Theorem]).
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