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1. Introduction. Continued fractions [8, 14] are a useful tool in many
number theoretical problems and in numerical computing. It is well known
that the simple continued fraction expansion of a single real number gives
the best solution to its rational approximation problem. Many people have
contrived to construct multidimensional continued fractions in dealing with
the rational approximation problem for multi-reals. One construction is
the Jacobi–Perron algorithm (JPA) (see [1]). This algorithm and its mod-
ifications have been extensively studied [6, 7, 10, 13]. These algorithms
are adapted to study the same problem for multi-formal Laurent series
[2, 4, 11, 12]. But none of them guarantees the best rational approxima-
tion in general. In this paper, we deal with the multi-rational approxima-
tion problem over the formal Laurent series field F ((z−1)): given an element
r ∈ F ((z−1))m, find p ∈ F [z]m and q ∈ F [z] such that p/q approximates r
as close as possible while deg(q) is bounded.

We propose a new continued fraction algorithm for multi-formal Laurent
series. It is proved that this algorithm guarantees best rational approxima-
tions for multi-formal Laurent series.

The paper is organized as follows: Section 2 deals with the indexed valu-
ation of F ((z−1))m. Section 3 contains the detailed definition of the problem
of optimal rational approximation of multi-formal Laurent series. Section 4
proposes an algorithm called multidimensional continued fraction algorithm
(m-CFA, for short), which produces a multi-continued fraction expansion
C(r) for any given multi-formal Laurent series r. Section 5 shows that C(r)
satisfies three basic conditions. Section 6 states the main results of this pa-
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per: C(r) provides optimal rational approximations to r. In Section 7 we
complete all proofs.

2. Indexed valuation over F ((z−1)). Denote by Z the ring of inte-
gers, by F an arbitrary field, by m a positive integer, and by Zm the set
{1, . . . , m}. Let F [z] be the polynomial ring over F , F (z) the rational frac-
tion field over F , and

F ((z−1)) =
{

∑

i≥t

aiz
−i

∣

∣

∣ t ∈ Z, ai ∈ F
}

the formal Laurent series field over F . By identifying p(z)/q(z) ∈ F (z) with
p(z)q(z)−1 ∈ F ((z−1)), where p(z) and q(z) ( 6= 0) are polynomials, we view
F (z) as a subfield of F ((z−1)). We denote by Fm, F [z]m and F ((z−1))m

the column vector space of dimension m over F , F [z] and F ((z−1)) respec-
tively.

Definition 1 (order over Zm × Z). For any two elements (h, v) and
(h′, v′) in Zm × Z, we define (h, v) < (h′, v′) if v < v′ or v = v′, h < h′.

The order defined above is linear [3]. It is clear that if (j, n) < (j′, n′),
then n ≤ n′ and (j, n + x) < (j′, n′ + x) for any x ∈ Z.

For 1 ≤ j ≤ m, we write ej = (
1
0, . . . , 0,

j

1, 0, . . . ,
m

0)τ , which is the jth
standard base element in Fm, where τ means transpose; moreover, set

z−nej = (
1
0, . . . , 0,

j

z−n, 0, . . . ,
m

0)τ ∈ F ((z−1))m, ∀(j, n) ∈ Zm × Z,

which is called the (j, n)th monomial in F ((z−1))m, and define

rz−nej = z−nejr = (
1
0, . . . , 0,

j

rz−n, 0, . . . ,
m

0)τ ,

∀(j, n) ∈ Zm × Z, r ∈ F ((z−1)).

Definition 2. Any non-zero element r = (r1, . . . , rm)τ in F ((z−1))m,
rj =

∑

rj,nz−n ∈ F ((z−1)), can be uniquely expressed as

(1) r =
∑

(i,t)≤(j,n)

rj,nz−nej , rj,n ∈ F,

for some (i, t) ∈ Zm × Z, which is called its monomial decomposition.
rj,nz−nej is called the (j, n)th term of r; rj,n the (j, n)th coefficient of r;
z−nej a monomial of r (written z−nej ∈ r) if rj,n 6= 0. For 0 6= r ∈

F ((z−1))m, define

(2) Iv(r) = min{(j, n) | rj,n 6= 0, (j, n) ∈ Zm × Z} ∈ Zm × Z,

and Iv(0) = (1,∞).
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The pair Iv(r) is called the indexed valuation of r. If Iv(r) = (h, v), then
v is called the valuation of r and denoted by v(r), and h the index of r and
denoted by I(r); and rh,vz

−veh is the leading term of r, denoted by Ld(r).

It is clear that v(·) is the discrete valuation on F ((z−1)) when m = 1.
When m > 1, we have

v(r) = min {v(rj) | 1 ≤ j ≤ m}, I(r) = min {j | v(rj) = v(r), 1 ≤ j ≤ m}.

Theorem 3. Let α, β ∈ F ((z−1))m.

(1) Iv(α) 6= (1,∞) ⇔ α 6= 0.
(2) If Iv(α) = (h, v), then Iv(rα) = (h, v + v(r)) for any 0 6= r ∈

F ((z−1)). In particular , Iv(rα) = Iv(α) if 0 6= r ∈ F .
(3) Iv(α + β) ≥ min {Iv(α), Iv(β)}, and equality holds if and only if

Ld(α)+Ld(β) 6= 0. In particular , Iv(α+β) = Iv(α) if Iv(α) < Iv(β).

In studying the rational approximation problem of multi-formal Laurent
series, we need the concept of limit with respect to the indexed valuation
[15]. We say that a sequence {xk}k≥0 in F ((z−1))m is convergent with respect
to the indexed valuation if there exists an element x ∈ F ((z−1))m (called a
limit of {xk}k≥0) which satisfies: for any (h, v) ∈ Zm ×Z there is a positive
integer k0 such that Iv(xk − x) ≥ (h, v) whenever k ≥ k0.

One can verify that:

(1) If a sequence {xk}k≥0 is convergent, then its limit x ∈ F ((z−1))m is
unique. Therefore we can write x = limk→∞ xk.

(2) F (z)m is dense in F ((z−1))m in the sense that each element in
F ((z−1))m is the limit of a sequence from F (z)m.

3. Optimal rational approximation

Definition 4. Let

p(z)

q(z)
=

(

p1(z)

q(z)
, . . . ,

pm(z)

q(z)

)τ

∈ F [z]m

be an m-tuple of rational fractions, where q(z) is the common denomina-
tor of the m components. The indexed valuation Iv(r − p(z)/q(z)) is called
the precision of approximation of r by p(z)/q(z). The tuple p(z)/q(z) is
called an optimal rational approximant to r if it satisfies the following two
conditions:

• Iv

(

r−
u(z)

v(z)

)

< Iv

(

r−
p(z)

q(z)

)

∀
u(z)

v(z)
∈ F (z)m, deg(v(z)) < deg(q(z));

• Iv

(

r−
u(z)

v(z)

)

≤ Iv

(

r−
p(z)

q(z)

)

∀
u(z)

v(z)
∈ F (z)m, deg(v(z)) = deg(q(z)).
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For a non-zero element r =
∑t

i=0 b−iz
i +

∑

i≥1 biz
−i in F ((z−1)), where

t ≥ 0, define ⌊r⌋ =
∑t

i=0 b−iz
i and {r} =

∑

i≥1 biz
−i, which are called the

polynomial part and the remaining part of r, respectively [15].
For r = (. . . , rj(z), . . .)τ ∈ F ((z−1))m, set ⌊r⌋ = (. . . , ⌊rj(z)⌋, . . .)τ and

{r} = (. . . , {rj(z)}, . . .)τ . It is not difficult to see that p(z)/q(z) is an optimal
rational approximant to {r} of precision (h, n) if and only if ⌊r⌋+ p(z)/q(z)
is an optimal rational approximant to r of the same precision. Therefore,
it is enough to consider elements r with positive valuation (v(r) > 0) in
studying optimal rational approximation of formal Laurent series.

4. Multidimensional continued fraction algorithm. We denote by

(3) diag(r1, . . . , rm), rj ∈ F ((z−1)),

the diagonal matrix of order m with the jth diagonal element equal to rj .

m-Continued Fraction Algorithm (m-CFA, for short). Given r ∈
F ((z−1))m with r 6= 0 and v(r) > 0, initially set a0 = 0, ∆−1 = Im =
diag(. . . , z−c0,j , . . .), c0,j = 0 for 1 ≤ j ≤ m, and α0 = r. For any integer
k ≥ 1, suppose ∆k−2 = diag(. . . , z−ck−1,j , . . .), ci,j ∈ Z, and 0 6= αk−1 =
(. . . , αk−1,j , . . .)

τ ∈ F ((z−1))m have been obtained. Then the computations
for the kth round are defined by the following steps:

(1) Set (hk, ck) = Iv(∆k−2αk−1).
(2) Set ∆k−1 = diag(. . . , z−ck,j , . . .), which is an m×m diagonal matrix,

where ck,j = ck−1,j if j 6= hk, and ck,hk
= ck.

(3) Set ̺k = (. . . , ̺k,j , . . .)
τ ∈ F ((z−1))m, where ̺k,j = αk−1,j/αk−1,hk

if j 6= hk, and ̺k,hk
= 1/αk−1,hk

.
(4) Set αk = {̺k} and ak = ⌊̺k⌋. If αk = 0, then set µ = k, and the

algorithm terminates.

Define µ = ∞ if the above procedure never terminates.
By letting m-CFA act on r, we get an expansion of the form

C(r) = [0, h1, a1, . . . , hk, ak, . . . ], 1 ≤ k ≤ µ.

We call C(r) the multi-continued fraction expansion of r, and µ the length
of C(r).

In what follows we keep the notation C(r) and all the notations appearing
in the process of generating C(r), and define

(4) ak = (ak,1, . . . , ak,j , . . . , ak,m).

For the case µ < ∞, we see that αµ = 0, and it is convenient to set

(5) (hµ+1, cµ+1) = Iv(∆µαµ) = (1,∞).

Theorem 5. αk−1,hk
6= 0 for 1 ≤ k ≤ µ. As a consequence, the m-CFA

is well defined , and 0 6= ak−1,hk
∈ F [z], deg(ak−1,hk

) ≥ 1 for 1 ≤ k ≤ µ.
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Proof. From (hk, ck) = Iv(∆k−2αk−1), we see that ck−1,hk
+ v(αk−1,hk

)
= ck, thus, v(αk−1,hk

) = −ck−1,hk
+ ck ∈ Z, hence αk−1,hk

6= 0.

Remark. When m = 1, the m-CFA is exactly the classical continued
fraction algorithm [14] for formal power series. In fact, when m = 1, we
have hk = 1 for all k, hence both step (1) and step (2) at each round
are unnecessary. Now, the 1-CFA is as follows (we write r = r, ak = ak):
Initially, set a0 = 0, α0 = r. For any integer k ≥ 1, suppose [a0, a1, . . . , ak−1]
and 0 6= αk−1 ∈ F ((z−1)) have been obtained. Then the computations for
the kth round are defined by the following steps:

(1) Set ̺k = 1/αk−1.
(2) Set αk = {̺k} and ak = ⌊̺k⌋. If αk = 0, then set µ = k, and the

algorithm terminates.

Define µ = ∞ if the above procedure never terminates.

5. Three conditions satisfied by the multi-continued fraction

expansion C(r). Define

(6)















































t0 = 0,

tk = deg(ak,hk
(z)), 1 ≤ k ≤ µ,

v0,j = 0,

vk,j =
∑

hi=j, 1≤i≤k ti, 1 ≤ k ≤ µ, 1 ≤ j ≤ m,

vk = vk,hk
, 1 ≤ k ≤ µ,

Dk = diag(z−vk,1, . . . , z−vk,m), 0 ≤ k ≤ µ,

tµ = ∞,

(hµ+1, vµ+1) = (1,∞) if µ < ∞.

Theorem 6. For 1 ≤ k ≤ µ, C(r) satisfies:

• Condition 1: tk ≥ 1,
• Condition 2: Iv(Dkak) = (hk, vk−1,hk

),
• Condition 3: (hk, vk−1,hk

) < (hk+1, vk+1).

Before proving Theorem 6 we make some preparations. In particular, we
introduce the concept of a D-matrix.

Definition 7. We call a diagonal matrix over F ((z−1)) a D-matrix if
each of its diagonal elements is a power of z.

It is clear that both Dk and ∆k−1 are D-matrices.

Lemma 8. Let 0 6= ̺ ∈ F ((z−1))m and I(∆̺) = h, where ∆ is a D-
matrix. Then

Iv(∆̺) =

{

Iv(∆⌊̺⌋) < Iv(∆{̺}) if ⌊̺h⌋ 6= 0,

Iv(∆{̺}) < Iv(∆⌊̺⌋) if ⌊̺h⌋ = 0,

where ̺h is the hth component of ̺.
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Proof. Set ∆ = diag(. . . , z−bj , . . .). Then Iv(∆̺) = Iv(z−bhz−v(̺h)eh).
Noting that there are no common monomials in ∆{̺} and ∆⌊̺⌋, we see
that Iv(∆{̺}) 6= Iv(∆⌊̺⌋), and then Iv(∆̺) = min{Iv(∆⌊̺⌋), Iv(∆{̺})},
which leads to the result by observing that Iv(∆̺) = Iv(∆⌊̺⌋) < Iv(∆{̺}) if
and only if z−v(̺h)eh ∈ ⌊̺⌋, and the latter holds true if and only if ⌊̺h⌋ 6= 0.

Lemma 9.

(1) tk = deg(ak,hk
) = −v(̺k,hk

) = v(αk−1,hk
) > 0 for 1 ≤ k ≤ µ.

(2) vk,j = ck,j and vk = ck for 0 ≤ k ≤ µ and 1 ≤ j ≤ m. As a
consequence, Dk = ∆k−1 for 0 ≤ k ≤ µ.

(3) Iv(∆k−1̺k) = (hk, vk−1,hk
).

Proof. (1) Noting that αk−1,hk
6= 0 and αk−1 is the remaining part of

̺k−1, we see that 0 < v(αk−1,hk
) 6= ∞. Since ak,hk

= ⌊̺k,hk
⌋ = ⌊α−1

k−1,hk
⌋,

we obtain

tk = deg(ak,hk
) = −v(⌊̺k,hk

⌋) = −v(⌊α−1
k−1,hk

⌋)

= −v(α−1
k−1,hk

) = v(αk−1,hk
) > 0.

(2) By definition,

vk,j =

{

vk−1,j if j 6= hk,

vk = vk−1,hk
+ tk if j = hk.

From Iv(∆k−2αk−1) = (hk, ck), we see that ck = ck−1,hk
+ v(αk−1,hk

) =
ck−1,hk

+ tk, so

(7) ck,j =

{

ck−1,j if j 6= hk,

ck = ck−1,hk
+ tk if j = hk.

Therefore, the vk,j satisfy the same recurrence relation as ck,j , and they have
the same initial values: v0,j = c0,j, so vk,j = ck,j and vk = vk,hk

= ck,hk
= ck.

(3) From (7) we see that

∆k−1 =







Ihk−1 0 0

0 z−tk 0

0 0 Im−hk






∆k−2,

and

̺k =







Ihk−1 0 0

0 α−1
k−1,hk

0

0 0 Im−hk






αk−1α

−1
k−1,hk

.

Then

∆k−1̺k =







Ihk−1 0 0

0 z−tkα−1
k−1,hk

0

0 0 Im−hk






∆k−2αk−1α

−1
k−1,hk

.



Multi-continued fraction algorithm 7

Since v(z−tkα−1
k−1,hk

) = 0, we obtain

v













Ihk−1 0 0

0 z−tkα−1
k−1,hk

0

0 0 Im−hk






∆k−2αk−1






= v(∆k−2αk−1) = (hk, ck).

Thus

Iv(∆k−1̺k) = (hk, ck − v(αk−1,hk
)) = (hk, vk−1,hk

).

Proof of Theorem 6. From Lemma 9 we see that Condition 1 holds true.
Noting that hk = I(∆k−1̺k) and ⌊̺k,hk

⌋ 6= 0 (see Lemma 9), from Lemma 8
we get

Iv(∆k−1̺k) = Iv(∆k−1⌊̺k⌋) < Iv(∆k−1{̺k}).

Since ak = ⌊̺k⌋, αk = {̺k} and Iv(∆k−1̺k) = (hk, vk−1,hk
), we get

(hk, vk−1,hk
) = Iv(∆k−1ak) < Iv(∆k−1αk) = (hk+1, ck+1) = (hk+1, vk+1),

which together with ∆k−1 = Dk tells us that C(r) satisfies Conditions 2
and 3.

6. m-CFA and optimal rational approximations. In this section
we show how C(r) provides optimal rational approximations to r by rational
fractions

(

p
k

qk

)

, 0 ≤ k ≤ µ, defined below.

Define iteratively the square matrices Bk of order m + 1 over F [z]:

(8)

{

B0 = Im+1,

Bk = Bk−1Ehk
A(ak), 1 ≤ k ≤ µ,

where

(9)











Eh = (e1 e2 . . . eh−1 em+1 eh+1 . . . em eh),

A(ak) =

(

Im ak

0 1

)

.

In other words, Eh is the matrix of order m + 1 obtained by exchanging the
hth and (m + 1)th columns of the identity matrix Im+1.

Define

(10)

(

p
k

qk

)

= Bk(0 . . . 0 1)τ ,

which is the last column of Bk, where p
k
(z) ∈ F [z]m and qk(z) ∈ F [z].

Remark. When m = 1, write p
k

= pk ∈ F [z], ak = ak ∈ F [z]; we claim
that pk and qk satisfy the following recurrence relation:

(11)

{

pk = pk−2 + akpk−1,

qk = qk−2 + akqk−1,
for k ≥ 1,
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where (p−1, q−1) = (1, 0) and (p0, q0) = (0, 1), hence the rational fractions
(

pk

qk

)

are exactly the rational approximants provided by the classical contin-

ued fraction algorithm [14]. In fact, we can prove (11) and

(12) Bk =

(

pk−1 pk

qk−1 qk

)

, k ≥ 0,

together by induction on k. It is easy to check (12) for k = 0. Assume

Bk−1 =

(

pk−2 pk−1

qk−2 qk−1

)

;

then the first column of Bk is

Bk(1 0)τ =Bk−1E1A(ak)(1 0)τ =Bk−1E1(1 0)τ =Bk−1(0 1)τ =

(

pk−1

qk−1

)

,

hence (12) is true because
(

pk

qk

)

is the second column of Bk by definition.
Then we have

(

pk

qk

)

=Bk(0 1)τ =Bk−1E1A(ak)(0 1)τ =Bk−1

(

1

ak

)

=

(

pk−2 + akpk−1

qk−2 + akqk−1

)

,

hence (11) holds true for k.
Define

(13)



















d0 = 0,

dk =
∑

1≤i≤k ti,

nk = dk−1 + vk,

dµ+1 = tµ+1 = nµ+1 = ∞ if µ < ∞.

From the fact that nk = dk−1 + vk = dk + vk−1,hk
and nk+1 = dk + vk+1, we

see immediately that Condition 3: (hk, vk−1,hk
) < (hk+1, vk+1) ∀1 ≤ k ≤ µ,

is equivalent to the following condition:

(14) (hk, nk) < (hk+1, nk+1) ∀1 ≤ k ≤ µ.

Theorem 10.

(1) gcd(qk(z), . . . , pk,j(z), . . .) = 1 for all 0 ≤ k ≤ µ, where pk,j(z) is the
jth component of p

k
(z).

(2) deg(qk(z)) = dk for all 0 ≤ k ≤ µ.

Theorem 11. Iv(r − p
k
(z)/qk(z)) = (hk+1, nk+1). As a consequence,

(15) r =



















p
µ
(z)

qµ(z)
if µ < ∞,

lim
k→∞

p
k
(z)

qk(z)
if µ = ∞.
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We call the rational fraction p
k
(z)/qk(z) (0 ≤ k ≤ µ) the kth rational

approximant of C(r), and we say C(r) converges to r in the sense that (15)
holds. The following theorem shows that C(r) provides optimal rational
approximations to r.

Theorem 12. Assume q(z) ∈ F [z], dk ≤ deg(q(z)) < dk+1 and p(z) ∈
F [z]m for some 0 ≤ k ≤ µ. Then

Iv

(

r −
p(z)

q(z)

)

≤ Iv

(

r −
p

k
(z)

qk(z)

)

= (hk+1, nk+1).

As a consequence, no p(z)/q(z) with deg(q(z)) < dk+1 approximates r better
than p

k
(z)/qk(z). In particular :

(1) Each p
k
(z)/qk(z), 0 ≤ k ≤ µ, is an optimal rational approximant

to r.
(2) If p(z)/q(z) is an optimal rational approximant to r, then deg(q(z))

= dk for some k, 0 ≤ k ≤ µ.

7. Proof of the theorems

7.1. Proof of Theorem 10. First we express qk(z) explicitly. To do this,
for 0 ≤ k ≤ µ we denote by Pk−1 the m × m submatrix of Bk which is
made up of the first m columns and the first m rows, and by Qk−1 the 1×m
submatrix of Bk made up of the first m columns and the last row; moreover,
denote by Pk−1,j (∈ F [z]m) the jth column of Pk−1, and by Qk−1,j (∈ F [z])
the jth component of Qk−1 for 1 ≤ j ≤ m.

Lemma 13. For 1 ≤ k ≤ µ, we have:

(1) Bk−1Ehk
=

(

Pk−1 Pk−2,hk

Qk−1 Qk−2,hk

)

.

(2)

(

Pk−1,j

Qk−1,j

)

=























(

Pk−2,j

Qk−2,j

)

if j 6= hk,

(

p
k−1

qk−1

)

if j = hk.

Proof. (1) We have

Bk−1Ehk

(

Im

0

)

= Bk−1Ehk
A(ak)

(

Im

0

)

= Bk

(

Im

0

)

=

(

Pk−1

Qk−1

)

,

and

Bk−1Ehk

(

0

1

)

= Bk−1ehk
=

(

Pk−2,hk

Qk−2,hk

)

.

Hence, we get (1).
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(2) We have

(

Pk−1,j

Qk−1,j

)

= Bk−1Ehk
ej =























Bk−1ej =

(

Pk−2,j

Qk−2,j

)

if j 6= hk,

Bk−1em+1 =

(

p
k−1

qk−1

)

if j = hk.

Now, for k ≥ 1, qk can be expressed explicitly as

(16) qk(z)

= (01×m 1)Bk

(

0

1

)

= (01×m 1)Bk−1Ehk

(

Im ak

0 1

)(

0

1

)

= (01×m 1)

(

Pk−1 Pk−2,hk

Qk−1 Qk−2,hk

)(

ak

1

)

= Qk−1ak(z) + Qk−2,hk

= qk−1(z)ak,hk
(z) +

∑

j 6=hk, Qk−1,j 6=0, 1≤j≤m

Qk−1,jak,j(z) + Qk−2,hk
.

To evaluate the degree of ak,j(z) and to show how Qk−1,j depends on
some qi(z) (0 ≤ i ≤ k−1), we define a function l(k, j), which is associated to
C(r) and defined on the set [1, µ]×Zm ([1, µ] = {k ∈ Z | 1 ≤ k ≤ µ}), in the
following way: l(k, j) = k0 if there exists an integer k0 such that 1 ≤ k0 ≤ k,
hk0 = j and hi 6= j for all k0 < i ≤ k; and l(k, j) = 0 otherwise. It is clear
that



















l(k, hk) = k,

l(k, j) < k if j 6= hk,

hl(k,j) = j,

vk,j = vl(k,j).

(17)

Lemma 14. For 1 ≤ k ≤ µ, we have

(1)

(

Pk−1,j

Qk−1,j

)

=























(

p
l(k,j)−1

ql(k,j)−1

)

if l(k, j) ≥ 1,

(

ej

0

)

if l(k, j) = 0.

As a consequence, l(k, j) ≥ 1 if Qk−1,j 6= 0.
(2) For j 6= hk,

{

deg(ak,j(z)) < dk − dl(k,j)−1 if l(k, j) ≥ 1,

ak,j(z) ∈ F if l(k, j) = 0.
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Proof. (1) For j = hk, we have seen
(

Pk−1,hk

Qk−1,hk

)

=

(

p
k−1

qk−1

)

=

(

p
l(k,hk)−1

ql(k,hk)−1

)

.

For j 6= hk we have
(

Pk−1,j

Qk−1,j

)

=

(

Pk−2,j

Qk−2,j

)

= . . .

=























(

Pl(k,j)−1,j

Ql(k,j)−1,j

)

=

(

Pl(k,j)−1,hl(k,j)

Ql(k,j)−1,hl(k,j)

)

=

(

p
l(k,j)−1

ql(k,j)−1

)

if l(k, j) > 0,

(

P0−1,j

Q0−1,j

)

=

(

P−1,j

Q−1,j

)

=

(

ej

0

)

if l(k, j) = 0.

(2) From Dkak =
∑

1≤j≤m z−vk,jak,jej and Iv(Dkak) = (hk, vk−1,hk
) and

the assumption j 6= hk, we see that

(18) (j, vk,j − deg(ak,j)) = Iv(z−vk,jak,jej) > Iv(Dkak) = (hk, vk−1,hk
),

and then

(19) vk,j − deg(ak,j) ≥ vk−1,hk
.

If l(k, j) > 0, from (18) we get

(j, dk + vk,j − deg(ak,j)) > (hk, dk + vk−1,hk
) = (hk, nk)

> (hl(k,j), nl(k,j)) = (j, nl(k,j)),

so

dk + vk,j − deg(ak,j) > nl(k,j) = dl(k,j)−1 + vl(k,j) = dl(k,j)−1 + vk,j ,

hence deg(ak,j) < dk − dl(k,j)−1. If l(k, j) = 0, then vk,j = 0, and from (19)
we have deg(ak,j) ≤ vk,j − vk−1,hk

= −vk−1,hk
≤ 0, hence deg(ak,j) ≤ 0, i.e.,

ak,j(z) ∈ F .

Now we turn to the proof of Theorem 10.

(1) By definition, Bk is a matrix over F [z] and det(Bk) = 1, which leads
to assertion (1).

(2) We argue by induction on k. For k = 0, we have q0(z) = 1, hence
deg(q0) = 0 = d0. Assume deg(qi) = di for i < k and k ≥ 1. From (16) and
Lemma 14 we see that

qk(z) = qk−1(z)ak,hk
(z) +

∑

j 6=hk, l(k,j)≥1, 1≤j≤m

ql(k,j)−1,jak,j(z) + Qk−2,hk
.

The required result deg(qk(z)) = dk follows by observing the following facts:

• deg(qk−1(z)ak,hk
(z)) = dk−1 + tk = dk (induction assumption).
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• For j 6= hk and l(k, j) ≥ 1, we see that (by induction assumption)

deg(ql(k,j)−1ak,j(z)) < dl(k,j)−1 + dk − dl(k,j)−1 = dk.

• If Qk−2,hk
6= 0, then l(k−1, hk) ≥ 1, and hence Qk−2,hk

= ql(k−1,hk)−1.
So, deg(Qk−2,hk

) = deg(ql(k−1,hk)−1) = dl(k−1,hk)−1 < dk.

7.2. Proof of Theorem 11. For 0 ≤ k ≤ µ we define

rk = rqk − p
k
,(20)

−Rk−1 = rQk−1 − Pk−1.(21)

We call rk the kth remainder vector, and Rk−1 the (k − 1)th remainder
matrix.

Theorem 11 is an easy consequence of the following

Proposition 15. For 1 ≤ k ≤ µ, we have

(1) Rk−1̺k = −Rk−2,hk
and rk = Rk−1αk.

(2) Iv(Rk−1αk) = Iv(Dkαk).

(3) Iv(rk) = (hk+1, vk+1).

Proposition 15 will be proved later, now we prove Theorem 11 based on
it. From item (3) of Proposition 15 we get immediately

Iv

(

r −
p

k
(z)

qk(z)

)

= Iv

(

rk

qk(z)

)

= (hk+1, vk+1 + dk) = (hk+1, nk+1).

To prove Proposition 15, we denote by Rk−1,j the jth column of Rk−1.
It is clear that

(−Im, r)Bk = (−Rk−1, rk),(22)

(−Im, r)

(

Pk−1,j

Qk−1,j

)

= −Rk−1,j .(23)

Lemma 16. For 1 ≤ k ≤ µ, we have

(1) (−Im, r)Bk−1Ehk
= (−Rk−1, −Rk−2,hk

).

(2) −Rk−1,j =

{

−Rk−2,j if j 6= hk,

rk−1 if j = hk.

Proof. (1) We have

(−Im, r)Bk−1Ehk
= (−Im, r)

(

Pk−1 Pk−2,hk

Qk−1 Qk−1,hk

)

= (−Rk−1, −Rk−2,hk
).
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(2) By (23),

−Rk−1,j = (−Im, r)

(

Pk−1,j

Qk−1,j

)

=























(−Im, r)

(

Pk−2,j

Qk−2,j

)

= −Rk−2,j if j 6= hk,

(−Im, r)

(

p
k−1

qk−1

)

= rk−1 if j = hk.

Proof of Proposition 15(1). We argue by induction on k. It is easy to
check r0 = R−1α0. Now assume rk−1 = Rk−2αk−1. We have

−Rk−1̺k − Rk−2,hk
= (−Rk−1, −Rk−2,hk

)

(

̺k

1

)

= (−Im, r)Bk−1Ehk

(

̺k

1

)

= (−Im, r)Bk−1Ehk
Ehk

(

αk−1

1

)

α−1
k−1,hk

= (−Rk−2, rk−1)

(

αk−1

1

)

α−1
k−1,hk

= (−Rk−2αk−1 + rk−1)α
−1
k−1,hk

= 0,

thus Rk−1̺k = −Rk−2,hk
. Then

rk = (−Im, r)Bk

(

0

1

)

= (−Im, r)Bk−1Ehk
A(ak)

(

0

1

)

= (−Rk−1, −Rk−2,hk
)

(

ak

1

)

= (−Rk−1, −Rk−2,hk
)

(

̺k − αk

1

)

= (−Rk−1, −Rk−2,hk
)

(

−αk

0

)

= Rk−1αk.

To prove Iv(Rk−1αk) = Iv(Dkαk), we need to know the relation between
Rk−1 and Dk. For this purpose we introduce two concepts: base matrix and
D-component of a base matrix.

Definition 17. We call a square matrix R of order m over F ((z−1))
a base matrix if R(j) 6= 0 and I(R(j)) = j for each 1 ≤ j ≤ m, where
R(j) denotes the jth column of R. For a base matrix R, the D-matrix
∆ = diag(z−v1, . . . , z−vm) is called the D-component of R if vj = v(R(j))
for each j.

Lemma 18. Let R be a base matrix , and ∆ the D-component of R. Then
R is invertible, and Iv(Rr) = Iv(∆r) for all r ∈ F ((z−1))m.
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Proof. Let L = R∆−1. It is clear that Iv(Lj) = (j, 0) for all 1 ≤ j ≤ m,
where Lj denotes the jth column of L. It is enough to prove that L is
invertible, and Iv(Lr) = Iv(r) for all r ∈ F ((z−1))m, since then R = L∆ is
invertible, and Iv(Rr) = Iv(L∆r) = Iv(∆r).

It is clear that v(det(L)) = 0, so det(L) 6= 0, hence L is invertible.
Let Iv(r) = (h, v), Lr = (r′1, . . . , r

′
m)τ , r = (r1, . . . , rm)τ , L = (si,j). Then

r′i =
∑

j si,jrj . Note that v(si,j) > 0 for j > i, v(si,i) = 0, and v(si,j) ≥ 0
for j < i; v(rj) > v for j < h, v(rh) = v, and v(rj) ≥ v for j > h. It is easy
to check that v(r′i) > v for i < h, v(r′h) = v, v(r′i) ≥ v for i > h, based on
Theorem 3. Hence, Iv(Lr) = (h, v) = Iv(r).

Lemma 19. Iv(Rk−1,j) = (j, vk,j) for 0 ≤ k ≤ µ. In particular , Rk−1 is
a base matrix , and Dk is the D-component of Rk−1 for 0 ≤ k ≤ µ.

Proof. We reason by induction on k. When k = 0, we have R−1 = Im,
so R−1,j = ej , hence Iv(R−1,j) = Iv(ej) = (j, 0) = (j, v0,j). Now assume
Iv(Ri−1,j) = (j, vi,j) for 0 ≤ i < k and 1 ≤ j ≤ m. In particular, we assume
Iv(Rk−2,j) = (j, vk−1,j), hence Rk−2 is a base matrix, and Dk−1 (= ∆k−2) is
the D-component of Rk−2. If j 6= hk, we have seen that Rk−1,j = Rk−2,j , so
Iv(Rk−1,j) = Iv(Rk−2,j) = (j, vk−1,j) = (j, vk,j). Since Rk−1,hk

= −rk−1 =
−Rk−2αk−1, we conclude that

Iv(Rk−1,hk
) = Iv(Rk−2αk−1) = Iv(∆k−2αk−1)

= (hk, ck) = (hk, ck,hk
) = (hk, vk,hk

).

Proof of Proposition 15(2), (3). From Lemmas 18 and 19 we see imme-
diately that Iv(Rk−1αk) = Iv(Dkαk), which leads to item (2). From (1) and
(2) we get

Iv(rk) = Iv(Rk−1αk) = Iv(Dkαk) = Iv(Dkαk)

= Iv(∆k−1αk) = (hk+1, ck+1) = (hk+1, vk+1),

which is (3).

7.3. Proof of Theorem 12. The proof of Theorem 12 is based on the
following lemma.

Lemma 20. Assume 0 6= bi(z) ∈ F [z], deg(bi(z)) < ti+1, 0 ≤ i ≤ µ.
Then

(1) Iv({rqi(z)bi(z)}) = (hi+1, vi+1 − deg(bi(z))).
(2) Iv({rqi(z)bi(z)}) 6= Iv({rqj(z)bj(z)}), ∀0 ≤ j 6= i ≤ µ and bi(z)bj(z)

6= 0.

Proof. (1) Since

Iv(ribi(z)) = (hi+1, vi+1 − deg(bi(z))) > (hi+1, vi+1 − ti+1) ≥ (hi+1, 0),

we obtain {ribi(z)} = ribi(z). Then
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{rqi(z)bi(z)} = {(rqi(z) − p
i
)bi(z)} = {ribi(z)} = ribi(z).

So, Iv({rqi(z)bi(z)}) = Iv(ribi(z)) = (hi+1, vi+1 − deg(bi(z))).
(2) If hi+1 6= hj+1, then (2) is an easy consequence of (1). If hi+1 = hj+1,

we may assume j < i. From (1) we have

v({rqi(z)bi(z)}) = vi+1 − deg(bi(z)) > vi+1 − ti+1 = vi,hi+1
≥ vj+1,hi+1

= vj+1,hj+1
= vj+1 ≥ vj+1 − deg(bj(z)) = v({rqj(z)bj(z)}),

which concludes the proof.

We can now prove Theorem 12. Set d=deg(q(z)) and (h, v)=Iv({rq(z)}).
Since

Iv(rq(z) − p(z)) ≤ Iv({rq(z)}) and r −
p(z)

q(z)
=

rq(z) − p(z)

q(z)
,

we get Iv(r − p(z)/q(z)) ≤ (h, v + d). It is enough to prove

(h, v) ≤ (hk+1, nk+1 − d),

since then we have Iv(r − p(z)/q(z)) ≤ (h, v + d) ≤ (hk+1, nk+1). With the
assumption dk ≤ d < dk+1 we can write q(z) =

∑

0≤i≤k bi(z)qi(z) for some
bi(z) ∈ F [z] such that deg(bi(z)) < deg(qi+1(z))−deg(qi(z)) = ti+1 for each
i ≥ 0 and bi(z) 6= 0 (note that q0(z) = 1) and deg(bk(z)) = d − dk ≥ 0. It is
clear that {rq(z)} =

∑

0≤i≤k{rqi(z)bi(z)}. From Lemmas 20 and 3 we have

(h, v) = Iv({rq(z)}) = min{Iv({rqi(z)bi(z)}) | bi(z) 6= 0, 0 ≤ i ≤ k}

≤ Iv({rqk(z)bk(z)}) = (hk+1, vk+1 − deg(bk(z)))

= (hk+1, vk+1 + dk − d) = (hk+1, nk+1 − d).

8. Remark. We have focused on m-CFA in this paper. We showed that
the m-CFA produces a multi-continued fraction expansion C(r) of r for any
multiple Laurent series r, which provides optimal rational approximations
to r.

For further study, consider an arbitrary data of the expansion form

(24) C = [0, h1, a1, . . . , hk, ak, . . . ], 1 ≤ hk ≤ m, ak ∈ F [z]m, 1 ≤ k ≤ µ,

which satisfies the three conditions formulated for C(r) in Section 5. We
call such a C a multi-continued fraction. From the definition we see that
multi-continued fractions are not necessarily identical to C(r) for some r.
The problem arises whether multi-continued fractions have similar proper-
ties to those of C(r), to be specific, whether any multi-continued fraction
C converges to an element r in F ((z−1))m and provides optimal rational
approximations to r, and whether one can construct an algorithm which
produces such C. The answers to these problems are affirmative, and we will
call the expected algorithm the multi-universal continued fraction algorithm
(m-UCFA, for short). We will discuss these problems in another paper.



16 Z. D. Dai et al.

Acknowledgments. The authors wish to thank the referees for point-
ing out the references [5, 9, 11, 12], and for the detailed comments and
suggestions that improved this paper.

References

[1] L. Bernstein, The Jacobi–Perron Algorithm—Its Theory and Application, Lecture
Notes in Math. 207, Springer, Berlin, 1971.

[2] K. Feng and F. Wang, The Jacobi–Perron algorithm on function fields, Algebra
Colloq. 1 (1994), 149–158.

[3] T. W. Hungerford, Algebra, Springer, 1974.
[4] K. Inoue, On the exponential convergence of Jacobi–Perron algorithm over F(x)d,

JP J. Algebra Number Theory Appl. (3) 1 (2003), 27–41.
[5] K. Inoue and H. Nakada, The modified Jacobi–Perron algorithm over Fq(X)d, Tokyo

J. Math. 26 (2003), 447–470.
[6] S. Ito, J. Fujii, H. Higashino and S.-I. Yasutomi, On simultaneous approximation to

(α, α2) with α3 + kα− 1 = 0, J. Number Theory 99 (2003), 255–283.
[7] S. Ito, M. Keane and M. Ohtsuki, Almost everywhere exponential convergence of

the modified Jacobi–Perron algorithm, Ergodic Theory Dynam. Systems 13 (1993),
319–334.

[8] A. Lasjaunias, Diophantine approximation and continued fraction expansions of al-

gebraic power series in positive characteristic, J. Number Theory 65 (1997), 206–225.
[9] —, A survey of Diophantine approximation in fields of power series, Monatsh. Math.

130 (2000), 211–229.
[10] R. Meester, A simple proof of the exponential convergence of the modified Jacobi–

Perron algorithm, Ergodic Theory Dynam. Systems 19 (1999), 1077–1083.
[11] R. Paysant-Le Roux et E. Dubois, Algorithme de Jacobi–Perron dans un corps de
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