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1. Introduction

1.1. Background. For an integer n we denote the set {1, . . . , n} by [n] and

the set {−n, . . . , n} by [−n, n]. Call an equation E of the form
∑k

i=1 aixi = 0

with integers ai ∈ [−h, h] and
∑k

i=1 ai = 0 a (k, h)-equation. In this paper
we will be interested in integer sets without non-trivial solutions to sets of
(k, h)-equations. We will mainly follow the terminology of [7]. Suppose [k]
can be partitioned into disjoint (non-empty) subsets A1, . . . , Ag such that
∑

i∈Aj
ai = 0 for every 1 ≤ j ≤ g. Clearly, any sequence x1, . . . , xk in which

xi1 = xi2 whenever i1 and i2 belong to the same set Aj is a solution of E. We
call such a solution trivial. Obviously, any solution in which all the integers
are distinct is non-trivial, and any solution in which all the integers are
identical is trivial. For a (k, h)-equation E we let rE(n) denote the size of
the largest subset of [n] without non-trivial solutions of E. In this paper we
will be interested in cases where 1 ≪ k ≪ h ≪ n.

Several special cases of estimating rE(n) are some of the best studied
problems in additive number theory. For example, it is easy to derive from
Szemerédi’s celebrated theorem about integer sets without long arithmetic
progressions [9] that for every fixed k and h and every (k, h)-equation, we
have rE(n) = o(n). When E is the equation x1 + x2 − x3 − x4 = 0 we get
Sidon’s problem. This problem has been extensively studied and it is known
that in this case rE(n) = (1 + o(1))

√
n (see [7] for proofs and references).

Here and throughout the paper, o(1) represents a quantity that approaches
0 as n tends to infinity. When E is the equation x1 + x2 − 2x3 = 0 we
get the (even better studied) problem of the largest subset of [n] without
three-term arithmetic progressions (see [7]). The following lower bound is
known (which applies to the three-term arithmetic progressions equation
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as a special case). Its proof is an easy consequence of Behrend’s construc-
tion [1].

Theorem 1 ([1]). For every h there is c = c(h) > 0 such that for

every pair of integers a1, a2 ∈ [−h, h], and for every large enough n, there is

X ⊂ [n] of size at least n/ec
√

log n = n1−o(1) with no non-trivial solution of

a1x1 + a2x2 − (a1 + a2)x3 = 0.

In [7], Ruzsa gave several general results on rE(n) based on certain prop-
erties of the equation E. It seems that one of the most important properties
of an equation is its genus which is defined in [7] as the largest integer g
such that [k] can be partitioned into disjoint subsets A1, . . . , Ag such that
∑

i∈Aj
ai = 0 for every j. The following result is proved in [7].

Theorem 2 ([7]). For every (k, h)-equation E of genus g we have rE(n)
= O(n1/g).

The results of [7] suggest the following possibility (though, quoting [7],
“there is too little positive support to call it a conjecture”).

Problem 1. Is rE(n)≥n1/g−o(1) for every (k, h)-equation E of genus g?

As the sum of the coefficients of a (k, h)-equation is 0, it is clear (see
Lemma 3.3) that there are Θ(hk−1) such equations (where the hidden con-
stant depends only on k; recall that we are interested in the cases where
k ≪ h). Similarly, there are Θ(hk−2) such equations of genus at least 2. It
thus follows that if indeed rE(n) = n1/g−o(1) then all the (k, h)-equations E
besides a c(k)/h fraction of them are such that rE(n) ≥ n1−o(1), where c(k)
is a constant that depends only on k. To simplify the presentation, whenever
we write c(k) we mean a constant that depends only on k. Our main result
in this paper is that such a phenomenon is true for large enough sets of
linear equations in k unknowns.

1.2. New results. Let S be a set of linear equations in k unknowns. Let
ai,1, . . . , ai,k denote the coefficients of equation i in S. Suppose [k] can be
partitioned into g disjoint subsets A1, . . . , Ag such that

∑

p∈Aj
ai,p = 0 for

all i and j. Clearly any sequence x1, . . . , xk in which xi1 = xi2 whenever
i1 and i2 belong to the same set Aj is a solution of S. We call such a
solution trivial. For a set S of (k, h)-equations we let rS(n) denote the size
of the largest subset of [n] without non-trivial solutions of S. It is rather
easy to show that for some sets of equations all but an O(1/h) fraction of
them are such that rS(n) > n1−o(1). For example, by Theorem 1 for every

(3, h)-equation E, we have rE(n) > n1−o(1). As another example, consider
sets of k − 2 (k, h)-equations on the same set of k unknowns. It is easy to
show (e.g. using Lemma 3.2 below) that all but an O(1/h) fraction of them
have certain linear independence properties that enable one to extract an
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equation of type a1x1 + a2x2 − (a1 + a2)x3 = 0, and by Theorem 1 there
is a subset of [n] of size n1−o(1) with no non-trivial solution to such an
equation. Thus, all but O(1/h) of pairs of equations S in four unknowns are
such that rS(n) > n1−o(1). The same applies for sets of three equations in
five unknowns. Our main result is that for larger k one may consider much
smaller sets of equations.

Theorem 3. For an integer k ≥ 6 let t be the largest integer satisfying
(

t
2

)

≤ k (hence, t ≥ ⌊
√

2k⌋). Then there is a constant c = c(k, h) > 0 such

that all but c(k)/h of the sets S of k− t + 1 (k, h)-equations in k unknowns

are such that

rS(n) ≥ n/ec
√

log n = n1−o(1).

We stress that in proving Theorem 3 we make no assumption regard-
ing the answer to Problem 1. We also make no real effort to optimize the
constants c(k) and c(k, h) in Theorem 3. We mention that using the main
idea of [5], the lower bound on rS(n) in Theorem 3 can be improved to

n/ec log1/p n where p ≈ log k. As in this paper we are interested in whether
rS(n) > n1−o(1) we will not describe this slightly better lower bound. As we
observe at the end of the proof, we actually prove a stronger claim; namely,
that all but a small fraction of the sets are such that the only solution is one
in which all the integers are identical (which is always a trivial solution).
Observe that the well studied problem of sets of integers without k-term
arithmetic progressions (see [2], [3], [5], [6] and [9]) is actually the study
of the largest subset of [n] with no k integers which satisfy a set of k − 2
equations of type xi +xi+2−2xi+1 = 0. Though we do not explicitly state it
in the course of the proof, the details of the proof of Theorem 3 actually give
a simple sufficient criterion to decide whether rS(n) ≥ n1−o(1) for a given
set S as in the statement of Theorem 3. See the discussion after the proof
of Theorem 3.

One may also try to find properties of sets of equations and their effect
on rS(n), and thus obtain bounds for specific sets of equations. To this
end we extend the notion of a genus to sets of equations as follows: define
the genus of a set S of equations to be the largest integer g such that [k]
can be partitioned into g disjoint non-empty subsets A1, . . . , Ag such that
∑

p∈Aj
ai,p = 0 for every j and every equation i in S. Note that for a set

containing one equation, this is equivalent to the genus previously defined.
Our first result is the following:

Theorem 4. For every set S of equations with genus g and rank t we

have rS(n) = O(nt/g).

We also prove the following theorem, which shows that Theorem 4 cannot
be generally improved.
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Theorem 5. There are sets S of equations with genus g and rank g
which satisfy rS(n) = n.

An interesting consequence of the above theorem is that unlike the case of
single equations, where for every equation E we have rE(n) = o(n), for sets
of equations we may have rS(n) = n. We also raise the following possibility
as an open problem.

Problem 2. Is rS(n) ≥ n1/g−o(1) for every S of genus g?

We finally prove the following theorem relating Problems 1 and 2.

Theorem 6. Problems 1 and 2 are equivalent.

The proof of Theorem 3 is given in Sections 2 and 3. In Section 2 we
study special sets of linear equations, which we call diagonalized. In Section 3
we give the proof of Theorem 3. Using the results on diagonalized sets of
equations from Section 2, we show that most sets of equations have certain
non-degeneracy properties that allow us to infer that certain points, defined
by the set of equations (its parametric representation as defined in Section 2),
do not all lie on a high-dimensional sphere. To this end, we use certain
properties of multi-variate polynomials. In Section 3 we use a version of
Behrend’s argument [1] (already used in [8]), in which one represents integers
as high-dimensional vectors in order to show that some high-dimensional
sphere contains many integers with no non-trivial solution of a given set
of equations. Our proof of Theorem 3 is also somewhat motivated by the
interpretation of Laba and Lacey [5] of the construction of Behrend [1]. In
Section 4 we prove Theorems 4–6 and also discuss some open problems and
additional observations.

2. Diagonalized sets of equations. In this section we deal with a
special kind of sets of linear equations in k unknowns. We start with the
following definition:

Definition 2.1. For positive integers t < k, let F(k, h, t) denote the
collection of all sets of k−t+1 (k, h)-equations in k unknowns x0, . . . , xk−1.

A set S ∈ F(k, h, t) of equations is called diagonalized if the only non-zero
coefficients of the set are the following: (i) the coefficients of x0, . . . , xt−2,
(ii) the coefficient of xt−2+i in equation i (the coefficients of the second type
can be thought of as forming a diagonal). The advantage of diagonalized sets
is that they make the proofs and notations very easy compared to general
sets of equations. We start with the following simple claim that helps us
represent integers that satisfy a diagonalized set of equations as the image
of a certain linear function.
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Claim 2.2. Suppose that for an integer t we have a set of k ≥ t reals

z0, . . . , zk−1 that satisfy the following diagonalized set of k − t + 1 linear

equations (where the solution is obtained by setting x0 = z0, . . . , xk−1 =
zk−1):

(1) ai,0x0 + ai,1x1 + · · · + ai,t−2xt−2 − (ai,0 + · · · + ai,t−2)xt−2+i = 0,

1 ≤ i ≤ k − t + 1.

For 1 ≤ i ≤ k − t + 1 put di = ai,0 + · · · + ai,t−2 and d =
∏

i di. Then for

0 ≤ j ≤ k − 1 we can write

(2) zj = z0 + pj,1
z1 − z0

d
+ · · · + pj,t−2

zt−2 − z0

d
,

where the (t − 2)-tuples (pj,1, . . . , pj,t−2) are the following :

(i) (p0,1, . . . , p0,t−2) = (0, . . . , 0).
(ii) For 1 ≤ j ≤ t− 2 we have (pj,1, . . . , pj,t−2) = dej where ej is the jth

unit vector of size t − 2.
(iii) For t − 1 ≤ j ≤ k − 1 we have

(pj,1, . . . , pj,t−2) =
d

dj−t+2
(aj−t+2,1, . . . , aj−t+2,t−2).

Proof. Observing (2) one can immediately see that the first two asser-
tions are trivial. For the third, note that by (1) for every t − 1 ≤ j ≤ k − 1
the integer zj appears only in equation j − (t − 2) of (1). To simplify no-
tation set i = j − (t − 2) and consider equation i in (1) after substituting
x0 = z0, . . . , xk−1 = zk−1. Note that we can rewrite each such equation as

(3) ai,0z0 + ai,1(z1 − z0) + ai,1z0 + · · · + ai,t−2(zt−2 − z0) + ai,t−2z0

−di(zt−2+i − z0) − diz0 = 0.

Rearranging the above (recall that di = ai,0 + · · · + ai,t−2 and that we have
set i = j − t + 2) gives

zj = zt−2+i = z0 + ai,1
z1 − z0

di
+ · · · + ai,t−2

zt−2 − z0

di
.

Thus, we can indeed use (pj,1, . . . , pj,t−2) = d
di

(ai,1, . . . , ai,t−2) in (2).

For the rest of the proof we need some additional definitions. As will be-
come clear later, we will mainly be interested in the (t−2)-tuples that define
the integer solution z0, . . . , zk−1 of a diagonalized set of equations in Claim
2.2. To this end, we define the parametric representation of a diagonalized
set S ∈ F(k, h, t) as the set {p0, . . . , pk−1} of (t − 2)-tuples which Claim
2.2 returns, where each pi is short for (pi,1, . . . , pi,t−2). We will also use the
parametric representation of such a set when we regard the coefficients ai,j

as unknowns. Note that in such a case, each coordinate pi,j of each of these
(t − 2)-tuples is a linear function in each of the unknowns ai,j . In order to
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carry out our proof we will also need some basic notions from analytic ge-
ometry. A d-dimensional quadric is the set of points (x1, . . . , xd) ∈ R

d that
satisfy an equation of type (for convenience we use x0 = 1)

∑

0≤i≤j≤d

ci,jxixj = 0.

A quadric is non-zero if some ci,j 6= 0. Note that a d-dimensional quadric

has
(

d
2

)

+ 2d + 1 coefficients.

Definition 2.3. Fix any t ≥ 4. Given a set P of

k =

(

t − 2

2

)

+ 2(t − 2) + 1 =

(

t

2

)

points P = {p0, . . . , pk−1} with pi = (pi,1, . . . , pi,t−2) ∈ R
t−2, let At−2(P )

be the k × k matrix of the matrix representation of the set of homogeneous
linear equations which force a (t − 2)-dimensional quadric with coefficients
ci,j to pass through p0, . . . , pk−1. For example, for t = 4 we can write this
set of equations as
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= 0.

Definition 2.4. Fix any integer t ≥ 4. For a diagonalized set S ∈
F

((

t
2

)

, h, t
)

let p0, . . . , p(t
2
)−1 be its parametric representation. Denote by

At−2(S) the matrix obtained by plugging pi,j in the matrix At−2 of Definition
2.3. The set S is called degenerate if At−2(S) is not invertible.

Claim 2.5. Let At−2(S) be the matrix from Definition 2.4 when we re-

gard the coefficients ai,j of a diagonalized set S ∈ F
((t

2

)

, h, t
)

as unknowns.

Let D be the determinant of this matrix. Then D is a non-zero polynomial

of degree at most t2 in each variable.

Proof. Call the matrix A for short. Recall that by Claim 2.2 each coordi-
nate of the parametric representation is linear in each of the unknowns ai,j .
As each entry of A has degree at most 2, the degree of each ai,j in each
entry is at most 2. The polynomial D represents a determinant, therefore
we can view it as a sum of monomials. As A has fewer than t2/2 rows, each
monomial has fewer than t2/2 terms. Therefore, the degree of each ai,j in
each monomial, and hence also in D, is at most t2.
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We turn to show that D is not identically zero. It will be simpler to show
this by requiring the unknowns ai,0 to satisfy ai,0 = 1 − ∑t−2

j=1 ai,j for every

1 ≤ i ≤
(

t
2

)

− t + 1 (this is clearly a stronger claim). We thus get, in the
parametric representation of S, the equalities d1 = · · · = d(t

2
)−t+1 = d = 1.

Hence, by Claim 2.2(iii), for i ≥ t − 1 we have pi,j = ai−t+2,j. Furthermore,
by Claim 2.2(i), (ii), for 0 ≤ i ≤ t−2 the ith row of the matrix contains only
0s and 1s. In fact, the only non-zero entry in the first row is the rightmost.
Thus, when computing the determinant of A we may disregard the first row
and the rightmost column of A. More importantly, it is easy to see (recall
Definition 2.3 and the example of d = 2) that we can find distinct columns
i1, . . . , it−2 whose entries satisfy A1,i1 = · · · = At−2,it−2

= 1, and there are
no other 1s in these columns within rows 1, . . . , t−2. Consider row i ≥ t−1
of the matrix. By our choice of ai,0, this row is the only one in which the
unknowns ai−t+2,1, . . . , ai−t+2,t−2 appear. Moreover, by definition of At−2

in Definition 2.3, each entry of this row contains a different combination of
ai−t+2,1, . . . , ai−t+2,t−2. Thus, any term in the expansion of the determinant
which uses i1, . . . , it−2 in rows 1, . . . , t− 2 will have a coefficient precisely 1.
Furthermore, the combination of the unknowns ai−t+2,j of this term can-
not appear in another one, hence, it will not cancel. Therefore, D is not
identically zero.

As a non-zero polynomial cannot vanish everywhere, we immediately
infer that for some choice of coefficients ai,j , that is, not necessarily integers
from [−h, h], the polynomial D does not vanish. In other words:

Corollary 2.6. For every integer t ≥ 4, there is a non-degenerate

diagonalized set of
(

t
2

)

− t + 1 equations in
(

t
2

)

unknowns (possibly with

non-integer coefficients).

3. Proof of the main theorem. In this section we consider arbitrary
sets of equations from F(k, h, t) as defined in the previous section. As in
the previous section, we will mainly look at the coefficients of these equa-
tions as unknowns. In order to distinguish general sets of equations from
diagonalized sets of equations, we will denote the coefficients of the for-
mer by bp,q and of the latter by ap,q as we did in the previous section.
We start with the following simple claim, in which a rational function of

degree r is any quotient of two polynomials of degree at most r in each
unknown. In what follows, r(k) will denote any quantity that depends only
on k.

Claim 3.1. Let S ∈ F(k, h, t) be a set of equations with coefficients bp,q,
and suppose we consider them as unknowns. Then there is an equivalent

diagonalized set Sdiag, with coefficients ai,j , such that each ai,j is a rational
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function of degree r(k) in each of the coefficients bp,q. Also, none of the

denominators of ai,j is identically zero.

Proof. We just use Gaussian elimination. Initially we have ai,j = bi,j and
therefore the degree of each ai,j in each bp,q is at most 1. As we perform at
most k operations on each equation, and each operation at most doubles the
maximum degree of each ai,j as a function of any other bp,q, the resulting
ai,j are rational functions in each bp,q of degree bounded by a function r(k)
that depends on k only. Finally, note that if one of the denominators of
ai,j is identically zero, then for any assignments to the unknowns bp,q, the
resulting diagonalized set after the Gaussian elimination process has some
entries which are not well defined. This, however, is clearly not the case. For
example, when S is already diagonalized, Sdiag is just S and all its entries
are well defined.

Note that the output of the above claim is a diagonalized set in the
sense that all the coefficients ai,j that should be zero in order to satisfy the
properties of a diagonalized set (see beginning of Section 2) are given by
rational functions in bp,q that are identically zero. Clearly there are some
assignments to the unknowns bp,q for which the diagonalized set Sdiag is not
well defined. These are the sets S for which the denominators of some of
the rational functions that represent ai,j vanish. Sdiag is called well defined

if none of the denominators of ai,j vanish. Note that in such a case S and
Sdiag are equivalent in the sense that every solution of one is also a solution
of the other. In what follows we will use the following lemma of Zippel (cf.,
e.g. [4]).

Lemma 3.2. Let F be an arbitrary field , and let f = f(x1, . . . , xb) be a

non-zero polynomial in F [x1, . . . , xb]. Suppose the degree of f in each vari-

able is at most r. If H is a subset of F with |H| > r, then there are at most

|H|b − (|H| − r)b = c(r, b)|H|b−1 assignments x1 ∈ H, . . . , xb ∈ H so that

f(x1, . . . , xb) = 0.

Lemma 3.3. For every t ≥ 4 and k ≥
(

t
2

)

, all but a c(k)/h fraction of

S ∈ F(k, h, t) are such that :

(i) Sdiag is well defined.

(ii) The points of the parametric representation of Sdiag do not all lie on

any non-zero (t − 2)-dimensional quadric.

Proof. Denote the number of equations in each set of F(k, h, t) by e =
k− t+1. Note that for any choice of k− 1 integers from [−h/k, h/k] we can
find an integer in [−h, h] such that the sum of the k integers is 0. We thus see
that F(k, h, t) contains at least (h/k)k−1 equations. Furthermore, we may
conclude that F(k, h, t) contains at least c(k)he(k−1) sets of equations. Thus,
we may prove the claim by showing that there are at most c(k)he(k−1)−1
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sets of equations in F(k, h, t) for which either (i) or (ii) does not hold.
Consider the coefficients bp,q of the equations in F(k, h, t) as unknowns, and
use Claim 3.1 in order to obtain an equivalent diagonalized set of equations
with unknowns ai,j that are given by rational functions in bp,q. Denote this
new set by Sdiag.

We first show that only c(k)he(k−1)−1 of the equations of F(k, h, t) are
such that (i) does not hold. Let B be the product of the denominators of all
the unknowns ai,j in Sdiag. As each ai,j is a rational function of degree at
most r(k) and there are fewer than tk < k2 coefficients ai,j , one may conclude
that B is a polynomial of degree at most r(k) in each of the unknowns bp,q.
As by Claim 3.1 none of the denominators is identically zero, B is not
identically zero. Clearly if for some assignment to the unknowns bp,p the
polynomial B does not vanish, then Sdiag is well defined. By Lemma 3.2
with F = R, H = [−h, h], r = r(k) and b = e(r − 1) we find that there
are at most c(k)he(k−1)−1 assignments to the coefficients bp,q for which B
vanishes, therefore there are at most this many equations in F(k, h, t) for
which Sdiag is not well defined.

We turn to show that only c(k)he(k−1)−1 of the equations of F(k, h, t) are
such that (ii) does not hold. Let W be the first

(

t
2

)

− t+1 equations of Sdiag,

and note that they form
(t
2

)

−t+1 equations in
(t
2

)

unknowns. We will prove a

statement somewhat stronger than needed, namely, that only c(k)he(k−1)−1

of the equations of F(k, h, t) are such that the points of the parametric
representation of W all lie on some non-zero (t − 2)-dimensional quadric.
Consider the set W with unknowns ai,j . As in Claim 2.5, let A = At−2(W )
be the matrix in Definition 2.4, and D the polynomial of its determinant in
unknowns ai,j . By Definition 2.3, the

(

t
2

)

points in R
t−2 of the parametric

representation of W cannot all lie on a (t− 2)-dimensional non-zero quadric
if A is invertible. Equivalently, these points do not lie on a non-zero quadric
if the value of the polynomial D defined above, when evaluated on the
coefficients of this set of equations, is defined and non-zero. It thus follows
that we can simply show that D is either not defined or vanishes only on
c(k)he(k−1)−1 of the assignments (to the unknowns bp,q which determine the
value of ai,j) which consist of integers from [−h, h].

Now recall that each ai,j is a rational function in the unknowns bi,j of
degree at most r(k) and by Claim 2.5 the degree of each ai,j in D is at
most t2. Thus, D is also a rational function of degree at most r(k) in each
bp,q. Let D1 and D2 be its numerator and denominator, respectively. As D2

is a product of the denominators of ai,j , and by Claim 3.1 none of them is
identically zero, neither is D2. We claim that D1 is also not identically zero.
Suppose that D1 is identically zero. This means that D is identically zero,
hence, for every assignment to the unknowns bi,j , which does not need to
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be necessarily of integers from [−h, h]), the resulting set is such that if we
transform it into an equivalent diagonalized set, we either get a set that is
not well defined (in the case where D2 vanishes) or the first

(

t
2

)

equations
of the set are degenerate. This, however, is false, as we can a priori set the
first

(

t
2

)

− t + 1 equations of the set to be the (well defined) non-degenerate
diagonalized set of equations whose existence is guaranteed by Corollary 2.6.

Consider now the product of D1 and D2. This is a non-zero polynomial
in bp,q of degree r(k) in each unknown. By Lemma 3.2, with F = R, H =
[−h, h], r = r(k) and b = e(k − 1), either D1 or D2 vanishes on at most
c(k)he(k−1)−1 of the possible assignments to bp,q. Thus, there are at most
this many sets in F(k, h, t) for which D is either not defined or zero, which
is what we wanted to show.

As in Behrend’s construction [1], we will represent integers in base g with
g being a non-fixed integer, namely depending on n. This will allow us to look
at integers as high-dimensional vectors. In Behrend’s argument, one shows
that a sphere in the high-dimensional vector space in which our integers are
represented, does not contain three-term arithmetic progressions. The main
step in our proof is to prove an analogous statement, Lemma 3.5 below,
based on Lemma 3.3. We will then conclude the proof by showing that for
an appropriate choice of g we get a large set with no non-trivial solution
of S.

Given a set V of integers we denote by V +r the translate of V by r, that
is, V + r = {z + r : z ∈ V }. Note that if V does not contain any non-trivial
solution of a set S ∈ F(k, h, t) then neither does any translate of V (this
is because the sum of the coefficients is zero). As we will explain shortly,
it will be simpler to prove Theorem 3 with respect to the set of integers
[−n/2, n/2] rather than [n]. To this end, we will consider representations of
integers from [−n/2, n/2] in base g. For integer g and b satisfying n = gb,
we define, for an integer w ≥ 2,

Qw =
{

z ∈ Z : z =

b−1
∑

i=0

zig
i, zi ∈ [−g/w, g/w]

}

.

In other words, these are the integers whose “digits” in base g belong to
[−g/w, g/w]. As Qw ⊆ [−n/2, n/2] for any w ≥ 2, we may and will con-
struct our sought-after sets from integers belonging to Qw for an appropri-
ate constant w. Note that, somewhat unconventionally, we allow for negative
digits. This representation, however, is well defined in the sense that given
z ∈ Qw, there are unique integers z0, . . . , zb−1 ∈ [−g/w, g/w] such that

z =
∑b−1

i=0 zig
i. Given an integer z ∈ Qw we denote by z = (z0, . . . , zb−1) the

unique b-dimensional vector in Z
b such that z =

∑b−1
i=0 zig

i. We also write

‖z‖2 = ‖z‖2 =
∑b−1

i=0 z2
i . Our argument will critically rely on the observa-



Sets of linear equations 27

tion (first made by Salem and Spencer [8]) that if w is sufficiently large then
addition, and more generally linear combinations with small coefficients, of
numbers from Qw is equivalent to linear combinations of their correspond-
ing vectors. For example, if z1, z2, z3 ∈ Q2, then z1 + z2 = z3 if and only if
z1 + z2 = z3. The reason for that is simply that there is no carry in the base
g addition of these numbers. More generally, we have the following

Fact 3.4. Suppose α, α1, . . . , αt are rational numbers with numerators

and denominators bounded in absolute value by some constant c. If w is

sufficiently large with respect to c, then for every z, z1, . . . , zt ∈ Qw,

(4) αz =
t

∑

i=1

αizi ⇔ αz =
t

∑

i=1

αizi.

It should be noted that had we chosen to work with the set [n] rather than
−n/2, . . . , n/2 and represented integers using positive digits, then (4) would
not necessarily hold for negative coefficients. The reason is that the difference
of two numbers with small positive digits may contain very large digits. As
we also allow for negative digits, the difference also contains small digits. We
now arrive at the main step of the proof, where we prove a Behrend-type
argument about spheres containing the vector representations of integers
from Qw.

Lemma 3.5. For t ≥ 4 and k ≥
(t
2

)

let S ∈ F(k, h, t) be such that Sdiag

is well defined and the points of the parametric representation of Sdiag do

not all lie on any non-zero (t− 2)-dimensional quadric. For an integer r let

Xr = {z ∈ Qw : ‖z‖2 = r}.
If w is large enough in terms of h and k, then Xr contains no non-trivial

solution of S.

Proof. Suppose to the contrary that Xr contains k integers z0, z1, . . . ,
zk−1, which form a non-trivial solution of S. As Sdiag is assumed to be well
defined, S and Sdiag are equivalent, thus, z0, . . . , zk−1 are also a solution of
Sdiag. Also, by Claim 3.1 the coefficients of Sdiag are rational numbers, whose
numerators and (non-zero) denominators are bounded by m = m(h, k)
(because these numerators and denominators are polynomials in h of de-
gree bounded by a function of k). By Claim 2.2, there are (t − 2)-tuples
p0, . . . , pk−1 which form the parametric representation of z0, . . . , zk−1. That
is, for 0 ≤ i ≤ k − 1 we have

(5) zi = z0 + pi,1
z1 − z0

d
+ · · · + pi,t−2

zt−2 − z0

d
.

Recall that by Claim 2.2, each pi,j is either d or dai,j/di and that d =
∏

di. Thus, as by assumption all the coefficients of Sdiag are rational numbers
whose numerators and denominators are bounded in absolute value by m =
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m(h, k), the numerators and denominators of the rational numbers pi,j are
each bounded in absolute value by a function depending only on m and k. As
m depends on h and k, we conclude that the numerators and denominators
of pi,j are bounded by a function of h and k. Multiplying (5) by d we deduce
that for 0 ≤ i ≤ k − 1 we have

(6) dzi = dz0 + pi,1(z1 − z0) + · · · + pi,t−2(zt−2 − z0).

Hence, if w is large enough in terms of h and k, we can use (4) to write (6)
as (1)

(7) dzi = dz0 + pi,1z1 − z0 + · · · + pi,t−2zt−2 − z0.

Define the following (t − 2)-variate polynomial of degree 2:

P (x1, . . . , xt−2) :=
b−1
∑

q=0

(d(z0)q + x1(z1 − z0)q + · · · + xt−2(zt−2 − z0)q)
2,

where (v)q denotes the qth entry of the vector v. The key observation now
is that by (7), for 0 ≤ i ≤ k − 1 we have

P (pi,1, . . . , pi,t−2) = ‖dzj‖2 = d2‖zj‖2.

Therefore, as by assumption all the integers zi belong to Xr, for 1 ≤ i ≤ k−1
we have

P (pi,1, . . . , pi,t−2) − d2r = 0.

Hence, the k points p0, . . . , pk−1 ∈ R
t−2 all lie on the (t − 2)-dimensional

quadric defined by the equation P (x1, . . . , xt−2) − d2r = 0. This will con-
tradict our choice of the coefficients of the equations once we show that
P (x1, . . . , xt−2) − d2r is not identically zero. To see that, note that P is
a sum of squares, hence, the coefficients of the monomials x2

1, . . . , x
2
t−2 are

sums of squares. Therefore, it is enough to show that for some 1 ≤ j ≤ t−2,
and 0 ≤ q ≤ b − 1, we have (zj − z0)q 6= 0. This, however, must be true,
as otherwise we would get z1 − z0 = z2 − z0 = · · · = zt−2 − z0 = 0 and
thus z0 = z1 = · · · = zk−1 by (5), contradicting our assumption that these
integers form a non-trivial solution.

As in Behrend’s argument, we are now just left with the task of optimiz-
ing the values of g and b (recall that we write n = gb) in order to deduce
that one of the sets Xr contains many integers.

Proof of Theorem 3. For an integer k ≥ 6, let t be the largest integer
satisfying k ≥

(

t
2

)

(hence, t ≥ 4). In Lemma 3.3 it is proved that if t ≥ 4 and

k ≥
(

t
2

)

, then only a c(k)/h fraction of the sets S ∈ F(k, h, t) of equations are

(1) We actually use (4) twice: first, to deduce that z1 − z0, . . . , zt−2 − z0 ∈ Qw′ for
some w′

≤ w, and second, to show that this implies (7).
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such that either Sdiag is not well defined or the points of the parametric rep-
resentation of Sdiag all lie on a non-zero (t−2)-dimensional quadric. We claim

that for any other set S we can construct a subset X ⊆ [n] of size n/ec
√

log n

with no non-trivial solution of S, where c = c(h, k). By Lemma 3.5, provided
w is large enough in terms of h and k, for any integer r the set Xr contains
no non-trivial solution of S. As the absolute value of each digit in Qw is
bounded by g/w, the integer r can take at most b(g/w)2 ≤ bg2 values. Simi-
larly, we find that Qw is of size (2g/w)b > (g/w)b. As the union of the sets Xr

covers the entire set Qw there must be one r for which |Xr| ≥ (g/w)b/bg2 =

n/bg2wb. Setting b =
√

log n, and hence g = e
√

log n, gives that some Xr is

of size at least n/ec
√

log n for an appropriate constant c = c(h, k).

As was alluded to in the introduction, the details of Lemma 3.5 actually
show that under the conditions of the lemma, Xr contains no solution in
which two of the integers are distinct. Therefore, the only solution of the
sets S, discussed in the proof of Theorem 3, which use integers from the
set constructed in the proof of the theorem is one in which all the integers
are identical. This is clearly a much stronger property than not containing
non-trivial solutions.

One can also derive, from the details of the proof of Theorem 3 and the
claims and lemmas used in its proof, the following simple criterion for a given
set S to satisfy rS(n) > n1−o(1): Let M be the (k−t+1)×k matrix containing
the coefficients of the equations of the set. If M cannot be transformed into
a diagonalized set we cannot say anything. If it can be transformed into
such a set, then let Sdiag be the new set of equations, and let A(Sdiag) be
the matrix from Definition 2.4. Then, if A(Sdiag) is non-singular, we have

rS(n) > n1−o(1).

4. Additional results and open problems. The main result of this
paper establishes that most large enough sets S of equations are such that
rS(n) > n1−o(1). As observed at the end of Section 3, the details of the
proof actually give a simple sufficient criterion for a specific set S to have
rS(n) > n1−o(1). In this section we give upper and lower bounds for rS(n)
based on specific properties of S.

The first question one may ask is whether there are any sets of equations
that do not satisfy rS(n) > n1−o(1) and more interestingly, how large such
a set can be. Of course, one can construct arbitrarily large such sets simply
by taking many copies of an equation E for which rE(n) ≤ n1−ε. Recall
that by Theorem 2 any equation E with genus g ≥ 2 satisfies rE(n) ≤ √

n.
It therefore seems more reasonable to require the equations of the set to
be linearly independent. Even with this requirement it is easy to show that
there are large sets which satisfy rS(n) ≤ n1−ε.
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Proposition 4.1. For every k ≥ 4 and h, there is a set S of k − 3
linearly independent (k, h)-equations for which rS(n) = O(

√
n).

Proof. For every k ≥ 4 consider the set S of equations e1, . . . , ek−3 in
unknowns x1, . . . , xk where for 1 ≤ i ≤ k− 3 equation ei is x1 + x2 − x2+i −
x3+i = 0. Clearly, these equations are linearly independent. To show that
rS(n) = O(

√
n), recall that for Sidon’s equation E := x1 + x2 − x3 − x4 = 0

it is known (see [7]) that rE(n) = (1 + o(1))
√

n. Thus, any set of size at
least (1 + o(1))

√
n contains a non-trivial solution of E, namely z1, z2, z3, z4

such that z1 + z2 − z3 − z4 = 0. Note that if we assign x1 = z1, x2 = z2,
x3 = x5 = x7 = · · · = z3 and x4 = x6 = x8 = · · · = z4 we get a non-trivial
solution of S.

In what follows, a set S of equations e1, . . . , et in 2g unknowns is called
symmetric if every equation ei ∈ S is of the form

(8) ai,1x1 + · · · + ai,gxg − ai,g+1xg+1 − · · · − ai,2gx2g = 0

where ai,j = ai,j+g for every 1 ≤ j ≤ g. In the following proofs, it will be
more convenient to write a symmetric equation as

(9) ai,1x1 + · · · + ai,gxg = ai,g+1xg+1 + · · · + ai,2gx2g.

We now turn to the proof of Theorem 4, which establishes a connection
between the genus of a set of equations, its rank and rS(n).

Proof of Theorem 4. First note that a non-trivial solution of a subset
of a set of equations cannot be a trivial solution of the entire set. Thus,
it is enough to show that every subset of [n] of size Ω(nt/g) contains a
non-trivial solution of the t equations that span the entire set of equations
(whose rank is t by assumption). We will thus confine ourselves to sets of t
linearly independent equations. The proof will mostly follow the main idea
of the proof of Theorem 3.6 in [7].

Consider first any symmetric set S of t equations in 2g unknowns x1, . . . ,
x2g as in (9). We claim that for such a set rS(n) = O(nt/g). The proof for
general sets of equations will follow by a certain reduction to this special
case. Fix any subset X ⊆ [n]. Let s(b1, . . . , bt) denote the number of solutions
of the set of t equations ai,1x1 + · · · + ai,gxg = bi with integers xi taken
from X. As all the coefficients ai,j belong to [−h, h], the only feasible bi are
such that −ghn ≤ bi ≤ ghn. In other words,

(10)
∑

−ghn≤b1,...,bt≤ghn

s(b1, . . . , bt) = |X|g.

Observe that
∑

s2(b1, . . . , bt) is precisely the number of solutions of S in-
cluding the trivial solutions (recall that ai,j = ai,j+g for every 1 ≤ j ≤ g).
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By Jensen’s inequality and (10) we get

(11)
∑

−ghn≤b1,...,bt≤ghn

s2(b1, . . . , bt) ≥
|X|2g

(2ghn)t
.

We now bound the total number of trivial solutions of S. Consider any parti-
tion of [2g] into disjoint non-empty subsets A1, . . . , Aw such that

∑

p∈Aj
ai,p

= 0 for every equation i and all j. As every Aj must be of size at least 2,
we have w ≤ g. It follows that for every such partition the total number of
solutions in which xi1 = xi2 whenever i1, i2 belong to the same set Aj is at
most |X|g. Hence, the total number of trivial solutions is at most c(g)|X|g
where c(g) is the total number of partitions of [2g]. Now, if X contains
no non-trivial solution of S, we must have |X|2g/(2ghn)t ≤ c(g)|X|g and
therefore |X| = O(nt/g).

Now, consider an arbitrary set of t equations u1, . . . , ut in k unknowns
of genus g. As the set has genus g, there is a partition of [k] into A1, . . . , Ag

such that
∑

p∈Aj
ai,p = 0 for every equation ui and all j. For every j pick any

integer r(j) ∈ Aj and for every 1 ≤ i ≤ t and 1 ≤ j ≤ g set bi,j = bi,j+g =
ai,r(j). For each equation ui consider an auxiliary symmetric equation ei,

(12) bi,1y1 + · · · + bi,gyg = bi,1+gy1+g + · · · + bi,2gy2g.

Observe that any solution of e1, . . . , et can be transformed into a solution
of u1, . . . , ut by setting, for every 1 ≤ j ≤ g, xr(j) = yj and xp = yj+g for
every r(j) 6= p ∈ Aj (recall that for every equation ui and all j we have
∑

r(j) 6=p∈Aj
ai,p = −ai,r(j)). We further claim that a non-trivial solution

of the equations e1, . . . , et translates to a non-trivial solution of u1, . . . , ut.
Assume this is not the case. Then for any integer ℓ we have

(13)
∑

{i : xi=ℓ}
ai = 0.

By the definition of the transformation and the fact that bi,j = bi,j+g we
also have

(14)
∑

{i :xi=ℓ}
ai =

∑

{i : yi=ℓ}
bi.

As by assumption the solution of e1, . . . , et is non-trivial there is some ℓ for
which the right side of (14) does not vanish, thus contradicting (13). The
proof is now complete, as by the first part of the proof, the largest subset
of [n] with no non-trivial solution of e1, . . . , et is of size O(nt/g).

While it seems reasonable that for a single equation with genus g we
have rE(n) = n1/g−o(1), Theorem 5, which we now prove, shows that for sets
of equations this is far from being the case. This theorem also shows that
the bound of Theorem 4 cannot be generally improved.
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Proof of Theorem 5. For every integer g ≥ 2 consider a symmetric set of
g equations e1, . . . , eg in 2g unknowns x1, . . . , x2g as in (9). Clearly this set
has genus g, as in every equation the sum of the coefficients of xj and xj+g

is 0. Consider the matrix G with Gi,j = ai,j . Clearly if G is non-singular (e.g.
when ai,i = ai,i+g = 1 and all the other entries are 0) the set of equations
has rank g. We claim that if G is non-singular then rS(n) = n. To show
this, it is enough to show that every solution of S is trivial. Consider any
solution z1, . . . , z2g of S and let b1, . . . , bk satisfy bi = ai,1z1 + · · ·+ai,gzg. As
G is invertible, there are unique z1, . . . , zg for which the value of the right
hand side of (9) is bi for every equation ei. As the left hand side of (9) has
the same coefficients, it must be the case that zj+g = zj for every 1 ≤ j ≤ g.
This means that the solution is trivial.

By using Lemma 3.2, one can easily strengthen Theorem 5 by showing
that in fact, all but an O(1/h) fraction of the symmetric sets of g equations
in 2g unknowns are such that rS(n) = n. The reason is simply that for
most sets the matrix G is invertible. We omit the details. Given Theorems
4 and 5 one may consider the possibility that for a set S of equations, with
genus g and rank t we have rS(n) = min(n, nt/g−o(1)). However, note that in
Proposition 4.1 we construct a set of k − 3 linearly independent equations
of genus 2 which satisfies O(

√
n), thus ruling out this possibility. On the

positive side, we now turn to the proof of Theorem 6, which shows that a
somewhat weaker lower bound on rS(n) may hold.

Proof of Theorem 6. Clearly a positive answer to Problem 2 implies a
positive answer to Problem 1. So assume that for every linear equation E
of genus g we have rE(n) > n1/g−o(1). Consider any set S of size t of (k, h)-
equations with genus b. Pick t integers c1, . . . , ct, where each ci is chosen
independently and uniformly at random from {1, . . . , 2k}. Consider a linear
combination E of the t equations with coefficients c1, . . . , ct. Let b1, . . . , bk

be the coefficients of E. We claim that with positive probability, E has the
following property: A set ∅ 6= A ⊆ [k] satisfies

∑

p∈A bp = 0 if and only if
∑

p∈A ai,p = 0 for all equations i. As the “if” part is obvious we prove the
other direction. Fix any set A such that for some i we have

∑

p∈A ai,p 6= 0.
Conditioning on any choice of the coefficients c1, . . . , ct other than ci, the
probability that ci is such that

∑

p∈A bp = 0 is at most 2−k. Therefore, the

probability that
∑

p∈A bp = 0 is also at most 2−k. As there are fewer than

2k possible choices of the set A, we conclude by the union bound that with
positive probability, E has the desired property. In particular, E must have
genus exactly b. By assumption, there is a subset of [n] of size n1/g−o(1) with
no non-trivial solution of E. As by the property of E discussed above, any
non-trivial solution of S is also a non-trivial solution of E, this set contains
no non-trivial solution of S.
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In light of the results proved in this section, and the gap between the
upper bound of Theorem 4 and the (possible) lower bound of Theorem 6, it
seems that one would have to define and study other properties of equations,
besides their genus and rank, in order to determine the value of rS(n). It
seems very interesting to further explore this problem. It also seems inter-
esting to strengthen Theorem 3 by showing that most sets of equations in k
unknowns of size smaller than k −⌊

√
2k⌋+ 1 are such that rS(n) > n1−o(1).
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