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1. Introduction. Thoughout this paper, the symbol p will denote a
prime and k will be a nonnegative integer. Romanov [5] proved that the
integers of the form p+2k have positive density. He also raised the following
question: does there exist an arithmetic progression consisting only of odd
numbers, no term of which is of the form p + 2k? Erdős [1] found such
an arithmetic progression by considering integers which are congruent to
172677 modulo 5592405 = (224 − 1)/3. Thus the density of numbers of the
form p+2k is less than 1/2, the trivial bound obtained from the odd integers.
For convenience we introduce

d = lim inf
x→∞

#{p+ 2k ≤ x}

x/2
and d = lim sup

x→∞

#{p+ 2k ≤ x}

x/2
.

The aim of this paper is to give an explicit version of the estimates 0 < d ≤
d < 1.

Theorem 1. We have

0.1866 < d ≤ d < 0.9819.

This range is pretty large and Bombieri conjectured the more precise
upper bound 0.868 (see [4]).

In Section 2, we obtain the lower bound 0.1866 < d, by slightly refining a
straightforward application of a recent result of Pintz and Ruzsa [3], in their
study of Linnik’s approximation of the Goldbach problem (see also [2]). In
Section 3, we get the upper bound, using computations on residue classes.

2. The lower bound. LetN be a large integer and put L=⌊logN/log 2⌋.
Define the functions

r(n) = #{(p, k) : n = p+ 2k, p ≤ N, 1 ≤ k ≤ L}
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and

s(N) = #{(p1, p2, k1, k2) : p1−p2 = 2
k2−2k1, pj ≤ N, 1 ≤ kj ≤ L, j = 1, 2}

so that

s(N) =
N∑

n=1

r2(n).

Pintz and Ruzsa [3] proved the following lemma.

Lemma 1. For N large enough, we have

s(N) ≤
2

log2 2
CN,

where C < 5.3636.

Let d(N) denote the number of positive integers n ≤ N which may be
written in the form n = p + 2k. The Cauchy–Schwarz inequality implies
easily that

(π(N)L)2 ≤ d(N)s(N),

where π(N) denotes the number of primes p ≤ N . We deduce from Lemma 1
and from the prime number theorem that 2Cd(N) ≥ (1 + o(1))N , and the
lower bound d ≥ 1/C > 0.1864 follows from the definitions.

To get the bound from the theorem, we need further notations. Put

εN =

∑
1≤n≤N, r(n)>0 r(n)∑
1≤n≤N, r(n)>0 1

and ε =
2

d log 2
.

By the definitions, there exists a subsequence of (εN )N∈N which converges
to ε. Let us now refine the Cauchy–Schwarz inequality by studying

∆N =
∑

1≤n≤N, r(n)>0

(r(n)− εN )
2,

so that

∆N =
∑

1≤n≤N

r2(n)−
(
∑
1≤n≤N r(n))

2

∑
1≤n≤N, r(n)>0 1

= s(N)−
(π(N)L)2

d(N)

≤

(
5.3636−

1

d
+ o(1)

)
2N

log2 2

for infinitely many N . Without loss of generality we may assume that ε ∈
]15, 15.5[: otherwise we would get either d ≥ 0.19, which would be better, or
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d ≤ 0.1862, which is false. For infinitely many N we thus have

∆N ≥
∑

1≤n≤N, r(n)>0

(15− εN )
2 ≥
( ∑

1≤n≤N, r(n)>0

(15− ε)2 + o(1)
)
N

=

(
d

2

(
15−

2

d log 2

)2
+ o(1)

)
N.

We deduce from these estimates the inequality

d

2

(
15−

2

d log 2

)2
≤
2

log2 2

(
5.3636−

1

d

)
,

which may be written as

56.25 log2 2d2 − (15 log 2 + 5.3636)d+ 1 ≤ 0.

The lower bound d ≥ 0.1866 then follows.

3. The upper bound

A. Basic ideas. Let us introduce further notations. Let M be a positive
odd integer and let ω denote the order of 2 in (Z/MZ)∗. For m a residue
class modulo M , put

fM (m) = {k ∈ Z/ωZ : m− 2k ∈ (Z/MZ)∗}

and
δM (ν) = |{m ∈ Z/MZ : |fM (m)| = ν}|.

The basic tool to get an upper bound for d is the following lemma.

Lemma 2. With the previous notations, we have

d ≤
ω∑

ν=0

δM (ν)min

(
1

M
,

2ν

ωϕ(M) log 2

)
,

where ϕ denotes Euler’s function.

Proof. Let m be a congruence class modulo M , with |fM (m)| = ν. Let
us study the proportion of odd integers congruent to m that may be written
in the form p + 2k. This proportion is clearly at most 1/M , and we only
need to prove the alternative upper bound.
Since all the primes but a finite number are invertible modulo M , there

exist ν congruence equations m = pi + 2
ki , i ∈ {1, . . . , ν}, such that all

but finitely many representations p+2k come from one of these congruence
equations. The number of primes up to N which are congruent to pi modulo
M is asymptotic to N/(ϕ(M) logN), while the number of powers of 2 which
are congruent to 2ki modulo M is asymptotic to logN/(ω log 2). Thus the
number of integers congruent to m that may be written in the form p+ 2k

is at most (ν/(ϕ(M)ω log 2) + o(1))N . This implies that the proportion of
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odd integers enjoying these properties is at most 2ν/(ϕ(M)ω log 2) and the
lemma follows.

This lemma provides a nontrivial upper bound for d as soon as there
exist residue classes m modulo M such that

(1) fM (m) <
ωϕ(M) log 2

2M
,

a condition that occurs for a small number of classes. The main problem is
to compute the distribution of the fM (m)’s in an efficient way. The direct
computation of all the fM (m)’s is quickly limited by memory problems.
However one can obtain significant results this way.
Take M = 23205 = (224 − 1)/723, so that ω = 24 and ϕ(M) = 9216.

Condition (1) is equivalent to fM (m) ≤ 3. We find

(δM (0), δM (1), δM (2), δM (3)) = (0, 48, 720, 320),

and we get this way d ≤ 0.985049.

B. Refined algorithms and results. It appears that the function fM takes
very few possible values, when compared to the set of subsets of Z/ωZ. So
let us introduce

gM (I) = {m ∈ Z/MZ : fM (m) = I} and GM (I) = |gM (I)|

for I ⊂ Z/ωZ. Note that

δM (ν) =
∑

|I|=ν

GM (I).

So it is sufficient to know the distribution of the GM (I)’s to compute an
upper bound for d .
The main advantage of the function gM is that it is easily computable

by induction on the number of prime factors of M . The initial case is given
by g0({0}) = {0}.
Let M1, M2 be two positive odd squarefree integers, with M2 = pM1 for

some prime p not dividing M1. Let ω1, ω2 and ωp denote the order of 2 in
(Z/M1Z)

∗, (Z/M2Z)
∗ and (Z/pZ)∗, respectively. The image of fp is easy to

compute. There is the subset

Ip,0 = {2
k
∈ (Z/pZ)∗ : k ∈ Z/ωpZ}

with Gp(Ip,0) = p− ωp, and for each j ∈ Z/ωpZ the subset

Ip,j = {2
k
∈ (Z/pZ)∗ : k ∈ Z/ωpZ, k 6= j }

with Gp(Ip,j ) = 1. Now, let I2 and Ip be in the image of fM2 and fp respec-

tively. Denote by Ĩ2 and Ĩp the subsets of Z/M1Z which are inverse images
of I2 and Ip under the map on subsets induced by the natural surjections
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Z/M1Z → Z/M2Z and Z/M1Z → Z/pZ respectively. Then it is easy to see

that Ĩ2 ∩ Ĩp is in the image of fM1 with

GM1(Ĩ2 ∩ Ĩp) = GM2(I2)Gp(Ip),

and that all subsets in the image of fM1 are obtained in this way.

This construction allows us to build recursively the image of fM . It also
enables us to find how many classes have the same image. Therefore, one
can compute GM (I) without knowing gM (I).

Let us give an example. For

M = 5592405 = 3 · 5 · 7 · 13 · 17 · 241 = (224 − 1)/3,

we have ω = 24. There are 16401 subsets in the image of fM , which is much
fewer than 224. Each of these subsets is obtained in r ways, with 1 ≤ r ≤
250068. Only subsets of cardinality at most 3 lead to an improved upper
bound. The empty set appears 48 times. Each of the singletons from Z/24Z
appears 540 times. For 2-subsets, the situation is slightly more complicated
to describe. The subsets of the form {a, a± 8} appear 3625 times (there are
24 of them) while those of the form {a, a + 12} appear 7170 times (there
are 12 of them). There are 224 interesting 3-subsets, appearing 3, 6, 225 or
9520 times.

This method requires much less memory than the algorithm from the
previous subsection. It is still possible to save a bit more memory. Indeed, the
representation problem (by an invertible plus a power of 2) is invariant when
multiplied by a power of 2. So we can use a representative of a collection of
subsets, each of them being obtained by translation from the representative,
instead of subsets of Z/ωZ.

The best result found so far is given by

M = 3 · 5 · 7 · 11 · 13 · 17 · 19 · 31 · 41 · 73 · 241 · 257.

It leads to the improvement

d < 0.9818818607968211912960156368,

and the upper bound from Theorem 1 follows. This computation took 35
minutes on an Intel Xeon 2.4 GHz with a memory stack of 2.1 GB. Indeed,
the real limitation is the memory. Note that during the computations, sub-
sets for which GM (I) was quite large and thus unlikely to contribute to the
density were dropped (still there were a total of 4469837 different subsets at
the end). Hence the density obtained may be a little greater than the actual
density for this value of M .

Addendum. The referee informed the authors that, while the paper
was being refereed, János Pintz improved on the lower bound. In a paper to
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appear in Acta Math. Hungar., he showed d ≥ 0.18734 by a more elaborate
method.
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