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On the reducibility type of trinomials
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1. Introduction. The reducibility over Q of trinomials xn + Axm + B
∈ Q[x],AB 6= 0 (where without loss of generality n ≥ 2m), has a long history,
and the reader is referred to Schinzel [3] (reprinted in Schinzel [6]), who
provides an excellent documentation and full bibliography. Here, we study
the type of reducibility of trinomials. We say a trinomial has reducibility type
(n1, . . . , nk) if there exists a factorization of the trinomial into irreducible
polynomials in Q[x] of degrees n1, . . . , nk. Types are ordered so that n1 ≤
· · · ≤ nk. Thus, for example,

x5 − 341x+ 780 = (x− 3)(x2 + x+ 20)(x2 + 2x− 13)

has reducibility type (1, 2, 2). We consider trinomials only up to scaling, in
that the polynomials xn+Axm+B and xn+Aλn−mxm+Bλn, λ ∈ Q, have
exactly the same factorization type; in particular, when the trinomial has a
rational root, we may assume that this root is 1. We shall always assume
AB 6= 0.

A monic polynomial of degree d is determined by d coefficients. Specify
the reducibility type of xn + Axm + B as (d1, . . . , dk); then comparing the
coefficients of xr, 1 ≤ r < n, r 6= m, leads to n − 2 equations involving∑k

i=1 di = n coefficients. With the appropriate weighting of the coefficients,
the variety so determined has generic dimension 1 in weighted projective
space, so is a curve. When the genus of this curve is 0 or 1, there is reason-
able hope that all its rational points may be described; and techniques are
available that may also yield all points when the genus is 2. These low genus
instances are the ones we investigate in this paper.

Although our motivation is the reducibility of trinomials overQ, it is clear
that the constructions of curves related to a particular type of reducibility
can be viewed over other fields (of characteristic 0).
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It is immediate to verify the following. The quadratic x2+Ax+B ∈ Q[x]
is reducible, so of type (1, 1), if and only if up to scaling (A,B) = (u−1,−u)
for u ∈ Q \ {0, 1}. A cubic x3 +Ax+B is of type (1, 2) if and only if up to
scaling (A,B) = (u − 1,−u) for u ∈ Q \ {0, 1} and −4u + 1 6= �; and is of
type (1, 1, 1) if and only if (A,B) = (−v2 + v − 1, v2 − v) for v ∈ Q \ {0, 1}.

2. Reducibility type of quartic trinomials

Theorem 2.1. The trinomial x4 +Ax+B has reducibility type (1, 1, 2)
if and only if up to scaling

A = −(u+ 1)(u2 + 1), B = u(u2 + u+ 1), u ∈ Q \ {0,−1},
with factorization

x4 +Ax+B = (x− 1)(x− u)(x2 + (u+ 1)x+ (u2 + u+ 1)).

There are no polynomials x4 +Ax+B with reducibility type (1, 1, 1, 1).

Proof. Suppose we have reducibility type (1, 1, 2). By scaling, there is a
linear factor x − 1, and x4 + Ax + B = (x − 1)(x − u)(x2 + px + q). On
comparing the coefficients of powers of x, we obtain

p− u− 1 = 0, q − pu− p+ u = 0, A = −qu− q + pu, B = qu,

and thus

p = u+ 1, q = u2 + u+ 1, (A,B) = (−(u+ 1)(u2 + 1), u(u2 + u+ 1)),

as required. The discriminant of the quadratic factor is −3u2 − 2u− 3 < 0,
so that reducibility type (1, 1, 1, 1) is impossible.

Theorem 2.2. x4 +Ax2 +B has reducibility type (1, 1, 2) if and only if
up to scaling

(A,B) = (q − 1,−q), q ∈ Q \ {1}, −q 6= �,

with factorization

x4 +Ax2 +B = (x− 1)(x+ 1)(x2 + q);

and has reducibility type (1, 1, 1, 1) if and only if

(A,B) = (−u2 − 1, u2), u ∈ Q \ {0},
with factorization

x4 +Ax2 +B = (x− 1)(x+ 1)(x− u)(x+ u).

Proof. By scaling, suppose x4 +Ax2 +B = (x− 1)(x− u)(x2 + px+ q);
then equating the coefficients of powers of x gives

p− u− 1 = 0, A = q − pu− p+ u, −qu− q + pu = 0, B = qu.

It follows that p(q − u) = 0. If p = 0 then u = −1 and (A,B) = (q − 1,−q);
and if q = u, then (A,B) = (−u2 − 1, u2).
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3. Reducibility type of quintic trinomials

Theorem 3.1. The trinomial x5 +Ax+B has reducibility type (1, 2, 2)
if and only if up to scaling

A =
(v2 − v − 1)(v4 − 2v3 + 4v2 − 3v + 1)

(2v − 1)2
,

B = −v(v − 1)(v2 + 1)(v2 − 2v + 2)

(2v − 1)2

for v ∈ Q with v 6= 0, 1, 1/2. There are no trinomials x5 + Ax + B with
reducibility type (1, 1, 1, 2).

Proof. By scaling we suppose the linear factor is x− 1, with

x5 +Ax+B = (x− 1)f1(x)f2(x) = (x− 1)(x2 + px+ q)(x2 + vx+ w).

Comparing the coefficients of powers of x, we get the system of equations

p+ v − 1 = 0, (v − 1)p+ q − v + w = 0, (v − w)p− (v − 1)q + w = 0,

A+ pw + (v − w)q = 0, B + qw = 0.

Solving for p, q, w,A,B we get A,B as given in the statement and

p = 1− v, q =
v(v2 − 2v + 2)

2v − 1
, w =

(v − 1)(v2 + 1)

2v − 1
.

It remains to show that the quadratics fi(x) are irreducible. Without loss
of generality, we show that f2(x) is irreducible. The discriminant of f2(x) is
v2− 4w = −(2v3− 3v2+4v− 4)/(2v− 1), so f2(x) is reducible if and only if

−(2v − 1)(2v3 − 3v2 + 4v − 4) = �.

This is the equation of an elliptic curve with minimal model y2 + xy + y =
x3−x−2, and rank 0 over Q. The torsion group is of order 3; its points lead
to AB = 0. Hence there is no non-trivial specialization of v, which leads to
the reducibility of f2(x), and the theorem follows.

Theorem 3.2. There are no trinomials x5 + Ax2 + B with reducibility
type (1, 2, 2) or (1, 1, 1, 2).

Proof. By scaling, suppose x5+Ax2+B = (x−1)(x2+px+q)(x2+rx+s).
Equating the coefficients of x4, x3, x gives

p+ r − 1 = 0, q + pr + s− p− r = 0, qs− qr − ps = 0.

On eliminating r, s, it follows that

q2 − q(p+ p2) + p− p2 + p3 = 0,

whence
(p+ p2)2 − 4(p− p2 + p3) = �,
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the equation of an elliptic curve with minimal model y2 + xy+ y = x3 + x2,
of rank 0, and with torsion group Z/4Z, generated by (x, y) = (0, 0). The
four torsion points lead to B = 0.

Corollary 3.3. The equation (representing a curve of genus 3)

G(p, q, r) : (p+ q)(q + r)(r + p)(p+ q + r)− (pq + qr + rp)2 = 0

has only trivial rational solutions, i.e. with pqr = 0.

Proof. Suppose G(p, q, r) = 0 with pqr 6= 0. Then the absolute values of
p, q, r are distinct, for if, say, p = q, then q(3q3 + 6q2r + 4qr2 + 2r3) = 0,
so that q = 0; and if p = −q, then q4 = 0, and again q = 0. Consider the
trinomial

H(X) = X5 − p5 − q5

p2 − q2
X2 +

p2q2(p3 − q3)
p2 − q2

.

We have H(p) = H(q) = 0 and H(r) = (p− r)(q − r)G(p, q, r)/(p+ q) = 0.
This contradicts Theorem 3.2, since there are no trinomials x5 + Ax2 + B
with three rational roots.

4. Reducibility type of sextic trinomials

Theorem 4.1. There are infinitely many trinomials x6 + Ax + B with
reducibility type (1, 2, 3). There are no trinomials x6+Ax+B with reducibility
type (1, 1, 1, 3).

Proof. By scaling, suppose that x6+Ax+B = (x−1)(x2+vx+w)(x3+
px2 + qx+ r). Equating the coefficients of x5, . . . , x2 yields

p+ v − 1 = 0, q − p+ pv − v + w = 0, r − q + qv − pv + pw − w = 0,

−r + rv − qv + qw − pw = 0;

and eliminating p, q, r, we get

(1) (3v2 − 2v + 1− 2w)2 = (v − 1)(5v3 − 3v2 + 3v + 3).

This is the equation of an elliptic curve E with minimal model y2 = x3 +
3x + 1, of rank 1 with generator P (x, y) = (0, 1). Each multiple of P pulls
back to a trinomial of type x6+Ax+B factoring into polynomials of degrees
1, 2, 3. Now if the quadratic is reducible, then v2 − 4w = �, which with (1)
represents a curve of genus 3, so having only finitely many points v, w. The
cubic factoring together with (1) represents a curve of genus 7 and so again,
there are only finitely many points (v, w). Since the number of points on E is
infinite, all but finitely many such points lead to trinomials with reducibility
type (1, 2, 3). As an example, the point 2P = (9/4,−35/8) pulls back to the
trinomial

x6 − 19656x+ 82655 = (x− 5)(x2 + 13x+ 61)(x3 − 8x2 + 68x− 271).

The second assertion of the theorem follows from Theorem 7.1 below.
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Theorem 4.2. There are no trinomials x6 + Ax + B with reducibility
type (1, 1, 2, 2) or (2, 2, 2).

Proof. Suppose x6 +Ax+B = (x2 + px+ q)(x2 + rx+ s)(x2 + ux+ v).
Equating the coefficients of x5, . . . , x2 gives

−p− r − u = 0, −p(u+ r)− q − ur − s− v = 0,

−(s+ ru+ v)p− (r + u)q − vr − us = 0,

−(su+ rv)p− (s+ ru+ v)q − vs = 0,

and eliminating p, q, s results in

3(r2 + ru+ u2)v2 + 2(r4 + 2r3u− 3r2u2 − 4ru3 − 2u4)v

− (r6 + 3r5u+ 5r4u2 + 5r3u3 − 2ru5 − u6) = 0.

The discriminant in v must be a perfect square, leading to

(2r + u)2(r6 + 3r5u+ 3r4u2 + r3u3 + 3r2u4 + 3ru5 + u6) = �.

The restriction u=−2r leads to trivial solutions, and thus (X,Z)=(u+2r, u)
gives a point on the genus 2 curve

C : Y 2 = X6 − 3X4Z2 + 51X2Z4 + 15Z6.

C covers two obvious elliptic curves,

E1 : y
2 = x3 − 3x2 + 51x+ 15,

E2 : y
2 = 15x3 + 51x2 − 3x+ 1,

but each Ei is of rank 1 over Q, so there is no simple way to compute the
finitely many rational points on C. However, we can argue as follows to show
that the only rational points on C are (±X,±Y, Z) = (1, 1, 0), (1, 8, 1). Set
K = Q(θ), θ3 + 3θ + 1 = 0. The ring of integers is Z[θ]; a fundamental unit
is ε = θ; and the class number is 1. We have factorizations into prime ideals

(2) is irreduccible, (3) = p33, (5) = p25p
′
5,

with p3 = (2 + θ2), p5 = (1 + θ2), p′5 = (4 + θ2). The equation becomes

NormK/Q(X
2 − (4θ + 1)Z2) = Y 2,

equivalently,

(X2 − (4θ + 1)Z2)(X2 + (−2θ2 − 4)XZ + (2θ2 + 7)Z2)

× (X2 + (2θ2 + 4)XZ + (2θ2 + 7)Z2) = Y 2.

Since gcd(X2− (4θ+1)Z2, X4+(4θ−2)X2Z2+(16θ2−4θ+49)Z4) divides
24p33p5, we have

(X2 − (4θ + 1)Z2) = 2ipj3p
k
5� for some i, j, k ∈ {0, 1};
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and taking norms gives 23i3j5k = �, so i = j = k = 0. Hence

X2−(4θ+1)Z2 = ±ε−ay21, X4+(4θ−2)X2Z2+(16θ2−4θ+49)Z4 = ±εay22,
for some a ∈ {0,−1}, and y1, y2 integers in K with y1y2 = y.

• Case of + sign, a = −1:
X2− (4θ+1)Z2 = εy21, X4+(4θ−2)X2Z2+(16θ2−4θ+49)Z4 = ε−1y22,

and the latter is not locally solvable at p3.

• Case of − sign, a = 0:

X2− (4θ+1)Z2 = −y21, X4+(4θ− 2)X2Z2+(16θ2− 4θ+49)Z4 = −y22,
and the latter is not locally solvable at p3.

• Case of + sign, a = 0:

X2 − (4θ + 1)Z2 = y21, X4 + (4θ − 2)X2Z2 + (16θ2 − 4θ + 49)Z4 = y22,

and the latter is an elliptic curve of rank 1 overQ(θ). The rank is smaller than
[K : Q], and the elliptic Chabauty routines in Magma [1] work effectively
to show that the curve has precisely one point with X/Z rational, namely
(X,Z) = (1, 0), with (y1, y2) = (1, 1). This leads to A = 0.

• Case of − sign, a = −1:
X2−(4θ+1)Z2 = −εy21, X4+(4θ−2)X2Z2+(16θ2−4θ+49)Z4 = −ε−1y22,
and the latter is an elliptic curve of rank 1 over Q(θ). As above, elliptic
Chabauty techniques show there is precisely one pair of points with X/Z
rational, namely (X,±Z) = (1, 1), with (y1, y2) = (2, 4). These points pull
back to A = 0.

Theorem 4.3.

(1) There are no trinomials x6 +Ax2 +B with reducibility type (1, 2, 3).
(2) If x6 +Ax2 +B has reducibility type (2, 2, 2) then either

(A,B) = (−s2 − sv − v2, −sv(s+ v)), s, v ∈ Q, sv(s+ v) 6= 0,

with
x6 +Ax2 +B = (x2 + s)(x2 + v)(x2 − s− v);

or, up to scaling,

(A,B) = (−(v−1)(3v−1), −v2(2v−1)), v ∈ Q, v 6= 0, 1, 1/2, 1/3,

with

x6 +Ax2 +B = (x2 + x+ v)(x2 − x+ v)(x2 − 2v + 1).

Proof. (1) is a simple consequence of the fact that if f(u) = 0 for some
u ∈ Q \ {0} then f(−u) = 0 and thus we have two rational roots. In order
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to prove (2), suppose

x6 +Ax2 +B = (x2 + px+ q)(x2 + rx+ s)(x2 + ux+ v).

Equating the coefficients of x5, x4, x3, x gives

−p− r − u = 0, −p(u+ r)− q − ur − s− v = 0,

−(s+ ru+ v)p− (r + u)q − vr − us = 0, −qsu− qrv − psv = 0.

Eliminating p, q, s results in

ru(r + u)(r4 + 2r3u+ 3r2u2 + 2ru3 + 2u4 − 2r2v − 2ruv − 8u2v + 9v2) = 0.

The latter factor has discriminant in v equal to −8(2r + u)2(r2 + ru+ u2),
which is a perfect square if and only if 2r+u = 0, leading to p = r = u = 0,
q = −s − v, and (A,B) = (−s2 − sv − v2,−sv(s + v)). If instead ru = 0,
then symmetry allows us to take without loss of generality r = 0. Then
p = −u, q = −s + u2 − v, and u(s − u2 + 2v) = 0. The case u = 0 results
in the previous factorization; and the case s = u2 − 2v results in (A,B) =
(−(u2 − v)(u2 − 3v), v2(u2 − 2v)), which on scaling so that u = 1, gives the
assertion. Finally, the case r = −u leads to the same factorization.

Theorem 4.4.

(1) If x6 +Ax3 +B has reducibility type (2, 2, 2) then up to scaling

A = −27u(u+ 1), B = 27(u2 + u+ 1)3, u 6= 0,−1,−1/2,
with

x6 − 27u(u+ 1)x3 + 27(u2 + u+ 1)3 = (x2 + 3x+ 3(u2 + u+ 1))

× (x2 − 3(u+ 1)x+ 3(u2 + u+ 1))(x2 + 3ux+ 3(u2 + u+ 1)).

(2) If x6 +Ax3 +B has reducibility type (1, 1, 2, 2) then up to scaling

A = −u3 − 1, B = u3, u 6= 0,−1,
and

x6 +Ax3 +B = (x− 1)(x− u)(x2 + x+ 1)(x2 + ux+ u2).

(3) There are no trinomials x6+Ax3+B with reducibility type (1, 1, 1, 1, 2).
(4) If x6 + Ax3 + B has reducibility type (1, 2, 3), then up to scaling

(A,B) = (t− 1,−t), where t is not a cube, and

x6 + (t− 1)x3 − t = (x− 1)(x2 + x+ 1)(x3 + t).

Proof. To prove the first two statements, suppose that x6 + Ax3 + B =
(x2+ px+ q)(x2+ rx+ s)(x2+ux+ v) and equate the coefficients of x5, x4,
x2, x:

p+ r + u = 0, p(u+ r) + q + ur + s+ v = 0,

qs+ qru+ psu+ qv + prv + sv = 0, qsu+ qrv + psv = 0.
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Eliminating r, s, v gives

(p2 − q)(p2 + pu+ u2)(p2 − 3q + pu+ u2)(q + pu+ u2) = 0.

There are three cases:

• If q = p2, then either v = u2, and on scaling so that p = 1 we have
the factorization in (2); or v = −p2 − pu, which leads to the same
factorization under a change of variable.
• If q = 1

3(p
2 + pu+ u2) then either v = 1

3(p
2 + pu+ u2) and on scaling

to p = 3 we have the factorization in (1); or v = −2
3p

2 − 5
3pu + 1

3u
2,

p ∈ {0, u, 12u,−2u}, with corresponding factorizations that either have
A = 0 or are special cases of the factorization in (1).
• If q = −pu − u2 then v = u2 and again we have a symmetry of the

factorization in (1).

Statement (3) is immediate from (2).
Finally, suppose x6+Ax3+B = (x−u)(x2+ px+ q)(x3+ rx2+ sx+ t),

and equate coefficients:

p+ r − u = 0, q + pr + s− pu− ru = 0,

−A+ qr + ps+ t− qu− pru− su = 0, qs+ pt− qru− psu− tu,
qt− qsu− ptu = 0, −B − qtu = 0.

If r = 0, it follows that p = u, s = 0, q = u2, and we derive the factorization
in (4). If r 6= 0, then eliminating p, q, t gives

(−s+ ru)(r4 − 2r2s+ s2 − r3u+ rsu+ r2u2) = 0,

and the latter factor has discriminant in u equal to −3r2(r2−s)2, which is a
perfect square if and only if r2 − s = 0. This leads to B = 0. And if s = ru,
then (A,B) = ((r− 2u)(r2− ru+ u2),−(r− u)3u3), and the factorization is
again of type (1, 1, 2, 2).

5. Reducibility type of some higher degree trinomials

Theorem 5.1. If x7 +Ax+B has reducibility type (1, 2, 4) then

A = w3 − v(3v + 1)w2 + v(v3 + 3v2 − 2v + 1)w − v(v4 − v3 + v2 − v + 1),

B = −w(w2 − (3v2 − 2v + 1)w + (v4 − v3 + v2 − v + 1))

and

4v6−8v5+9v4−4v3−6v2+12v−3 = � = (4v3−3v2+2v−1−2(3v−1)w)2

for some v ∈ Q.

Proof. We suppose

x7 +Ax+B = (x− 1)(x2 + vx+ w)(x4 + px3 + qx2 + rx+ s),



Reducibility type of trinomials 357

and equate coefficients:

p+ v − 1 = 0, −q + p− pv + v − w = 0,

−r + q − qv + pv − pw + w = 0, −s+ r − rv + qv − qw + pw = 0,

s− sv + rv − rw + qw = 0, A+ sv − sw + rw = 0, B + sw = 0.

Eliminating p, q, r, s gives

A = w3 − v(3v + 1)w2 + v(v3 + 3v2 − 2v + 1)w − v(v4 − v3 + v2 − v + 1),

B = −w(w2 − (3v2 − 2v + 1)w + (v4 − v3 + v2 − v + 1)),

with

4v6− 8v5+9v4− 4v3− 6v2+12v− 3 = (4v3− 3v2+2v− 1− 2(3v− 1)w)2.

We have been unable to determine the finitely many rational points on
the curve C of genus 2 given by

C : y2 = 4v6 − 8v5 + 9v4 − 4v3 − 6v2 + 12v − 3,

but believe the set of (finite) points is the following:

(v,±y) = (1, 2), (−1, 2), (1/3, 14/27), (7/5, 446/125),

with corresponding w = 0, 1; w = 1, 3/2; w = 13/9; and w = 13/25,
327/200, respectively. The first leads to B = 0; and after scaling, the others
determine the following factorizations, which we believe to be the complete
list of the given type:

x7 − 232x+ 336 = (x− 2)(x2 − 2x+ 6)(x4 + 4x3 + 6x2 − 4x− 28),

x7 + 1247x− 5928 = (x− 3)(x2 + x+ 13)(x4 + 2x3 − 6x2 + 7x+ 152),

x7 − 9073x− 32760 = (x− 5)(x2 + 7x+ 13)(x4 − 2x3 + 26x2 − 31x+ 504),

x7 − 204214984x+ 2804299680

= (x− 20)(x2 + 28x+ 654)(x4 − 8x3 − 30x2 + 14072x− 214396).

Remark 5.2. It is interesting to note that to the best of our knowl-
edge, these trinomials with reducibility type (1, 2, 4) give the first explicit
examples showing that some (exceptional) finite sets defined in Theorems 3
of Schinzel [4, 5] are non-empty.

Theorem 5.3.

(1) If x7 +Ax+B has reducibility type (3, 4) then up to scaling

(A,B) = ((4u2 − 5u+ 2)(u3 − u2 − 2u+ 1)/(2u− 3)2,

(3u− 1)(2u− 1)(u− 1)(u2 − u+ 1)/(2u− 3)2), u 6= 1, 12 ,
1
3 ,

3
2 ,
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with

x7 +Ax+B =

(
x3 + x2 + ux+

(3u− 1)(u− 1)

2u− 3

)
×
(
x4 − x3 − (u− 1)x2 +

(u2 − 4u+ 2)

2u− 3
x+

(2u− 1)(u2 − u+ 1)

2u− 3

)
.

(2) There are no trinomials x7 +Ax2 +B with reducibility type (3, 4).
(3) If x7+Ax3+B has reducibility type (3, 4) then up to scaling (A,B) =

(2,−1) with

x7 +Ax3 +B = (x3 + x2 − 1)(x4 − x3 + x2 + 1).

Proof. (1) is immediate on comparing coefficients in the expression x7 +
Ax+B = (x4 + px3 + qx2 + rx+ s)(x3 + tx2 + ux+ v), and scaling so that
t = 1 (in fact this result can be found in [3]). For (2), suppose x7+Ax2+B =
(x4 + px3 + qx2 + rx + s)(x3 + tx2 + ux + v). Comparing coefficients and
eliminating p, q, r, s yields

4u3 + 4t2u2 − 4t4u+ t6 = (t3 − 4tu+ 2v)2,

the equation of an elliptic curve with rank 0 and torsion group of order 3.
The torsion leads to the (1, 3, 3) factorization x7 − 2x2 + 1 = (x − 1)(x3 +
x+ 1)(x3 + x2 − 1). For (3), suppose x7 +Ax3 +B = (x4 + px3 + qx2 + rx
+s)(x3+ tx2+ux+v). Comparing coefficients and eliminating p, q, r, s gives

(u− t2)(2u− t2)(2u2 + t2u+ t4) = (2tv − t2u− 2u2 + t4)2,

the equation of an elliptic curve of rank 0 and torsion group of order 6. The
only non-trivial trinomial that results is the one in (3).

Theorem 5.4. The trinomial x8+Ax3+B is divisible by the polynomial
x3 + ux2 + vx + w if and only if either u = 0 and (A,B) = (−3t5,−t8),
t ∈ Q \ {0}, with (upon scaling)

x8 − 3x3 − 1 = (x3 + x+ 1)(x5 − x3 − x2 + x− 1);

or, upon scaling to u = 1,

A = 1− 5v + 6v2 − v3 + 4w − 6vw + w2,(2)

B = −w(v − 3v2 + v3 − w + 4vw − w2),(3)

and

(4) (v2+2v− 1)(4v3− 3v2+2v− 1) = � = (2(v+2)w− (3v− 1)(v+1))2.

In particular the only trinomials x8 + Ax3 + B with reducibility type (3, 5)
are those with the numbers (1)–(4) on the list at the end of Schinzel [3].
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Proof. By the Division Algorithm, the remainder of dividing x8+Ax3+B
by x3 + ux2 + vx+ w is ax2 + bx+ c, with

a = −Au+ u6 − 5u4v + 6u2v2 − v3 + 4u3w − 6uvw + w2,

b = −Av + u5v − 4u3v2 + 3uv3 − u4w + 6u2vw − 3v2w − 2uw2,

c = B −Aw + u5w − 4u3vw + 3uv2w + 3u2w2 − 2vw2.

If u = 0, then it follows that (v, w) = (t2, t3), (A,B) = (−3t5,−t8), for
some non-zero t ∈ Q. If u 6= 0, then setting a = c = 0 gives (2), (3); and
demanding b = 0 gives (4) in the form

(v2+2u2v−u4)(4v3−3u2v2+2u4v−u6) = (2(v+2u2)w−u(3v−u2)(v+u2))2.
The problem of determining all trinomials x8+ax3+b with reducibility type
(3, 5) is thus reduced to finding all rational points on the genus two curve

C : (v2 + 2u2v − u4)(4v3 − 3u2v2 + 2u4v − u6) = �,

where we can assume without loss of generality that (v, u2) = 1. We show
the points are precisely (v, u2) = (1, 0), (0, 1), (1, 1), (−2, 1), which leads to
the factorizations on Schinzel’s list.

Observe first that r = v/u2 satisfies (r2+2r−1)(4r3−3r2+2r−1) > 0,
so necessarily

(5) − 1−
√
2 < u/v2 < −1 +

√
2, or 0.60583 < u/v2.

Factoring over Z, we get

(6) v2 + 2u2v − u4 = c0g
2, 4v3 − 3u2v2 + 2u4v − u6 = c0h

2,

with c0 ∈ {±1,±2} and g, h ∈ Z. When c0 ∈ {1,−2}, the latter elliptic curve
has rank 0, and leads only to u = 0; so we need only consider c0 ∈ {−1, 2}.

We need to work over two number fields. First, K = Q(
√
2) with integer

ring Z[
√
2], class number 1, and fundamental unit e = 1 +

√
2. Second,

L = Q(θ), where θ3 − 2θ2 + 3θ− 4 = 0. Here the ring of integers is Z[θ]; the
class number is 1; and a fundamental unit is ε = −1 − θ + θ2, of norm 1.
There are factorizations into prime ideals

(2) = p21p
2
22 = (2− θ)(−1 + θ)2, (5) = p35 = (3− θ + θ2)2.

Case I: c0 = 2. Factoring over L the second equation at (6) gives

(θv − u2)((θ2 − 2θ + 3)v2 + (θ − 2)vu2 + u4) = 2h2,

and the (ideal) gcd of the factors on the left divides (3− 4θ + 3θ2) = p322p
2
5.

Thus
θv − u2 = ±εipj22p

k
5ρ

2

for some i, j, k ∈ {0, 1} and ρ ∈ Z[θ]. Taking norms yields

±2j5k = 2�,
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forcing the plus sign, and (j, k) = (1, 0). Hence

θv − u2 = εi(−1 + θ)ρ2, i ∈ {0, 1}.
When i = 0, we have

θv − u2 = (−1 + θ)ρ2, v2 + 2vu2 − u4 = 2g2,

so that
(θv − u2)(v2 + 2vu2 − u4) = 2(−1 + θ)�,

the equation of an elliptic curve of rank 1 over Q(θ). The elliptic Chabauty
routines in Magma show that the only points with u/v rational are (v,±u) =
(1, 0), (1, 1). When i = 1,

θv − u2 = ε(−1 + θ)ρ2, v2 + 2vu2 − u4 = 2g2,

so that
(θv − u2)(v2 + 2vu2 − u4) = 2ε(−1 + θ)�,

again, an elliptic curve of rank 1 over Q(θ). The only points with u/v rational
are given by (v,±u) = (1, 0).

Case II: c0 = −1. Factoring over K the first equation at (6) gives

(v + (1 +
√
2)u2)(v + (1−

√
2)u2) = −g2,

and the great common divisor of the two factors on the left divides 2
√
2.

Thus
v + (1 +

√
2)u2 = ±ei(

√
2)jα2

for some i, j ∈ {0, 1}, and α ∈ Z[
√
2]. From (5), we must have the plus sign.

Taking norms yields
(−1)i+j2j = −�,

forcing (i, j) = (1, 0). Thus

v + (1 +
√
2)u2 = eα2.

As above, on factoring over L the second equation at (6), we get

θv − u2 = ±εipj22p
k
5ρ

2,

where i, j, k ∈ {0, 1} and ρ ∈ Z[θ]. Taking norms gives

±2j5k = −�,
forcing the minus sign, and (j, k) = (0, 0). Hence

θv − u2 = −εiρ2, (θ2 − 2θ + 3)v2 + (θ − 2)vu2 + u4 = ε−iσ2,

for some i ∈ {0, 1} and σ ∈ Z[θ].
In the case i = 1,

θv − u2 = −ερ2, v2 + 2vu2 − u4 = −g2.
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Thus
(θv − u2)(v2 + 2vu2 − u4) = ε�,

and Magma tells us this curve has rank 0 over L; the only points are the
torsion points given by v/u2 = 1/θ.

Suppose finally i = 0. Trying to work exclusively over the quadratic or the
cubic number field led to problems with the computation. Instead, consider

((θ2 − 2θ + 3)v2 + (θ − 2)vu2 + u4)(v + (1 +
√
2)u2) = e�,

the equation of an elliptic curve over the compositum of K and L. The rank
is determined to be 2, and the elliptic Chabauty routines show that the only
points with v/u rational are given by (v, u2) = (1, 0), (0, 1), (−2, 1).

Theorem 5.5. The trinomial x9+Ax2+B is divisible by the polynomial
x3 + ux2 + vx+ w if and only if

A = u7 − 6u5v + 10u3v2 − 4uv3 + 5u4w − 12u2vw + 3v2w + 3uw2,

B = w(u6 − 5u4v + 6u2v2 − v3 + 4u3w − 6uvw + w2),

and

(7) u10 − 4u8v + 10u6v2 − 12u4v3 − 3u2v4 + 12v5

= (6(u2 − v)w + u5 − 8u3v + 9uv2)2.

In particular the only trinomials x9 + Ax2 + B with reducibility type (3, 6)
are those labeled (6)–(8) on the list in Schinzel [3], namely, up to scaling,

x9 ± 32x2 ∓ 64, x9 ± 81x2 ∓ 54, x9 ± 729x2 ∓ 1458.

Proof. The Division Algorithm is used as in the preceding theorem to
obtain the first statement. To complete the proof, we need to determine all
rational points on the curve (7) of genus 2. Take the equation in the form

X5 − 3X4z2 − 144X3z4 + 1440X2z6 − 6912Xz8 + 20736z10 = Y 2,

where X = 12vz2/u2. Set K = Q(θ), θ5 + θ4 + 4θ3 + 4θ2 − 8θ + 4 = 0, so
that

NormK/Q(X + (θ4 + 4θ2 − 8)z2) = Y 2.

The ring of integers in K has basis {1, θ, θ2, 12(θ
3 + θ2), 12(θ

4 + θ2)}. There
are ideal factorizations

(2) = p21p
4
22, (3) = p331p

2
32, (7) = p371p

2
72,

and fundamental units are given by

ε1 = [2,−5, 4,−1, 2], ε2 = [0,−11, 47,−20,−29].
We have

(X + (θ4 + 4θ2 − 8)z2) = pi122p
j1
31p

j2
32p

k1
71p

k2
72�, i1, j1, j2, k1, k2 ∈ {0, 1};
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and on taking norms,
2i13j1+j27k1+k2 = �,

so that i1 = 0, j1 = j2, k1 = k2. If k1 = k2 = 1, then X+4z2 ≡ 0 mod 7 and
X+3z2 ≡ 0 mod 7, impossible. If j1=j2=1, then 3 |X, and (θ4+4θ2−8)z2 ≡
0 mod p331, contradiction. Thus

(X + (θ4 + 4θ2 − 8)z2) = �,

so that with δ = ±εl11 ε
l2
2 , l1, l2 ∈ {0, 1},

X + (θ4 + 4θ2 − 8)z2 = δ−1a2,

X4 − (θ4 + 4θ2 − 5)X3z2 − 12(θ3 − θ2 + 5θ + 7)X2z4

− 144(θ2 − 2θ − 3)Xz6 − 1728(θ + 1)z8 = δb2,

for some integers a, b of K satisfying ab = y. Eliminating X results in an
eighth degree equation homogeneous in a, z, which is everywhere locally solv-
able for precisely the values δ = 1, −ε1ε2.

Case I: δ = 1. Then

X4 + (−θ4 − 4θ2 + 5)X3z2 − 12(θ3 − θ2 + 5θ + 7)X2z4

− 144(θ2 − 2θ − 3)Xz6 − 1728(θ + 1)z8 = b2.

The curve is birationally equivalent to

E : y2 = x3 − (θ4 + 3θ3 + 6θ2 + 14θ + 6)x2

+ 1
3(6θ

4 + 19θ3 + 47θ2 + 92θ + 94)x

+ 1
9(851θ

4 + 1318θ3 + 4040θ2 + 5409θ − 4448),

of rank 4 over K. Generators for a subgroup of odd index in E(K)/2E(K)
are given by(

0, 16(17θ
4 + 32θ3 + 95θ2 + 150θ − 18)

)
;(

1
3(−θ

4 − 2θ3 − 8θ2 − 10θ), 12(−3θ
4 − 6θ3 − 17θ2 − 26θ + 6)

)
;(

1
2(3θ

4 + 7θ3 + 18θ2 + 26θ), 16(θ
4 + 10θ3 + 37θ2 + 42θ + 30)

)
;(

1
3(−θ

4 + θ3 − 2θ2 + 8θ + 24), 12(3θ
4 + 4θ3 + 13θ2 + 14θ − 22)

)
,

and the Magma routines succeed in showing the only valid solutions are
(X, z2) = (1, 0), (12, 1). (We list the generators above because the initial ma-
chine computation returned a subgroup of index 3, and the routines failed).

Case II: δ = −ε1ε2. Then

X4 + (−θ4 − 4θ2 + 5)X3z2 − 12(θ3 − θ2 + 5θ + 7)X2z4

− 144(θ2 − 2θ − 3)Xz6 − 1728(θ + 1)z8 = −ε1ε2b2.
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The point (0,−48θ4 − 228θ3 − 60θ2 + 264θ− 144) leads to birational equiv-
alence with the curve

y2 = x3 + (3θ3 + θ2 + 4θ + 1)x2 − (6θ4 + 6θ3 − 20θ2 + 28θ − 35)x

− (18θ4 + 45θ3 + 53θ2 − 100θ − 71)

of rank 3 over K, and the Magma routines are successful in showing that
the only valid solutions arise for (X, z2) = (0, 1).

Similarly we can obtain the following.

Theorem 5.6. The trinomial x10+Ax+B is divisible by the polynomial
x3 + ux2 + vx+ w if and only if

A = (w − uv)(u6 − 6u4v + 10u2v2 − 4v3 + 4u3w − 8uvw + w2),

B = −w(u7 − 6u5v + 10u3v2 − 4uv3 + 5u4w − 12u2vw + 3v2w + 3uw2),

and

(8) 3u10 − 15u8v + 25u6v2 − 15u4v3 + 3v5

= (3(2u2 − v)w + 3u5 − 10u3v + 6uv2)2.

Remark 5.7. Unfortunately, we are unable to determine all rational
points on the curve (8) of genus two. The rational points (u,±v, w) with
height at most 106 (with w 6= 0) and their corresponding trinomials up to
scaling are as follows:

(0, 3, 3), x10 ± 297x− 243,

(1, 1, 2/3), x10 ± 8019x+ 13122,

(1, 2, 17/14), x10 ± 261312546880x+ 2485545010816.

The first example is (11) on the list in Schinzel [3]. The second and third ex-
amples, discovered by Cisłowska, are listed as (11a), (12a) in the reprinting
of [3] in [6]. It is likely they are the only such.

6. Trinomials with forced factors. For certain trinomials where (m,n)
> 1 we can force an algebraic factor and determine the reducibility type of
the quotient.

Theorem 6.1. Suppose that x4+Ax+B has a rational non-zero root v.
Then reducibility of (x8 +Ax2 +B)/(x2 − v) implies reducibility type (3, 3),
occurring precisely when (up to scaling)

(9)
A = −(q2 + 2q − 1)(9q2 − 10q + 3)

4
,

B =
(q − 1)2(2q − 1)(3q − 1)2

4
, q 6= 1, 1/2, 1/3.
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Proof. By Lemma 29 of Schinzel [3], if (x8 +Ax2 +B)/(x2 − v) = x6 +
vx4+v2x2+v3+A is reducible, then it takes the form (x3+px2+qx+r)(x3−
px2+qx−r). Comparing the coefficients of powers of x and eliminating r gives
(A,B) as in the theorem after scaling so that p = 1 (it is easy to check that
p = 0 results in v = 0). Further, the cubic factor x3+x2+qx−(q−1)(3q−1)/2
is irreducible, for if u is a rational root, then 6u3+7u2+4u+1 = (3q−u−2)2.
But the corresponding elliptic curve has rank 0, and the only finite points
occur at u = 0,−1/2, giving B = 0.

Theorem 6.2. Suppose x5+Ax+B has the quadratic factor x2+ux+v.
Then the polynomial (x10+Ax2+B)/(x4+ux2+v) has reducibility type (3, 3)
infinitely often, parameterized by the elliptic curve Y 2 = X(X2 + 12X − 4)
of rank 1.

Proof. The divisibility condition of the theorem is that

(A,B) = (−u4 + 3u2v − v2,−uv(u2 − 2v)),

and then

(x10 +Ax2 +B)/(x4 + ux2 + v) = x6 − ux4 + (u2 − v)x2 + u(2v − u2).
The sextic can only split in the form

x6−ux4+(u2− v)x2+u(2v−u2) = (x3+ px2+ qx+ r)(x3− px2+ qx− r),
and comparing coefficients yields u = p2−2q, v = p4−4p2q+3q2+2pr, and

(2q − p2)(2q2 + 4p2q − 3p4) = (r + 2p(p2 − 2q))2,

the equation of an elliptic curve with model Y 2 = X(X2+12X − 4), having
rank 1 and generator P (X,Y ) = (5, 3). Each multiple of P pulls back to a
factorization of the sextic into two cubics. For the cubics to be reducible,
x3 + px2 + qx+ r will have rational root w say, and necessarily

(2q − p2)(2q2 + 4p2q − 3p4) = (−w3 − pw2 − qw + 2p(p2 − 2q))2,

the equation of a curve of genus 4, with only finitely many points (likely just
(p, q, w) = (±2, 2, 0), (2, 3,−1), (−2, 3, 1)).

Examples: (p, q, r) = (2, 3, 2) gives (u, v) = (−2, 3), (A,B) = (11,−12)
and

x10 + 11x2 − 12 = (x+ 1)(x− 1)(x2 + x+ 2)(x2 − x+ 2)(3− 2x2 + x4).

And (p, q, r) = (2, 3, 14) gives (u, v) = (−2, 51), (A,B) = (−2005,−9996)
with

x10−2005x2−9996 = (x3−2x2+3x−14)(x3+2x2+3x+14)(x4−2x2+51).

Theorem 6.3. Suppose x5+Ax2+B has the quadratic factor x2+ux+v.
Then the polynomial (x10 +Ax4 +B)/(x4 + ux2 + v) is reducible (with type
(3, 3)) in precisely the following four cases (up to scaling):
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x10 + 6875x4 − 312500 = (x3 − 5x2 + 50)(x3 + 5x2 − 50)(x4 + 25x2 + 125);

x10 + 891x4 − 34992 = (x3 − 3x2 + 9x− 18)(x3 + 3x2 + 9x+ 18)

× (x4 − 9x2 + 108);

x10 − 119527785x4 − 2195696106864

= (x3 + 39x2 + 507x+ 3042)(x3 − 39x2 + 507x− 3042)

× (x4 + 507x2 + 237276);

x10 + 37347689456x4 − 609669805268160000

= (x3 + 28x2 + 1960x+ 191100)(x3 − 28x2 + 1960x− 191100)

× (x4 − 3136x2 + 16694496).

Proof. By scaling, we may suppose that A,B, u, v are integers. Clearly
u 6= 0, and the divisibility condition is that

A =
u4 − 3u2v + v2

u
, B =

−v2(u2 − v)
u

,

in which case (x10 + Ax4 + B)/(x4 + ux2 + v) = x6 − ux4 + (u2 − v)x2 −
v(u2 − v)/u. The sextic is reducible precisely when

x6−ux4+(u2− v)x2− v(u2− v)/u = (x3+px2+ qx+ r)(x3−px2+ qx− r),
and comparing coefficients gives

p2 − 2q − u = 0, −q2 + 2pr + u2 − v = 0, r2 − uv + v2/u = 0.

Eliminating q, r yields

(10) 4p2u(−p4+4p2u+u2)(p4+3u2) = (4(4p2+u)v+u(p4−10p2u−3u2))2,
equivalently,

(11) U(U2 + 3p4)(U2 + 12Up2 − 9p4) = V 2, U = 3u,

where, without loss of generality, (U, p) = 1. This latter equation defines a
curve of genus 2, and we will show that its finite rational points are precisely

(12) (U/p2,±V ) = (0, 0), (1, 4), (−3, 36), (3, 36), (−12, 126).
The first point corresponds to B = 0, and the remaining points return (up
to scaling) the trinomials given in the theorem.

We work in Q(
√
5), with fundamental unit ε = (1 +

√
5)/2. Then

U(U2 + 3p4)(U + 3(2 +
√
5)p2)(U + 3(2−

√
5)p2) = �.

Now gcd(U + 3(2 +
√
5)p2, U(U2 + 3p4)(U + 3(2−

√
5)p2)) divides 2433

√
5.

Thus we have

U + 3(2 +
√
5)p2 = γu−1�, U(U2 + 3p4)(U + 3(2−

√
5)p2)) = γu�,

where the gcd γ is a divisor of 2433
√
5 and u is a unit.
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If
√
5 | γ, then U ≡ −6p2 mod

√
5, so U ≡ −p2 mod 5. It is not possible

for both p, U to be divisible by 5; and thus 5 - U . However, U2 + 12Up2 −
9p4 ≡ 0 mod 5, so from (11), necessarily U2 +12Up2− 9p4 ≡ 0 mod 25. But
(U + 6p2)2 − 45p2 ≡ 0 mod 25 implies p ≡ 0 ≡ U mod 5, contradiction.

Fix the square root of 5 to be positive. If γu < 0, then U+3(2+
√
5)p2 =

γu−1� implies U < −3(2 +
√
5)p2 < 0; but then

U < 0, U2 + 3p4 > 0,

U + 3(2−
√
5)p2 < −3(2 +

√
5p2 + 3(2−

√
5)p2 = −6

√
5p2 < 0;

so the product of these three terms cannot be negative.
Accordingly, γu takes one of the values 2i3jεk, where, without loss of

generality, i, j, k ∈ {0, 1}. Of the eight elliptic curves

U(U2 + 3p4)(U + 3(2−
√
5)p2)) = 2i3jεk�

one has rank 0 (when (i, j, k) = (0, 0, 1)), and the other seven have rank 1.
The Magma routines run satisfactorily to show that the only solutions under
the rationality constraint U/p2 ∈ Q are indeed those corresponding to the
points at (12), together with the point at infinity.

Theorem 6.4. If x4 + Ax+ B has a rational root, say r, and the poly-
nomial (x12 +Ax3 +B)/(x3 − r) has a cubic factor, then either

(A,B) = (−(r−w)(r2+w2),−rw(r2−rw+w2)), r, w ∈ Q, rw(r−w) 6= 0,

with factorization

x12 +Ax3 +B = (x3 − r)(x3 + w)(x6 + (r − w)x3 + r2 − rw + w2);

or, up to scaling, (A,B) = (128, 256), (−5616,−3888), with

x12 + 128x3 + 256
= (x3 + 4)(x3 + 2x2 + 4x+ 4)(x6 − 2x5 + 8x2 − 16x+ 16),

x12 − 5616x3 − 3888

= (x3 − 18)(x3 + 6x+ 6)(x6 − 6x4 + 12x3 + 36x2 − 36x+ 36).

Proof. If x4 +Ax+B has rational root r, then B = −Ar − r4. Suppose
that the polynomial (x12+Ax3−Ar−r4)/(x3−r) has a cubic factor. Then,
say,

x9+rx6+r2x3+r3+A = (x3+ux2+vx+w)(x6+ax5+bx4+cx3+dx2+ex+f).

Comparing coefficients and eliminating a, b, c, d, e, f, w yields

(13) (3v3 − 2r2 + 3vru− 2ru3 − 3vu4 + u6)(3v6 − 9v5u2 + 2v3ru3

+18v4u4−3v2ru5−21v3u6+r2u6+3vru7+15v2u8−ru9−6vu10+u12) = 0.

If the first factor at (13) is zero then

(4r − u(3v − 2u2))2 = 3(8v3 + 3v2u2 − 12vu4 + 4u6),
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the equation of an elliptic curve with minimal model y2 + xy + y = x3 −
x2 − 56x+ 163. This curve has rank 0 and and the torsion group is of order
three. The torsion points lead to (A,B) = (128, 256).

Suppose the second factor at (13) is zero. The discriminant in r is

−u6(8v6 − 24v5u2 + 51v4u4 − 62v3u6 + 45v2u8 − 18vu10 + 3u12)

= −u6(8X6 + 21u4X4 + 6u8X2 + u12/16), X = v − u2/2,
which is negative except when u = 0, in which case either v = 0 or 3v3 = 2r2.
The former leads to the parametrization as stated in the theorem, the latter
to (A,B) = (−5616,−3888).

Theorem 6.5. Suppose x4 + Ax + B has a rational root, say v. If the
polynomial (x16+Ax4+B)/(x4−v) is reducible, then it has reducibility type
(6, 6), which occurs when, up to scaling, either (1) (A,B) are given by (9)
in Theorem 6.1, when the sextic factors are cubics in x2; or (2) (v,A,B) is
one of the following eight cases:

(72,−347004,−1889568), (−4, 1088, 4096),

(540,−49968576,−58047528960), (1500,−2975000000,−600000000000),

(1234620,−1767811196564438976,−140874409936505522810880),

(−333000, 49083580251562500, 4048461902770312500000),

(1506456,−718119113273864316,−4068405448481125418940000),

(3749256176,−52702993391145847275486817276,−29085892289306030859388663640000).

Proof. If the polynomial x16 +Ax4 +B is divisible by x4 − v, then B =
−Av − v4 and

(x16 +Ax4 +B)/(x4 − v) = x12 + vx8 + v2x4 + v3 +A = f(x4), say.

Lemma 29 from [3] tells us that either (1) f(x4) = −g(x2)g(−x2) for a cubic
polynomial g, which leads to the values of (A,B) as in Theorem 6.1 (and the
sextic g(x2) is irreducible, as before); or (2) f(−4x4)=cg(x)g(−x)g(ix)g(−ix),
with c constant and g(x) ∈ Z[x] of degree 3. Thus we obtain

−64x12 + 16vx8 − 4v2x4 + v3 +A = 64g(x)g(−x)g(ix)g(−ix),
where g(x) = x3 + px2 + qx+ r, say. This gives

−64x12 + 16vx8 − 4v2x4 + v3 +A = 64G(x2)G(−x2),
where G(X) = X3+(p2−2q)X2+(2pr−q2)X+r2. Equating the coefficients
of powers of X and eliminating v gives

2(p2− 2q)(p8− 4p6q+4p4q2− 3q4) = (2(7p2− 2q)r+4p5− 16p3q+10pq2)2.

and on setting X/Z2 = 6(2q/p2 − 1), where X,Z ∈ Z and (X,Z2) = 1, we
obtain

C : X(X4 + 24X3Z2 + 24X2Z4 + 864XZ6 + 1296Z8) = Y 2.
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We shall show that the set of rational points on C comprises precisely the
point at infinity, with Z = 0, and the set

(X/Z2,±Y ) = (−18, 864), (6, 288), (0, 0), (−2, 32), (1, 47), (36, 10152).
These points return the trinomials listed in the second statement of the
theorem. Certainly X = du2 with d | 6, so d = ±1,±2,±3,±6. Then

X = du2, X4 + 24X3Z2 + 24X2Z4 + 864XZ6 + 1296Z8 = dv2,

and the quartic is locally unsolvable for d = −1, 2, 3,−6. When d = −3, 6,
the quartic is an elliptic curve of rank 0, and the only solutions are given by
(X,Z2) = (6, 1), (u, v) = (1, 48). It remains to deal with d = 1,−2.

Case I: d = 1. Then

X = u2, X4 + 24X3Z2 + 24X2Z4 + 864XZ6 + 1296Z8 = v2,

so that
u8 + 24u6Z2 + 24u4Z4 + 864u2Z6 + 1296Z8 = v2.

Over Q(
√
3),

(u4 + (12 + 8
√
3)u2Z2 + 36Z4)(u4 + (12− 8

√
3)u2Z2 + 36Z4) = v2;

and the gcd of the two factors on the left can be divisible only by (1 +
√
3),

(
√
3). Thus

u4 + (12 + 8
√
3)u2Z2 + 36Z4 = ±(2 +

√
3)i(1 +

√
3)j(
√
3)k�.

Taking norms gives v2 = (−2)j(−3)k�, so that j = k = 0, and

u4 + (12 + 8
√
3)u2Z2 + 36Z4 = δ�, δ = ±(2 +

√
3)i.

Of the four possibilities for δ, only δ = 1 gives a curve locally solvable above
2; and in fact the curve is elliptic with rank 1. The Magma routines work
successfully, delivering the points (u, Z) = (1, 0), (0, 1), (1, 1), (6, 1).

Case II: d = −2. Then

X = −2u2, X4 + 24X3Z2 + 24X2Z4 + 864XZ6 + 1296Z8 = −2v2,
so that

u8 − 12u6Z2 + 6u4Z4 − 108u2Z6 + 81Z8 = −2V 2.

Over Q(
√
3),

(u4 + (−6− 4
√
3)u2Z2 + 9Z4)(u4 + (−6 + 4

√
3)u2Z2 + 9Z4) = −2V 2,

and the gcd of the two factors on the left can be divisible only by (1 +
√
3),

(
√
3). Thus

u4 + (−6− 4
√
3)u2Z2 + 9Z4 = ±(2 +

√
3)i(1 +

√
3)j(
√
3)k�.

Taking norms gives −2V 2 = (−2)j(−3)k�, so that (j, k) = (1, 0), with

u4 + (−6− 4
√
3)u2Z2 + 9Z4 = δ�, δ = ±(2 +

√
3)i(1 +

√
3).
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Of the four possibilities for δ, only δ = −(2 +
√
3)(1 +

√
3) gives a curve

locally solvable above 2, and in fact an elliptic curve of rank 1. The Magma
routines work successfully, delivering the points (u, Z) = (1, 1), (3, 1).

Theorem 6.6. The trinomial x15 + Ax3 + B is reducible if and only
if either x5 + Ax + B is reducible, or up to scaling (A,B) = (−81, 216),
(270, 729) with

x15 − 81x3 + 216 = (x5 + 3x4 + 6x3 + 9x2 + 9x+ 6)

× (x10 − 3x9 + 3x8 − 6x5 + 9x4 − 9x3 + 27x2 − 54x+ 36),

x15 + 270x3 + 729 = (x5 + 3x4 + 6x3 + 9x2 + 12x+ 9)

× (x10 − 3x9 + 3x8 − 3x6 + 9x5 − 18x4 + 63x2 − 108x+ 81).

Proof. If x15+Ax3+B is reducible and x5+Ax+B is irreducible, then
by Lemma 29 in [3] we know that

x15 +Ax3 +B = f(x)f(ζ3x)f(ζ
2
3x),

where f(x) = x5 + px4 + qx3 + rx2 + sx+ t. Expanding the right hand side
and equating coefficients yields

A = s3 − 3rst+ 3qt2, B = t3, p3 − 3pq + 3r = 0,

r3 − 3qrs+ 3ps2 + 3q2t− 3prt− 3st = 0,

q3 − 3pqr + 3r2 + 3p2s− 3qs− 3pt = 0.

Eliminating r, s, noting that q = p2 leads to B = 0, we get(
(2q − p2)(2p6 − 6p4q + 9p2q2 − 3q3)− 18pqt

(p2 − q)

)2

= (p2 − 2q)(4p10 − 24p8q + 60p6q2 − 72p4q3 + 45p2q4 − 18q5).

The restriction p2 = 2q leads to trivial solutions; and thus the problem of
reducibility of x15 + Ax3 + B reduces to finding all rational points on the
genus two curve

C : (p2 − 2q)(4p10 − 24p8q + 60p6q2 − 72p4q3 + 45p2q4 − 18q5) = �,

where we can assume without loss of generality that (p2, q) = 1. We will
show that the finite points are precisely (p2, q) = (1, 0), (1, 2), (1, 2/3), which
leads to the factorizations in the statement. Set q/p2 = (X − 4Z2)/(2X),
X/Z2 = 4p2/(p2 − 2q), so that the equation of the curve takes the form

X5 + 9X4Z2 − 48X3Z4 + 864X2Z6 + 2304Z10 = Y 2.

The quintic has precisely one real root θ0 for X/Z2, θ0 ∼ −15.63983, and
thus Y 2 ≥ 0 implies X/Z2 ≥ θ0. Set K = Q(θ) where θ5+2θ4+4θ3+4θ2+
2θ + 4 = 0. The ring of integers is Z[1, θ, θ2, θ3, θ4/2], and the class number
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is 1. Fundamental units are given by

ε1 = 1 + 3θ2 + θ3 + θ4, ε2 = 5− 3θ − 6θ2 − 4θ3 − 2θ4,

of norm +1. We have the ideal factorizations

(2) = p2p
′4
2 , (3) = p53, (5) = p25p

′
5, Norm(p5) = 5, Norm(p′5) = 53.

Now
NormK/Q

(
X + 1

2(5θ
4 + 8θ3 + 20θ2 + 12θ + 10)Z2

)
= Y 2,

and it may be checked that a prime ideal dividing X + 1
2(5θ

4+8θ3+20θ2+
12θ+10)Z2 to an odd power must be one of p′2 = (q′2) = (1− θ+ θ2+ θ4/2),
p3 = (q3) = (−1 − θ), p5 = (q5) = (1 + θ2). Thus with δ = ±εi1ε

j
2q
′k
2 q

m
3 q

n
5 ,

i, j, k,m, n ∈ {0, 1}, it follows that

X + 1
2(5θ

4 + 8θ3 + 20θ2 + 12θ + 10)Z2 = δ−1a2,

X4 + 1
2(−5θ

4 − 8θ3 − 20θ2 − 12θ + 8)X3Z2

+ (−2θ4 − 32θ3 − 48θ2 − 104θ − 80)X2Z4

+ (72θ4 + 192θ3 + 96θ2 + 96θ + 192)XZ6 + (−96θ4 − 384θ)Z8 = δb2,

with some integers a, b of K satisfying q′k2 qm3 qn5 ab = Y . Taking norms, we
find Y 2 = 2k3m5n�, so that k = m = n = 0. Further, ε1, ε2 evaluated
at θ0 are approx. 8.399 and 0.3477, so are positive. Thus X/Z2 ≥ θ0 =
−1

2(5θ
4+8θ3+20θ2+12θ+10) implies the negative sign cannot hold. Hence

in particular

X4 + 1
2(−5θ

4 − 8θ3 − 20θ2 − 12θ + 8)X3Z2

+ (−2θ4 − 32θ3 − 48θ2 − 104θ − 80)X2Z4

+ (72θ4 + 192θ3 + 96θ2 + 96θ + 192)XZ6 + (−96θ4 − 384θ)Z8 = εi1ε
j
2b

2,

with ab = Y . The quartic curve is everywhere locally solvable if and only if
δ ∈ {1, ε1}.

Case I: δ = 1. Then

C1 : X
4 − 1

2(5θ
4 + 8θ3 + 20θ2 + 12θ − 8)X3Z2

− (2θ4 + 32θ3 + 48θ2 + 104θ + 80)X2Z4

+ (72θ4 + 192θ3 + 96θ2 + 96θ + 192)XZ6 + (−96θ4 − 384θ)Z8 = b2.

The equation is that of an elliptic curve of rank 3, and the Magma routines
show that the only points on C1 with X/Z2 ∈ Q are given by (X,Z2) =
(1, 0), (0, 1).
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Case II: δ = ε1. Then

C2 : X
4 + 1

2(−5θ
4 − 8θ3 − 20θ2 − 12θ + 8)X3Z2

+ (−2θ4 − 32θ3 − 48θ2 − 104θ − 80)X2Z4

+ (72θ4 + 192θ3 + 96θ2 + 96θ + 192)XZ6 + (−96θ4 − 384θ)Z8 = ε1b
2,

with a point at (X, b, Z2) = (4,−32θ3 − 32θ2 − 32θ − 64, 1). The curve is
elliptic with K-rank 3; and the Magma routines work satisfactorily to show
that the only points on C2 with X/Z2 ∈ Q are (X,Z2) = (4, 1), (−12, 1).

7. Concluding remarks and some new sporadic trinomials. Gen-
eralizing a statement in Theorem 2.1, we have the following result.

Theorem 7.1. There are no trinomials xn+Ax+B, n even, with three
linear factors.

Proof. By considering the four possibilities for the signs of A,B, it follows
immediately from Descartes’ Rule of Signs that the polynomial xn+Ax+B,
n even, can have at most two real roots, and the assertion follows.

Remark 7.2. This argument applies over any real field, so that reducibil-
ity type (1, 1, 1, n−3) is impossible for trinomials xn+Ax+B, n even, defined
over any real field.

When n is odd, let p, q, r be distinct rational roots of xn+Ax+B (where
now Descartes’ Rule of Sign implies A < 0). Then

pn +Ap+B = 0, qn +Aq +B = 0, rn +Ar +B = 0,

and eliminating A,B, we get

(q − r)pn + (r − p)qn + (p− q)rn = (p− q)(q − r)(r − p)Gn(p, q, r) = 0.

The equation Gn(p, q, r) (which represents a curve of genus (n−4)(n−3)/2)
has indeed (trivial) points, but we do not know how to show that these trivial
points form the complete set of solutions, which we believe to be the case.
Indeed, we firmly believe that the following conjecture is true.

Conjecture 7.3. Let n ≥ 4. There are no trinomials xn + Ax + B
defined over Q with reducibility type (1, 1, 1, n− 3).

Finally, while studying the trinomials of this paper, the following spo-
radic trinomial factorizations came to light, and do not appear to have been
previously recorded:
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Trinomial Factor
x9 + 27x4 − 108 x3 + 3x2 + 6x+ 6

x10 + 297x3 + 648 x5 + 3x3 + 9x2 − 9x+ 18

x11 + 12x+ 8 x5 − 2x4 + 2x3 − 2x2 + 2

x11 − 6184976x3 + 4216540160 x3 + 14x2 + 98x+ 392

x13 − 340224x+ 732160 x3 − 2x2 + 8x− 20

x16 + 3486328125x+ 9277343750 x3 + 5x2 + 25x+ 50

x16 + 34816x3 − 552960 x4 + 2x3 − 8x− 24.
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