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On the system of Diophantine equations a2 + b2 = (m2 + 1)r

and ax + by = (m2 + 1)z

by

Florian Luca (Morelia and Johannesburg)

1. Introduction. Given a triple (a, b, c) of positive integers, several
authors have looked for positive integers (x, y, z) such that

(1) ax + by = cz.

Mahler [11] proved that there are only finitely such triples (x, y, z). His
method was ineffective. Gel’fond [6] used Baker’s method to give an effective
version of Mahler’s result. Terai [15] (see also [4], [5], [8]) conjectured that
with a few exceptions such as

1 + 23 = 32, 25 + 72 = 34, and 2p + (2p−2 − 1)2 = (2p−2 + 1)2

for which also

1 + 2 = 3, 2 + 7 = 32, and 2 + (2p−2 − 1) = 2p−2 + 1,

equation (1) has at most one positive integer solution (x, y, z) whenever
(a, b, c) are relatively prime, a condition which we will assume throughout
the paper. Many papers treated various particular cases, but the general
conjecture remains open. The particular case in which there exists a solution
with (x, y) = (2, 2) has received a lot of attention. In this case, Terai’s
conjecture amounts to the statement that if r ≥ 2 is some integer and m
and n are coprime positive integers of different parities, then writing

(2) A+Bi = (m+ in)r (i =
√
−1),

the equation

ax + by = (m2 + n2)z

with (a, b) = (|A|, |B|) has only the solution (x, y, z) = (2, 2, r). The case
when r = 2 was conjectured by Jeśmanowicz [7].
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Many authors have proved the above conjecture in the special case when
n = 1 and some additional conditions hold. For example, when n = 1, then
the above conjecture has been verified for r = 2 in [10] and for r ∈ {3, 5}
in [5]. It has also been verified recently when r is congruent to one of 4, 5
or 6 modulo 8, except for a finite number of pairs (m, r) (see [9] and [13]),
and when m and r satisfy certain inequalities.

Here, we show that for n = 1, there can only be finitely many pairs
(m, r) which fail the above conjecture. Furthermore, they are all effectively
computable. We recall that in this case

(3) A+Bi := (m+ i)r.

Also, since n and m should be of different parities in (2) and n = 1, the
number m is even. Our result is the following.

Theorem 1. Let m ≥ 2 be an even integer and r ≥ 1 be an integer.
Let A and B be as in (3) and set a := |A| and b := |B|. Then equation (1)
with c := m2 + 1 admits a solution (x, y, z) 6= (2, 2, r) only in finitely many
instances (m, r). Moreover, there exists a computable constant c0 such that
all such solutions satisfy max{m, r, x, y, z} ≤ c0.

Throughout the paper, we write c0, c1, . . . for computable constants
which are absolute. We also use the Landau symbols O and o as well as
the Vinogradov symbols �, �, � and ∼ with their regular meaning. Re-
call that F = O(G), F � G and G � F are all equivalent and mean
that the inequality |F | < cG holds with some constant c. Moreover, F � G
means that both F � G and G � F hold, whereas F ∼ G and F = o(G)
mean that F/G tends to 1 and 0, respectively. The constants implied by
the above Landau and Vinogradov symbols in our arguments are effec-
tive.

2. Tools. Our main tools are linear forms in complex and p-adic loga-
rithms. Recall that for a nonzero algebraic number η whose minimal poly-
nomial over the integers is

F (X) := a0

d∏
i=1

(X − η(i)) ∈ Z[X],

its logarithmic height is defined as

h(η) :=
1

d

(
log a0 +

d∑
i=1

log max{1, |η(i)|}
)
.

For us, η will be either in Q or in Q(i). If η := u/v with coprime integers u
and v, then

h(η) = log(max{|u|, |v|}),



Diophantine equations 375

whereas if η := (u + iv)/w ∈ Q(i), where u, v, w are integers satisfying
gcd(u, v, w) = 1, then

h(η) ≤ log(max{w,
√
u2 + v2}).

Let η1 and η2 be nonzero elements of Q(i), and b1 and b2 be integers. Put
B := max{3, |b1|, |b2|} and Ai := max{1, h(ηi)} for i = 1, 2. Put also

(4) Λ := ηb11 η
b2
2 − 1.

The following result is a simplified version of a lower bound for a linear form
in logarithms of algebraic numbers (see [12], for example).

Lemma 2. With the above notation, there exists a constant c1 such that
if Λ 6= 0, then

(5) log |Λ| > −c1A1A2 logB.

The above statement is interesting only when |Λ| is small. Putting

Γ := b1 log η1 + b2 log η2,

where log stands for any determination of the logarithm, and using the fact
that |Λ| = |eΓ − 1| � |Γ | for |Γ | small (say |Γ | < 1/2), it follows that
estimate (5) holds with Λ replaced by Γ assuming that Γ 6= 0 (and with
some appropriate constant c1). In what follows, we shall use inequality (5)
with either Γ or Λ.

We now move on to linear forms in p-adic logarithms. Let q be a prime
either in Z or in Z[i]. As a matter of convention, we write q = p when we
mean that p ∈ Z, and q = π to mean that q is a prime in Z[i] which is
not associated to a prime in Z. In this last case, |π|2 = p is a prime in Z
which is a multiple of π as an element of Z[i]. For a nonzero r in Q(i) we
write vq(r) for the exponent of q in the factorization of r. The following is
a simplified version of the classical lower bound for linear forms in p-adic
logarithms (see [16], for example).

Lemma 3. Assume that η1 and η2 are in Q and q = p ∈ Z. There exists
a constant c2 such that if Λ 6= 0, then

vq(Λ) < c2pA1A2 logB.

Somewhat better inequalities are due to Bugeaud [2] and Bugeaud and
Laurent [3]. To formulate these bounds, let again η1 and η2 be rational or
in Q(i). Let q be a prime in Z or in Z[i]. Assume that g and E are positive
integers such that

(6) vq(η
g
1 − 1) ≥ E and vq(η

g
2 − 1) > 0.
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Under condition (6), Bugeaud and Bugeaud and Laurent proved:

Lemma 4.

(i) Assume that η1 and η2 are multiplicatively independent rational num-
bers and q = p ∈ Z. Assume further that Hi ≥ max{h(ηi), E log p}
for i = 1, 2. Then there exists a constant c3 such that if Λ 6= 0, then

(7) vq(Λ) < c3
g

E3(log p)4
(max{logB,E log p})2H1H2.

(ii) Assume that η1 and η2 are multiplicatively independent in Q(i) and
q = π ∈ Z[i] is a prime of norm p = |π|2. Then (7) holds with E = 1,
the corresponding value of g, and an appropriate constant c3.

3. The proof. We proceed in several stages.

3.1. Eliminating degenerate cases

Lemma 5. Every positive integer solution (m, r, x, y, z) satisfies the fol-
lowing conditions:

(i) a and b are coprime;
(ii) r ≥ 2;

(iii) z > r/2, in particular, z ≥ 2;
(iv) a ≥ 2 and b ≥ 2;
(v) x 6= y.

Proof. (i) If a and b are not coprime, let p be any of their common prime
factors. By (3), we get p | (m+ i)r. If p > 2, then p is squarefree in Z[i], so
p |m + i. This is impossible because p - 1. If p = 2, then 2 | (m + i)r, and
taking norms in Z[i] we see that 4 | (m2 + 1)r, which is false because m is
even. Hence, a and b are coprime.

(ii) Assume that r = 1. Then (a, b) = (m, 1). In this case, equation (1)
becomes

(8) mx + 1 = (m2 + 1)z.

Since (x, y, z) 6= (2, 2, 1), we must have z > 1, and clearly x > 1. However,
(8) has no positive integer solutions m ≥ 2, x ≥ 2, z ≥ 2 by known results
on the Catalan equation.

(iii) Observe that

cz = ax + by ≥ a+ b >
√
a2 + b2 = cr/2,

so that z > r/2. In particular, z > 1 by (ii) above.

(iv) Observe first that if we put α := m+ i and β := m− i, then

A =
αr + βr

2
and B =

αr − βr

α− β
.
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Furthermore, α+ β = 2m and αβ = m2 + 1 are coprime. Moreover,

α

β
=
m+ i

m− i
=
m2 − 1

m2 + 1
+ i

2m

m2 + 1

is not a root of unity because the only roots of unity in Z[i] are ±1 and ±i,
and neither (m2 − 1)/(m2 + 1) nor 2m/(m2 + 1) is zero.

Hence, B = ur is the rth member of the Lucas sequence with roots
(α, β). This Lucas sequence is nondegenerate. Furthermore, A = u2r/(2ur).
Assume now that either a = 1 or b = 1. Then either ur = ±1, or u2r = ±2ur.
In particular, either ur has no prime factors, or every prime factor of u2r
divides ur, or 2 divides the discriminant ∆ := (α−β)2 = −4 of our sequence.
By the Primitive Divisor Theorem of Bilu, Hanrot and Voutier [1], this is
possible only if r ∈ {2, 3, 4, 6}, or if the triple (r,m+ i,m− i) belongs to a
finite list of triples all of which can be found in Table 1 of [1]. A quick look
at that table convinces one that no pair (α, β) of roots in that table belongs
to Q(i). Thus, r ∈ {2, 3, 4, 6}. For these r, we compute a and b to get

(a, b) = (m2 − 1, 2m), (m3 − 3m, 3m2 − 1), (m4 − 6m2 + 1, 4m3 − 4m),

(m6 − 15m4 + 15m2 − 1, 6m5 − 20m3 + 6m),

respectively, so min{a, b} is never 1, contrary to assumption.
(v) Assume that x = y. Let vn be the nth term of the Lucas sequence

of roots a and b. That is, vn := (an − bn)/(a − b) for all n ≥ 0. This is
nondegenerate since a and b are coprime and their ratio is not a root of
unity. Then cr = a2 + b2 = v4/v2 and cz = ax + bx = v2x/vx. It is clear
that x 6= 1, because a + b is coprime to a2 + b2. It is also clear that x 6= 2,
for if x = 2, then (x, y, z) = (2, 2, r). Hence, x ≥ 3. All prime factors of v2x
are either prime factors of vx, or of c, so in particular of v4. Thus, v2x has
no primitive prime factors. This is impossible for x ≥ 4 by Table 1 in [1].
Thus, x = 3, but then a3 + b3 = (a+ b)(a2 + b2 − ab) is coprime to a2 + b2,
a contradiction.

As a byproduct of Lemma 5(iii), we see that if r1 := dr/2e, then

(9) a2 + b2 ≡ ax + by ≡ 0 (mod cr1),

a congruence which we shall exploit later.
Note also that a is a multiple of m when r is odd, and b is a multiple of

m when r is even. In particular, since m is even, a or b is even according to
whether r is odd or even.

3.2. Upper bounds for x and y in terms of r and m. Here, we
prove the following lemma.

Lemma 6. We have

(10) max{x, y} = O(r3(logm)4) and z = O(r4(logm)4).
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Proof. Assume that r is odd. Then a is even. Suppose first that ax < by/2.
Then

Λ := czb−y − 1 = axb−y <
1

by/2
.

Observe that Λ > 0. Taking logarithms, we get

y log b < −2 logΛ = O(log c log b log(max{y, z}))

by Lemma 2 with η1 := c, η2 := b, b1 := x, and b2 := −y. In our case,
B = max{|b1|, |b2|} = max{x, y}. Thus,

(11) y = O(log c log(max{y, z})).

Observe that

(m2 + 1)z = ax + by < 2by ≤ by+1.

Since

b =

∣∣∣∣αr − βr2i

∣∣∣∣ ≤ |α|r + |β|r

2
= |α|r = (m2 + 1)r/2,

we have

(12) z ≤ (y + 1)
log b

log(m2 + 1)
≤ r(y + 1)

2
≤ ry.

We thus get, by (11) and (12),

(13) y = O(log(m2 + 1) log(ry)) = O(logm log(ry)).

We now distinguish the cases y ≤ r and r ≤ y. In case r ≤ y, (13) yields

(14) y < c4 logm log y

for some constant c4 which we can assume to be larger than 10. It is well
known that for A > 3,

(15)
y

log y
< A implies y < 2A logA.

Hence taking A := c4 logm > 3 and using (14) gives

y < 2c4 logm log(c4 logm) = O((logm)2).

Since r ≥ 1, we also have

(16) y = O(r(logm)2).

All this was in case r ≤ y. However, (16) also holds trivially when y ≤ r.
Since ax < by/2, (16) yields

(17) x <
y log b

2 log a
≤ y log b

2 log 2
≤ yr log(m2 + 1)

4 log 2
= O(r2(logm)3),

where we also used estimate (3.2) and Lemma 5(iv).
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All this was under the assumption that ax < by/2. Suppose now that
ax > by/2. Then

(18) y <
2 log a

log b
x ≤

(
2 log(m2 + 1)r/2

log 2

)
x = O(rx logm).

Since

ax = cz − by = by(czb−y − 1),

and b and c are odd, we get

x ≤ v2(ax) = v2(c
zb−y − 1) = O(log b log c log(max{y, z}))(19)

= O(r(logm)2 log(ry)).

The middle estimate above follows from Lemma 3 with respect to the prime
p = 2, where Λ is given by (3.2); we have also used (12). Comparing (19)
and (18), we get

y = O(rx logm) = O(r2(logm)3 log(ry)).

We now distinguish again the cases y ≤ r and r ≤ y. In case r ≤ y, we have

y = O(r2(logm)3 log y),

and applying the argument from implication (15) we arrive at

(20) y = O(r2(logm)3(log r + log logm)) = O(r3(logm)4).

This obviously holds in the case y ≤ r as well. Going back to (19), we get

(21) x = O(r(logm)2(log r + log logm)) = O(r2(logm)3).

Comparing (16), (17), (20) and (21), we reach the first inequality of (10).
The second follows from the first and (12).

The case of r even can be treated similarly. Namely, b is then even and
we repeat the above argument with (a, x) and (b, y) interchanged. That is,
we distinguish between the cases by < ax/2 and by > ax/2. We give no further
details.

3.3. A useful divisibility relation. Let p be any prime factor of
m2 + 1. Note that p ≥ 5. Let ep := ordp(2) be the multiplicative order
of 2 modulo p; that is, ep is the minimal positive integer k such that 2k ≡ 1
(mod p). Recall that r1 = dr/2e. With this notation, we have the following
result.

Lemma 7. The following divisibility relations and estimates hold:

(i) 24(r−1)(x−y) ≡ 1 (mod c);
(ii) ep | 4(r − 1)(x− y);

(iii) r = O(ep(logm)3/(log p)3);
(iv) r = O(m2).



380 F. Luca

Proof. (i) We start with (9),

a2 + b2 ≡ ax + by ≡ 0 (mod cr1).

The first congruence implies that a4 ≡ b4 (mod cr1), so a4x ≡ b4x (mod cr1);
the second yields a4x ≡ b4y (mod cr1). So, b4x ≡ b4y (mod cr1). Since a, b
and c are pairwise coprime, we conclude that

b4(x−y) ≡ 1 (mod cr1).

Observe that β divides c and r ≥ r1 (in fact, r > r1 because r ≥ 2 by
Lemma 5(ii)). Hence, in Z[i], we have

(22) ± b = B =
αr − βr

α− β
≡ (m− i+ (2i))r

2i
≡ (2i)r−1 (mod β).

Thus,

b4(x−y) ≡ 24(r−1)(x−y) ≡ 1 (mod β).

The same argument applies with β replaced by α. Since α and β are coprime
in Z[i] and their product is c, we get (i).

(ii) This is an immediate consequence of (i).
(iii) Observe that, as in (22), we have

±b = B =
αr − βr

α− β
≡ αr

2i
(mod βr).

Hence,

b4y ≡ α4ry

24y
(mod βr).

A similar argument shows that

a4x ≡ α4rx

24x
(mod βr).

Since cr1 | ax + by | a4x − b4y, we get

α4rx

24x
≡ α4ry

24y
(mod βr1),

so α4r(x−y) − 24(x−y) ≡ 0 (mod βr1). Now let π be any prime factor of β in
Z[i] and write p = |π|2 for the corresponding prime factor of c = m2 + 1 in
Z such that π | p. We apply Lemma 4(ii) with η1 := α, η2 := 2, E := 1. It is
clear that η1 and η2 are multiplicatively independent. Observe also that since
α = β + 2i ≡ 2i (mod β) ≡ 2i (mod π), we can take g = 4ep. Furthermore,
h(η1) = O(logm), h(η2) = O(1), and we can take B := 4r(x + y). We get,
by (7),

r/2 ≤ r1 ≤ Λπ(α4r(x−y) − 24(x−y))

= O

(
ep(max{log(r(x+ y)), log p})2 max{logm, log p}

(log p)3

)
.
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Since p ≤ m2 + 1, we have max{logm, log p} = O(logm). Furthermore, by
Lemma 6,

log(r(x+ y)) = O(log r + log log(m+ 2)) = O(log r + logm).

Thus

(23) r = O

(
ep(logm)(log r + logm)2

(log p)3

)
.

Since ep < p ≤ m2 + 1, we have ep/(log p)3 = O(m2/(logm)3). Hence,

(24) r = O

(
m2(log r + logm)2

(logm)2

)
,

which implies that r = O(m2), so log r = O(logm). Inserting this into (23),
we get the desired upper bound (iii).

(iv) Follows immediately from (24).

Lemma 7(iv) together with Lemma 6 shows that there are only finitely
many computable possibilities for r, x, y, z once m is fixed. Thus, from now
on, we assume that m is larger than any effectively computable number that
will show up along the way. The goal is to close the loop and show that m
must nevertheless be bounded by some computable number.

3.4. Some congruences modulo m. From now on, we assume that
m ≥ 3.

Lemma 8. Assume that r is odd. Then the following congruences hold:

(i) if x = 1, then

(25) r ≡ 0 (mod m);

(ii) if x = 2, then

(26) z + y

(
r

2

)
− r2 ≡ 0 (mod m2);

(iii) if x ≥ 3, then

(27) z + y

(
r

2

)
≡ 0 (mod m).

Moreover, none of the integers appearing in the left-hand sides of (25)–(27)
is zero. When r is even, then (i)–(iii) hold with x and y interchanged, and
with the same conclusion about nonzero left-hand sides.

Proof. Suppose that r is odd. Then

(28)

A =
1

2
((m+ i)r + (m− i)r) = (−1)(r−1)/2

(
rm−

(
r

3

)
m3 + · · ·

)
,

B =
1

2i
((m+ i)r − (m− i)r) = (−1)(r−1)/2

(
1−

(
r

2

)
m2 + · · ·

)
.
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Writing a = εA and b = ηB, where ε, η ∈ {±1}, we get, from (28),

(29)

ax = εx(−1)x(r−1)/2mx

(
r−
(
r

3

)
m2 + · · ·

)x
≡ ε1mxrx (mod mx+2),

by = ηy(−1)y(r−1)/2

(
1−

(
r

2

)
m2 + · · ·

)y
≡ η1

(
1− y

(
r

2

)
m2

)
(mod m4),

cz = (1 +m2)z ≡ 1 + zm2 (mod m4),

where ε1 := εx(−1)x(r−1)/2 and η1 := ηy(−1)y(r−1)/2 are both in {±1}.
Reducing equation (1) modulo m and using (29) together with the fact

that x ≥ 1, we get η1 ≡ 1 (mod m). Since m > 2, we conclude that η1 = 1.
(i) Assume that x = 1. Reducing (1) modulo m2 and using (29) and the

fact that η1 = 1, we get

ε1mr + 1 ≡ 1 (mod m2),

which leads to (25). It is also clear that r 6= 0.
(ii) Assume that x = 2. Reducing (1) modulo m2, using (29) and observ-

ing that ε1 = 1 and η1 = 1, we get

r2m2 + 1− y
(
r

2

)
m2 ≡ 1 + zm2 (mod m4),

or

(30) z + y

(
r

2

)
− r2 ≡ 0 (mod m2),

which is exactly (26). Let us show that the left-hand side of (30) is nonzero.
If y ≥ 3, then this number is at least

z + 3

(
r

2

)
− r2 = z +

r(r − 3)

2
≥ z > 0

(because r ≥ 3, as r > 1 is odd). The case y = 2 is not allowed since it leads
to (x, y, z) = (2, 2, r). Finally, if y = 1, then

cz = a2 + b < a2 + b2 = cr,

therefore z < r. Now the left-hand side of (30) is

z +

(
r

2

)
− r2 = z − r(r + 1)

2
< r − r(r + 1)

2
=
r(1− r)

2
< 0,

so it is not zero either.
(iii) Assume that x ≥ 3. Reducing (1) modulo m3, and using (29) as well

as the fact that η1 = 1, we get

1− y
(
r

2

)
m2 ≡ 1 + zm2 (mod m3),
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which leads to the congruence (27). The left-hand side of this congruence is
positive.

We shall just sketch the argument when r is even, since it is entirely
similar. In this case, formulas (28) become

A =
1

2
((m+ i)r + (m− i)r) = (−1)r/2

(
1−

(
r

2

)
m2 + · · ·

)
,

B =
1

2i
((m+ i)r − (m− i)r) = (−1)(r−2)/2m

(
r −

(
r

3

)
m2 + · · ·

)
,

so that the analogs of the first two congruences (29) are

ax = εx(−1)xr/2
(

1−
(
r

2

)
m2 + · · ·

)x
= ε1

(
1−x

(
r

2

)
m2

)
(mod m4),

by = ηy(−1)y(r−2)/2my

(
r −

(
r

3

)
m2 + · · ·

)y
= η1rm

y (mod m2+y),

where again ε1 and η1 are in {±1}. Reducing equation (1) modulo m, we
get ε1 = 1. Reducing (1) modulo m2 when y = 1 and modulo m3 for y ≥ 3
gives congruences (25) and (27) (with y replaced by x), respectively, and
the left-hand sides of these congruences are positive. Finally, for y = 2,
reducing (1) modulo m4 and using the fact that η1 = 1 and ε1 = 1, we get

1− x
(
r

2

)
m2 + r2m2 ≡ 1 + zm2 (mod m4),

leading to

(31) z + x

(
r

2

)
− r2 ≡ 0 (mod m2).

If x ≥ 3, then the left-hand side above is at least

z + 3

(
r

2

)
− r2 = z +

r(r − 3)

2
,

and this is again positive when r ≥ 3, as well as when r = 2, because it is
then z − 1 > 0 (by Lemma 5(iii)).

The case x = 2 leads to (x, y, z) = (2, 2, r). Finally, when x = 1, the
left-hand side of (31) is

(32) z +

(
r

2

)
− r2 = z − r(r + 1)

2
.

Similar to the case when r is odd, we have

cz = a+ b2 < a2 + b2 = cr,

so z < r, which implies that the right-hand side of (32) is negative.
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3.5. A lower bound for r

Lemma 9. We have

(33) r � m1/6.

Proof. If x = 1 or y = 1, then Lemma 8(i) shows that r ≥ m, which is
better than (33). When min{x, y} ≥ 2, (ii), (iii) and the remaining state-
ments of Lemma 8 show that m divides

z + x

(
r

2

)
+ δr2 or z + y

(
r

2

)
+ δr2 for some δ ∈ {0,−1},

and none of these is 0. Hence,

m ≤
∣∣∣∣z + (x+ y)

(
r

2

)
+ δr2

∣∣∣∣ ≤ z + (x+ y)

(
r

2

)
+ r2 = O(r5(logm)4),

by Lemma 6. This easily implies the desired estimate (33).

3.6. An upper bound for Ω(m2 + 1). We use the standard notation
Ω(n) for the number of prime factors of n including repetitions.

Lemma 10.

(i) Let p be any prime factor of m2 + 1. Then p� m1/6.
(ii) r = O(ep).

(iii) Ω(m2 + 1) ≤ 12 if m is sufficiently large.

Proof. (i) Lemma 9 together with Lemma 7(iii) and the fact that ep ≤
p− 1 leads to

m1/6 � r = O

(
ep(logm)3

(log p)3

)
= O

(
p(logm)3

(log p)3

)
,

which implies (i).

(ii) By (i), we have log p � logm, so by Lemma 7(iii),

r = O

(
ep(logm)3

(log p)3

)
= O(ep).

(iii) If Ω(m2 + 1) ≥ 13, then, by (i),

m2 + 1 ≥ (min{p |m})13 � m13/6,

which implies that m = O(1).

3.7. Accurate estimates for log a and log b

Lemma 11. We have

(34) log a =
r

2
log(m2 + 1) +O((logm)2),

and a similar estimate holds for log b.
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Proof. We write

log a = log |α|r − log 2 + log

∣∣∣∣1 +

(
β

α

)r∣∣∣∣(35)

=
r

2
log(m2 + 1)− log 2 + log

∣∣∣∣1 +

(
β

α

)r∣∣∣∣.
The number γ := β/α = (m2 − 1)/(m2 + 1)− i(2m)/(m2 + 1) is quadratic.
Since γ is not a root of unity, the expression inside the last logarithm is
nonzero. The minimal polynomial of γ over Z[X] is

f(X) := (m2 + 1)X2 − 2(m2 − 1)(m2 + 1)X + (m2 + 1),

so that the logarithmic height of γ is precisely h(γ) = (1/2) log(m2 + 1).
Now by Lemma 2 with η1 := β/α, η2 := −1, b1 := r, and b2 := 1, for which
B = max{|b1|, |b2|} = r, we have

(36)

∣∣∣∣log

∣∣∣∣1 +

(
β

α

)r∣∣∣∣∣∣∣∣ = O(h(γ) log r) = O((logm)2),

where for the last inequality we also used Lemma 7(iv). The desired esti-
mate (34) follows now from (35) and (36).

3.8. Bounding max{x, y}. We put X := max{x, y}.

Lemma 12. We have

(37) X = O((logm)2).

Proof. Suppose that by > ax since the remaining case can be dealt with
similarly. We start with (1) written in the form

exp(x log a− b log y) = axb−y = Λ := czb−y − 1.

Observe that Λ ∈ (0, 1). Taking logarithms, we get

(38) |x log a− y log b| = |logΛ| = O(log c log b(log max{y, z}))

by Lemma 2. Observe that

(39) log b < r log(m+ 1) and log c < 2 log(m+ 1)

(see (3.2) for the left inequality; the right one is obvious).

From Lemma 6, Lemma 10(ii), and the fact that ep < p ≤ m2 + 1 for all
primes p dividing m2 + 1, we get

max{y, z} = O(r4(logm)4) = O(m8(logm)4).
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Thus, from Lemma 11,

|logΛ| = |x log a− y log b|(40)

=

∣∣∣∣12(x− y)r log(m2 + 1) +O(X(logm)2)

∣∣∣∣
=

1

2
|x− y|r log(m2 + 1) +O(X(logm)2),

while by (38), (39) and (10),

(41) |logΛ| = O(r(logm)3).

Now comparing (40) and (41) gives

(42) |x− y| = O

(
X logm

r
+ (logm)2

)
.

We also note that

max{ax, by} < cz ≤ 2 max{ax, by},
and taking logarithms in the above inequality and using Lemma 11, we get

z log(m2 + 1) = z log c = max{x log a, y log b}+O(1)

=
Xr

2
log(m2 + 1) +O(X(logm)2).

This yields

(43) 2z −Xr = O(X logm).

Since r � m1/6 by Lemma 9, the term under the O-symbol in (43) is indeed
an error. In particular,

(44) c5Xr < z < c6Xr

for large m with c5 := 1/3 and c6 := 2/3.
Now we observe that letting p be any prime factor of c, the form

(45) Γ := a4x − b4y = b4y((a4/b4)xb4(x−y) − 1)

is divisible by pz. Put η1 := a4/b4, η2 := b4, b1 := x, and b2 := x − y. The
rational numbers η1 and η2 are multiplicatively independent because a ≥ 2
and b ≥ 2 are coprime. Furthermore, put E := r1 ≥ r/2 and note that

vp(η1 − 1) ≥ E and vp(η
x−y
2 − 1) ≥ E.

We set g := |x − y| and apply Lemma 4(i) to the form Γ given by (45),
getting

(46) z ≤ vp(Γ ) <
c7g

E3(log p)4
(max{log(4X), E log p})2H1H2,

where c7 is some absolute constant and where we must take

(47) Hi ≥ max{4 log a, 4 log b, E log p} for i = 1, 2.
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Since p � m1/6 for large m (see Lemma 9) and E = r1 ≥ r/2, it follows,
by Lemma 11, that all three terms log a, log b and E log p under the max
above are of the same order of magnitude, namely r log p. So, if we take
H1 = H2 := c8r log p for a suitable constant c8, then inequalities (47) hold.
Now (46) gives

z � g(E log p)4

E3(log p)4
= gE � |x− y|r.

Since z � Xr (see (44)), we get

X � |x− y|.
Combining this with (42), we get

X � X logm

r
+ (logm)2,

implying

r = O

(
logm+

r(logm)2

X

)
.

Since r � m1/6, we can omit the logm term above, getting

r � r(logm)2

X
,

which implies (37).

Lemma 13.

(i) z = O(r(logm)2).

(ii) r � m1/2/logm.
(iii) Ω(m2 + 1) ≤ 5 for all sufficiently large m.
(iv) |2z −Xr| = O((logm)3).

Proof. (i) This follows from (44) and Lemma 12.
(ii) The argument from the proof of Lemma 9, based on Lemma 8, shows

that either r ≥ m (that is, if min{x, y} = 1), or m divides one of the
expressions appearing in (3.5) which are nonzero (if min{x, y} ≥ 2). Hence,

(48) m = O(z +Xr2) = O(r2(logm)2).

This immediately implies (ii).
(iii) This follows by noting that if p is an arbitrary prime factor of m2+1,

then (48) together with Lemma 10(ii) gives

m� r2(logm)2 � e2p(logm)2 � p2(logm)2,

so p� m1/2/logm. Since p is an arbitrary prime factor of m2+1, (iii) follows
for all sufficiently large m by an argument similar to the one used in the
proof of Lemma 10(iii).

(iv) This follows from (43) and Lemma 12.
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3.9. The greatest common divisor of r − 1 and m2. Put D :=
gcd(r − 1,m2). Here, we show that D is large.

Lemma 14. We have

(49) D � r

(logm)10
� m1/2

(logm)11
.

Proof. Let p |m2 + 1. Then ep | 4|x− y|(r − 1) by Lemma 7(ii). Since

4|x− y| = O(X) = O((logm)2)

by Lemma 12, it follows that

(50) dp := gcd(r − 1, ep)�
ep

(logm)2
� r

(logm)2
,

where the last inequality follows from Lemma 10(ii). Now write m2 + 1 =
p1 · · · ps with primes p1 ≤ · · · ≤ ps, not necessarily distinct. For large m, we
have s ≤ 5 by Lemma 13(iii). Since (50) holds for p = pi and i = 1, . . . , s, it
follows that

(51) e := gcd(d1, . . . , ds)�
r

(logm)10
.

To maybe better see why this holds, observe that if we write r − 1 =: dpiai
for i = 1, . . . , s, then

ai = O((logm)2) for all i = 1, . . . , s

(by (50)), and

r − 1

e
≤ a1 · · · as = O((logm)2s) = O((logm)10).

However, p ≡ 1 (mod ep) for all primes p by Fermat’s Little Theorem. In
particular, pi ≡ 1 (mod e) for all i = 1, . . . , s. Thus, m2 + 1 ≡ 1 (mod e),
showing that m2 ≡ 0 (mod e). In particular, D ≥ e. The first inequality
of (49) now follows from (51), while the second follows from Lemma 13(ii).

3.10. Finding a linear relation among r, m and z. Assume that
m is large.

Lemma 15. If r is odd, then one of the following holds:

(i) x = 1, r = mλ and z = ±λ+mλy/2;
(ii) x = 2 and z = 1 + y(r − 1)/2;

(iii) x ≥ 3 and z = y(r − 1)/2.

If r is even, then one of the analogs of (i)–(iii) with x and y interchanged
must hold.

Proof. We revisit the arguments from the proof of Lemma 8. We keep
the notation from that lemma. Assume that r is odd. Then congruences (29)
hold.
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Assume first that x = 1. Then, by Lemma 8(i), we have r = mλ. Also,
η1 = 1. Reducing equation (1) modulo m4, we have

ε1

(
rm−

(
r

3

)
m3

)
+ 1− y

(
r

2

)
m2 = 1 + zm2 (mod m4)

(see (29)). Observe that 6
(
r
3

)
is a multiple of r, which in turn is a multiple

of m. Hence,

3(2z + yr(r − 1)− 2ε1λ) ≡ 0 (mod m2).

Since r2 is a multiple of m2, we get

6z − 6ε1λ− 3yr ≡ 0 (mod m2).

Since X = y, the left-hand side above is of size

O(|2z −Xr|+ λ) = O(r/m+ (logm)3) = O(m+ (logm)3) = O(m)

(see Lemma 13(iv)), so for large m it can be a multiple of m2 only if it is
zero. This leads to (i).

(ii) Assume that x = 2. By reducing (1) modulo m2, we get

z − y
(
r

2

)
− r2 ≡ 0 (mod m2).

Since D | r− 1, we see that D divides 2z− 2. Suppose first that y ≥ 3. Then
X = y and

(52)
|2z − 2− y(r − 1)|

D
≤ |2z − yr|+ (y − 2)

D
= O

(
(logm)3

D

)
by Lemmas 12 and 13(v). Since 2z − 2 − y(r − 1) is a multiple of D, the
left-hand side of (52) is an integer, while the right-hand side is, by (49), of
order O((logm)14/m1/2). Hence, for large m the left-hand side is zero, and
we get (ii).

If on the other hand y = 1, we get X = 2, so, again by Lemma 13(iv),
we have

2z − 2r = O((logm)3).

Thus,

(2z − 2)− (2r − 2) = O((logm)3).

The left-hand side above is a multiple of D � m1/2/(logm)11, so by a
previous argument, it must be 0. Hence, z = r, which is false since then
cr = a2 + b2 = a2 + b = cz, so b = b2, which is impossible because b > 1 by
Lemma 5(v).

(iii) Assume that x ≥ 3. Put d := gcd(m,D). Observe that d ≥ D1/2.
Then, by reducing (1) modulo m3, we get

m | 2z + 2y

(
r

2

)
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(see Lemma 8(iii)). Now both m and 2
(
r
2

)
= r(r − 1) are divisible by d, so

d also divides 2z. Thus,

(53)
|2z −X(r − 1)|

d
≤ |2z −Xr|+X

d
= O

(
(logm)3

d

)
,

by Lemmas 12 and 13(v). The left-hand side of (53) is an integer, and the
right-hand side is of order

(logm)3

d
≤ (logm)3

D1/2
� (logm)9

m1/4
= o(1)

as m becomes large. Thus, the left-hand side must be 0, proving (iii).
This completes the analysis when r is odd.
The case of r even is almost identical. We give no further details.

3.11. The end of the proof. We assume that r is odd, since the
case of r even is similar. Let us look at each of the situations described in
Lemma 15.

(i) Let x = 1 and r = mλ, z = ±λ+ yr/2. We write

a2 + b2 = cmλ and a+ by = c±λ+yr/2.

We reduce these equations modulo a to get b2y ≡ cmλy (mod a) and b2y ≡
c±2λ+mλy (mod a). Since a and c are coprime, we are led to c2λ ≡ 1 (mod a).
Observe that since r = mλ and r � m2 (by Lemma 7(iv)), we have λ� r1/2.
Now since a | c2λ − 1, and this last number is nonzero, we have

log a ≤ log c2λ = 2λ log c = O(r1/2 logm).

Comparing this with Lemma 11, we get
r

2
log(m2 + 1) +O((logm)2) = O(r1/2 logm),

which leads to
r = O(r1/2 logm).

This implies that r = O((logm)2), and since also r � m1/6 by Lemma 9,
we get only finitely many solutions.

(ii) Let x = 2 and z = 1 + y(r − 1)/2. Then

a2 + b2 = cr and a2 + by = c1+y(r−1)/2.

Reducing modulo a2 implies b2y ≡ cyr (mod a2) and b2y ≡ cyr+2−y (mod a2).
Hence, cy−2 ≡ 1 (mod a2). Clearly, y 6= 2, otherwise we would get cz =
a2 + b2 = cr, so r = z, which is not allowed. We thus get a2 | cy−2 − 1 and
this last integer is nonzero. So,

log a ≤ log cy = y log c = O(X logm) = O((logm)3).

Using again (34), we get r � (logm)2, which via Lemma 9 leads to m1/6 �
(logm)2, having only finitely many solutions.
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(iii) Let x ≥ 3 and z = y(r − 1). Then

ax + by = cy(r−1)/2 and a2 + b2 = cr.

Reducing modulo a2 gives by ≡ cy(r−1)/2 (mod a2), so b2y ≡ cyr−y (mod a2),
and b2 ≡ cr (mod a2), so b2y ≡ cyr (mod a2). From these two congruences,
we see that cy ≡ 1 (mod a2). Thus, a2 divides cy − 1, which is not zero.
Hence

2 log a = log(a2) ≤ log cy = y log c = O((logm)3),

and we conclude that m is bounded as in the previous case.

This finishes the proof.
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