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1. Introduction. Given ψ : N → [0,+∞), let A(ψ) denote the set of
x ∈ [0, 1] such that

(1) |qx+ p| < ψ(q)

holds for infinitely many (p, q) ∈ Z × Z \ {0}. In 1924, Khinchin [14] es-
tablished a beautiful and strikingly simple criterion for the “size” of A(ψ)
expressed in terms of Lebesgue measure. Under the condition that ψ is mono-
tonic, Khinchin’s theorem states that the measure of A(ψ) is one (respec-
tively, zero) if the sum

∑
q ψ(q) diverges (respectively, converges). The mono-

tonicity condition is only required in the divergence case and moreover it
is absolutely crucial. Duffin and Schaeffer [10] constructed a non-monotonic
function ψ for which

∑
q ψ(q) diverges but A(ψ) is of zero measure. In other

words, without the monotonicity assumption, Khinchin’s theorem is false
and the famous Duffin–Schaeffer conjecture provides the appropriate state-
ment. The key difference is that in (1), we require coprimality of the integers
p and q. Let A′(ψ) denote the resulting subset of A(ψ). The Duffin–Schaeffer
conjecture states that the measure of A′(ψ) is one (respectively, zero) if the
sum

∑
q ϕ(q)ψ(q)q−1 diverges (respectively, converges). Although various

partial results have been obtained, the full conjecture represents a key un-
solved problem in metric number theory—see [4, 13] for details. Returning
to the raw set A(ψ), without monotonicity and coprimality the appropri-
ate analogue of Khinchin’s theorem has been formulated by Catlin [9]. The
Catlin conjecture also remains open.
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The upshot of the above discussion is that currently we are unable to
prove analogues of Khinchin’s theorem for either of the fundamental sets
A(ψ) and A′(ψ). However, it is known that the Lebesgue measure of A(ψ)
and A′(ψ) is either 0 or 1. In the case of A(ψ) this zero-one law is due to
Cassels [8] and in the case of A′(ψ) it is due to Gallagher [11]. The goal of
this note is to establish the higher dimensional analogues of these classical
zero-one laws. For a discussion concerning the higher dimensional analogues
of the conjectures of Duffin-Schaeffer and Catlin see [4, 12, 15, 19, 20].

Throughout, m ≥ 1 and n ≥ 1 are integers. Given Ψ : Zm → [0,+∞),
let An,m(Ψ) be the set of X ∈ [0, 1]nm such that

(2) |qX + p| < Ψ(q)

holds for infinitely many (p,q) ∈ Zm × Zn \ {0}. Here | · | denotes the
supremum norm in Rm, X is regarded as an n×mmatrix and q is regarded as
a row vector. Thus, qX ∈ Rm represents a system of m real linear forms in n
variables. In higher dimensions the setA′(ψ) has two natural generalizations:

A′n,m(Ψ) := {X : (2) holds for i.m. (p,q) with gcd(p,q) = 1},
A′′n,m(Ψ) := {X : (2) holds for i.m. (p,q) with gcd(pi,q) = 1, i = 1,m},

where X ∈ [0, 1]nm, “i.m.” stands for “infinitely many” and gcd(p,q) de-
notes the greatest common divisor of all the components of p and q.

Before we state our main result, let us agree on the following nota-
tion: A◦n,m(Ψ) will denote any of the fundamental sets An,m(Ψ), A′n,m(Ψ) or
A′′n,m(Ψ). Thus, a statement for A◦n,m(Ψ) is valid for An,m(Ψ), A′n,m(Ψ) and
A′′n,m(Ψ). Also, |X| will denote the k-dimensional Lebesgue measure of the
set X ⊂ Rk.

Theorem 1. For any n,m and Ψ we have |A◦n,m(Ψ)| ∈ {0, 1}.

2. Auxiliary results. In this section we group together various self con-
tained statements that we appeal to during the course of establishing Theo-
rem 1. Most are higher dimensional analogues of well known one-dimensional
statements. Indeed, the one-dimensional version of our first result can be
found in [8].

Lemma 1. Let {Bi} be a sequence of balls in Rk with |Bi| → 0 as i→∞.
Let {Ui} be a sequence of Lebesgue measurable sets such that Ui ⊂ Bi for
all i. Assume that for some c > 0,

(3) |Ui| ≥ c|Bi| for all i.

Then the sets

U = lim sup
i→∞

Ui :=
∞⋂
j=1

⋃
i≥j

Ui and B = lim sup
i→∞

Bi :=
∞⋂
j=1

⋃
i≥j

Bi

have the same Lebesgue measure.
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Proof. Let Uj :=
⋃
i≥j Ui and Dj := B \ Uj . Then D := B \ U =

⋃
j Dj

and Lemma 1 states that D has measure zero, or equivalently, that every
Dj has measure zero. Assume the contrary. Then there is an l ∈ N such
that |Dl| > 0 and therefore there is a density point x0 of Dl. Since x0 ∈ B,
we know that x0 ∈ Bji for a sequence ji. Since |Bji | → 0, we see that
|Dl ∩Bji | ∼ |Bji | as i→∞. Since Dj ⊃ Dl for all j ≥ l, it follows that

(4) |Dji ∩Bji | ∼ |Bji | as i→∞.

On the other hand, by construction Dji ∩ Uji = ∅. Thus, in view of (3) we
have

|Bji | ≥ |Uji |+ |Dji ∩Bji | ≥ c|Bji |+ |Dji ∩Bji |,

i.e. |Dji∩Bji | ≤ (1−c)|Bji | for all sufficiently large i. This contradicts (4).

The following lemma is the higher dimensional analogue of the well
known one-dimensional “ergodic” property of rational transformations—see
for example [11, Lemma 3], [13, Lemma 2.2] or [22, Lemma 7].

Lemma 2. For any integer l ≥ 2 and s ∈ Zk consider the transformation
of the unit cube [0, 1]k into itself given by

T : x 7→ lx +
1
l
s (mod 1).

Let A be a subset of [0, 1]k such that T (A) ⊆ A. Then A is of Lebesgue
measure 0 or 1.

Proof. Let A be as in the statement. Then T ν(A) ⊆ A, where T ν : x 7→
lνx+s/l (mod 1) is the νth iterate of T . Let χA be the characteristic function
of A. It follows that

(5) χA(x) ≤ χA
(
lνx +

s
l

)
.

Suppose that |A| > 0. Then there is a density point x0 of A. Let Cν be the
cube in [0, 1]k centred at x0 of sidelength l−ν . Then |A ∩ Cν | equals

�

Cν

χA(x) dx
(5)

≤
�

Cν

χA

(
lνx +

s
l

)
dx =

1
lνk

�

[0,1]k

χA(x) dx = |Cν | · |A|.

Since x0 is a density point of A and diamCν → 0 as ν →∞, the left hand
side of the above equality is asymptotically |Cν |. Therefore, |A| = 1.

Given a ball B = B(x, r) and a real number c > 0, we denote by cB
the “scaled” ball B(x, cr). The next lemma is a basic covering result from
geometric measure theory usually referred to as the 5r-lemma. For further
details and proof the reader is referred to [18].
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Lemma 3. Every collection C of balls of uniformly bounded diameter in
a metric space contains a disjoint subcollection G such that⋃

B∈C
B ⊂

⋃
B∈G

5B.

We immediately make use of the covering lemma to show that the
Lebesgue measure of a reasonably general lim sup set is unchanged with
respect to “scaling” by a constant factor.

Lemma 4. Let {Si}i∈N be a sequence of subsets in [0, 1]k, {δi}i∈N be a
sequence of positive numbers such that δi → 0 as i→∞ and let

∆(Si, δi) := {x ∈ [0, 1]k : dist(Si, x) < δi}.

Then for any real number C > 1, the sets

A := lim sup
i→∞

∆(Si, δi) and B := lim sup
i→∞

∆(Si, Cδi)

have the same Lebesgue measure.

Proof. First of all notice that the sets ∆(Si, δi) are open and therefore
Lebesgue measurable. Since C > 1 we have A ⊂ B. For each i ∈ N, let Bi
denote the collection of balls {B(x, δi) : x ∈ Si}. Thus, ∆(Si, δi) =

⋃
B∈Bi B.

By Lemma 3, there is a disjoint subcollection Gi of Bi such that

(6)
◦⋃

B∈Gi

B ⊂ ∆(Si, δi) =
⋃
B∈Bi

B ⊂
⋃
B∈Gi

5B.

Since Si ⊂ [0, 1]k, every ball B ∈ Gi is contained in the cube [−δi, 1 + δi]k.
It follows that Gi is a finite disjoint collection of balls.

If z ∈ ∆(Si, Cδi), then there is a y ∈ Si such that |z − y| < Cδi.
Furthermore, by (6) there exists a ball B = B(x, δi) ∈ Gi such that y ∈ 5B.
Therefore, |z − x| ≤ |z − y|+ |y − x| < (5 +C)δi. Thus we have shown that

(7) ∆(Si, Cδi) ⊂
⋃
B∈Gi

(5 + C)B.

Now given a constant λ > 0, let C(λ) := lim supi→∞
⋃
B∈Gi λB. This is the

set of x such that x ∈ λB for some B ∈ Gi for infinitely many i. Then (6)
and (7) imply that

(8) C(1) ⊂ A ⊂ B ⊂ C(5 + C).

By Lemma 1, the sets C(λ) with λ > 0 have the same Lebesgue measure
irrespective of λ. Therefore, in view of (8) the sets A and B must have the
same Lebesgue measure.
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3. Proof of Theorem 1. Following the arguments of [11], it is easily
verified that A◦n,m(Ψ) = [0, 1]nm if the condition

(9) Ψ(q)/|q| → 0 as |q| → ∞
is violated. Therefore, without loss of generality we assume that (9) is sat-
isfied.

When considering A◦n,m(Ψ), the error of approximation is rigidly deter-
mined by the function Ψ . In proving Theorem 1, it is extremely useful to
introduce a certain degree of flexibility within the error of approximation.
Given A◦n,m(Ψ), let

F◦n,m(Ψ) =
∞⋃
k=1

A◦n,m(kΨ).

Clearly, F◦n,m(Ψ) ⊃ A◦n,m(Ψ). However, as a consequence of Lemma 4 we
have

(10) |F◦n,m(Ψ)| = |A◦n,m(Ψ)|.
Clearly, Theorem 1 follows on establishing the analogous statement for
F◦n,m(Ψ).

Theorem 2. For any n,m and Ψ we have |F◦n,m(Ψ)| ∈ {0, 1}.

Proof. We establish the theorem by considering the setsFn,m(Ψ),F ′n,m(Ψ)
and F ′′n,m(Ψ) separately.

The set Fn,m(Ψ): Clearly, Fn,m(Ψ) is invariant under the translation
T : X 7→ 2X (mod 1). Thus, the desired statement is a trivial consequence
of Lemma 2.

The set F ′n,m(Ψ): By definition, F ′n,m(Ψ) consists of points X ∈ [0, 1]nm

for which there exists a constant C = C(X) > 0 such that

(11) |qX + p| < CΨ(q) and gcd(p,q) = 1

for infinitely many (p,q) ∈ Zm × Zn \ {0}. Now, for each prime l consider
the following subsets of F ′n,m(Ψ):

S0(l) = {X ∈ [0, 1]nm : ∃C > 0 so that (11) holds for i.m. (p,q) with
l - d = gcd(q)},

S1(l) = {X ∈ [0, 1]nm : ∃C > 0 so that (11) holds for i.m. (p,q) with
l ‖ d = gcd(q)},

S2(l) = {X ∈ [0, 1]nm : ∃C > 0 so that (11) holds for i.m. (p,q) with
l2 | d = gcd(q)}.

Here l ‖ d means that l divides d but l2 does not. Note that

(12) F ′n,m(Ψ) = S0(l) ∪ S1(l) ∪ S2(l).
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Suppose X ∈ S0(l). Then (11) is satisfied for infinitely many (p,q) with
l - d = gcd(q). On setting q′ := q and p′ := lp, we find that

|q′(lX) + p′| < lCΨ(q′)

for infinitely many (p′,q′) ∈ Zm × Zn \ {0} with

(13) gcd(p′,q′) = 1.

The coprimality condition is readily verified by making use of the fact that
l - gcd(q). Thus, if X ∈ S0(l) then lX ∈ S0(l). Therefore the set S0(l) is
invariant under the transformation T : X 7→ lX (mod 1) and Lemma 2
implies that |S0(l)| is 0 or 1.

For j ∈ {1, . . . , n}, let S1,j(l) denote the set of X ∈ [0, 1]nm such that
(11) is satisfied for infinitely many (p,q) with l ‖ qj . Recall that qj is the
jth coordinate of q = (q1, . . . , qn). Clearly,

S1(l) =
n⋃
j=1

S1,j(l) .

Suppose X ∈ S1,j(l) for some j ∈ {1, . . . , n}. Let Sj ∈ Znm denote the
integer matrix with zero entries everywhere except in the jth row where
every entry is 1. Then qSj = (qj , . . . , qj) ∈ Zm. By definition, (11) is satisfied
for infinitely many (p,q) with l ‖ qj . On setting q′ := q and p′ := lp− 1

l qSj ,
we see that

(14)
∣∣∣∣q′(lX +

1
l
Sj

)
+ p′

∣∣∣∣ < lCΨ(q′)

for infinitely many (p′,q′) ∈ Zm×Zn\{0} satisfying (13). Thus, if X ∈ S1,j(l)
then lX + (1/l)Sj ∈ S1,j(l). Therefore the set S1,j(l) is invariant under the
transformation

T : X 7→ lX +
1
l
Sj (mod 1)

and Lemma 2 implies that |S1,j(l)| is 0 or 1. Thus, S1(l) is a finite union of
sets with measure 0 or 1 and so |S1(l)| is also 0 or 1.

In view of (12), the upshot of the above results for |S0(l)| and |S1(l)| is
that if there exists a prime l such that S0(l) or S1(l) is of positive measure
then |F ′n,m(Ψ)| = 1. Thus, without loss of generality we can assume that
such a prime does not exist and so by (12) we have

(15) |S2(l)| = |F ′n,m(Ψ)| for every prime l.

Suppose X ∈ S2(l) and fix any S ∈ Znm. Then (11) is satisfied for infinitely
many (p,q) with l2 | d = gcd(q). On setting q′ := q and p′ := p− (1/l)qS,
we see that

(16)
∣∣∣∣q′(X +

1
l
S
)

+ p′
∣∣∣∣ < CΨ(q)
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for infinitely many (p′,q′) ∈ Zm×Zn\{0} satisfying (13). Thus, if X ∈ S2(l)
then X+(1/l)S ∈ S2(l) for any S ∈ Znm. Therefore the set S2(l) is invariant
under any transformation X 7→ X + (1/l)S (mod 1) with S ∈ Znm. In other
words, S2(l) is 1/l-periodic in every coordinate. Thus, for any cube Cl in
[0, 1]nm of sidelength 1/l we have

|S2(l) ∩ Cl| = |S2(l)| · |Cl|.
In view of (15), it follows that

(17) |F ′n,m(Ψ) ∩ Cl| = |F ′n,m(Ψ)| · |Cl|
for any prime l. Now suppose that |F ′n,m(Ψ)| > 0. Then there is a density
point X0 of F ′n,m(Ψ). For each prime l, let Cl denote the cube in [0, 1]nm

centred at X0 of sidelength 1/l. Then

|F ′n,m(Ψ) ∩ Cl| ∼ |Cl| as l→∞.
This together with (17) implies that |F ′n,m(Ψ)| = 1 and thereby completes
the proof of Theorem 1 for the set F ′n,m(Ψ).

The set F ′′n,m(Ψ): To establish the desired zero-one statement for the
set F ′′n,m(Ψ), we modify in the obvious manner the argument for F ′n,m(Ψ).
Naturally, “gcd(pj ,q) = 1 for all j = 1, . . . ,m” will replace “gcd(p,q) =
1” appearing in (11). Similarly, the condition that “gcd(p′j ,q

′) = 1 for all
j = 1, . . . ,m” will replace the coprimality condition (13). The rest remains
pretty much unchanged.

4. Further results and questions

Ψ -well approximable points. Various sets of Ψ -well approximable points
are defined by requiring that the constant C > 0 appearing in (11) can be
made arbitrarily small. More precisely, set

W◦n,m(Ψ) :=
∞⋂
k=1

A◦n,m(k−1Ψ).

Lemma 4 readily implies the following statement.

Theorem 3. For any n,m and Ψ we have |W◦n,m(Ψ)| = |A◦n,m(Ψ)|.
Theorem 3 combined with (10) and Theorem 2 trivially implies the zero-

one law for Ψ -well approximable sets.

Corollary 1. For any n,m and Ψ we have |W◦n,m(Ψ)| ∈ {0, 1}.
Ψ -badly approximable points. Naturally, various sets of Ψ -badly approx-

imable points can be thought of as being complementary to Ψ -well approx-
imable sets. More precisely,

B◦n,m(Ψ) := A◦n,m(Ψ) \W◦n,m(Ψ).

An immediate consequence of Theorem 3 is the following result.
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Corollary 2. For any n,m and Ψ we have |B◦n,m(Ψ)| = 0.

The classical set of badly approximable real numbers Bad := B1,1(q 7→
q−1) is known to have full Hausdorff dimension, i.e. dim Bad = 1. For a
general function ψ : N → [0,+∞) with various mild growth conditions,
Bugeaud [7], answering a question posed in [5], has shown that B1,1(ψ) has
full Hausdorff dimension, i.e. dimB1,1(ψ) = dimA1,1(ψ). In view of this and
Corollary 2 it is reasonable to ask the following question.

Question 1. Does Bn,m(Ψ) have full Hausdorff dimension, i.e.

dimBn,m(Ψ) = dimAn,m(Ψ) ?

A weaker form of this question, in which Bn,m(Ψ) is replaced byAn,m(Ψ)\
An,m(Ψ ′) with Ψ ′(q) = o(Ψ(q)) as |q| → ∞, can be found in [5]. Note that if
the answer to the above question is yes, then automatically dimB◦n,m(Ψ) =
dimA◦n,m(Ψ).

Multi-error approximation. Observe that the inequality (2) can be re-
written as a system of m inequalities

|qX(j) + pj | < Ψ(q), j = 1, . . . ,m,

where X(j) is the jth column of X. Thus, the error of approximation as-
sociated with each linear form is determined by Ψ and is the same. More
generally, we consider the system

(18) |qX(j) + pj | < Ψj(q), j = 1, . . . ,m,

with Ψj : Zn → [0,+∞) and so the error of approximation is allowed to
differ from one linear form to the next. Let A◦n,m(Ψ1, . . . , Ψm) denote the
“multi-error” analogue of A◦n,m(Ψ), obtained by replacing (2) with (18) in
the definition of A◦n,m(Ψ). Naturally, this enables us to define the multi-error
analogues of F◦n,m(Ψ), W◦n,m(Ψ) and B◦n,m(Ψ).

Without much effort, it is possible to establish the multi-error analogue
of Theorem 2—the proof is practically unchanged.

Theorem 4. For any n,m and Ψ1, . . . , Ψm we have

|F◦n,m(Ψ1, . . . , Ψm)| ∈ {0, 1}.

If the statement of Lemma 4 can be generalized to the multi-error frame-
work the above theorem would answer the following question and thereby
yield the analogue of Theorem 1.

Question 2. Is it true that |F◦n,m(Ψ1, . . . , Ψm)| = |W◦n,m(Ψ1, . . . , Ψm)|?
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Note that if the answer to Question 2 is yes, then so is the answer to our
next question.

Question 3. Is it true that |B◦n,m(Ψ1, . . . , Ψm)| = 0?

Multiplicative approximation. Given Ψ : Zn → [0,+∞), let A×n,m(Ψ) be
the set of X ∈ [0, 1]nm such that

(19)
m∏
i=1

‖qX(j)‖ < Ψ(q)

for infinitely many q ∈ Zn. Here ‖ · ‖ denotes the distance to the nearest
integer. Naturally, this enables us to define the associated multiplicative
sets F×n,m(Ψ),W×n,m(Ψ) (of multiplicatively Ψ -well approximable points) and
B×n,m(Ψ) (of multiplicatively Ψ -badly approximable points). Clearly, if Ψ :=
Ψ1 · · ·Ψm then

A(Ψ1, . . . , Ψm) ⊂ A×n,m(Ψ),

F(Ψ1, . . . , Ψm) ⊂ F×n,m(Ψ),

W(Ψ1, . . . , Ψm) ⊂ W×n,m(Ψ).

However, it is easily seen that

B(Ψ1, . . . , Ψm) 6⊂ B×n,m(Ψ).

Question 4. Is it true that A×n,m(Ψ), F×n,m(Ψ) andW×n,m(Ψ) are of mea-
sure 0 or 1?

Question 5. Is it true that |B×n,m(Ψ)| = 0?

Note that when n = 1, m = 2 and Ψ(q) := q−1, the answer to Question 5
is yes for obvious reasons. Indeed, it is conjectured that

B×1,2(q 7→ q−1) = ∅.

This is Littlewood’s famous conjecture in the theory of Diophantine approx-
imation.

Approximation by rational planes. The inequality (2) takes on two “ex-
treme” forms of rational approximation depending on whether n = 1 or
m = 1. When m = 1, it corresponds to approximating arbitrary points by
(n−1)-dimensional rational planes (i.e. rational hyperplanes) and gives rise
to the dual theory of Diophantine approximation. When n = 1, it corre-
sponds to approximating arbitrary points by 0-dimensional rational planes
(i.e. rational points) and gives rise to the simultaneous theory of Diophan-
tine approximation. For d ∈ {0, . . . , n − 1}, it is natural to consider the
Diophantine approximation theory in which points in Rn are approximated
by d-dimensional rational planes—the dual and simultaneous theories just
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represent the extreme. The foundations have been developed in some depth
by W. M. Schmidt [21] in the sixties and more recently by M. Laurent [16].
However, apart from the extreme cases, there appears to be no analogue of
Theorem 1 within the theory of approximation by d-dimensional rational
planes.

Approximation by algebraic numbers. Sprindžuk’s [22] celebrated proof
of Mahler’s conjecture [17] led Baker [1] to make the following stronger
conjecture that was eventually established by Bernik [6]. Let n ∈ N and
ψ : N→ (0,+∞) be monotonic. Then for almost every real x the inequality

(20) |P (x)| < H(P )−n+1ψ(H(P ))

holds for finitely many P ∈ Z[x] with degP ≤ n if

(21)
∞∑
r=1

ψ(r) <∞.

Here H(P ) is the height of P , i.e. the maximum of the absolute values of
the coefficients of P . The case ψ(h) := h−1−ε corresponds to Mahler’s con-
jecture. In [2] it has been shown that if the sum in (21) diverges and ψ is
monotonic, then for almost every real x inequality (20) holds infinitely of-
ten. More recently [3], the monotonicity assumption in Bernik’s convergence
result has been removed. However, removing the monotonicity assumption
from the divergence result remains an open problem akin to the Duffin–
Schaeffer conjecture. In the first instance, it would be natural and desirable
to ask for a zero-one law.

Question 6. Is it true that the set of x ∈ [0, 1] such that (20) holds for
infinitely many P ∈ Z[x] with degP ≤ n is of measure 0 or 1?

The following is a related question concerning explicit approximation by
algebraic numbers.

Question 7. Is it true that the set of real x ∈ [0, 1] such that

(22) |x− α| < H(α)−nψ(H(α))

holds for infinitely many real algebraic α of degα ≤ n is of measure 0
or 1?

Here H(α) stands for the height of the minimal defining polynomial of α.
If (21) is satisfied, a simple application of the Borel–Cantelli lemma shows
that the set under consideration is of measure zero. On the other hand, if
the sum in (21) diverges and ψ is monotonic, the set under consideration
is known to have measure one (see [2]). The upshot is that Question 7
only needs to be considered when ψ is non-monotonic and the sum in (21)
diverges.
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auf die Theorie der Diophantischen Approximationen, Math. Ann. 92 (1924),
115–125.

[15] —, Zur metrischen Theorie der diophantischen Approximationen, Math. Z. 24
(1926), 706–714.

[16] M. Laurent, On transfer inequalities in Diophantine approximation, preprint:
arXiv:math/0703146.
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