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Solving an exponential Diophantine equation
by

MARIO HUICOCHEA (Guanajuato)

Introduction. Let £k > 1, L > 0, k,L € Z, and let p; < --- < pg, be
rational primes. We are going to show that if (k, L, p1,...,pr) satisfies

o e prpE-1
1 kll i =117"—
W zl_[1 ' i Pl
then k=2, L =2, py =2 and py = 3.

If we look carefully, the equation (1) with & = 2 is a special case of
the perfect numbers problem. In this paper, we solve (1) with elementary
and analytic methods. The author was motivated by similar problems which
appear in [Gl, Ch. BJ.

Preliminaries. We denote by w(n) the number of different primes which
divide n, and by m(n) the number of primes which are at most n.
First note that if (k,L,p1,...,pr) solves (1) we have L # 1, because

(pr, 220y = 1.

i1
ProposiTION 1. If (k,L,p1,...,pr) is a solution of (1) and 2|k then
k=2,L=2 p1 =2 and py = 3.

Proof. Let k = 2% with 24r. For all p; # 2 we have

a—1

-
-1 _pi—1 Hp?] T-1
pi—1  pi—1 2y pPr -1

2j+1r_
Also, forall0 < j < a—1 we have2|% SO
Py —
k1
bi =2%; withr; € N.
pi—1
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If p1 > 2 then

—1
2a7’ Hpk 1 - ka = pi—l QO‘Lm with m (S N,

which contradlcts L#1.
Thus, we have p; = 2. Substituting p; = 2 in (1) gives

L L L &
P —1 - ~
gotk=1, prfl = kaffl = H b — 7= 20l with m € N.
. ” - Di —
The last equality yields

(2) alL-1)<a+k-1.

As (k,L,p1,...,pr) is a solution of (1),

L pF—1 Di Li-i—l

(3) k:Hpk Zp—l H gH —=L+1
i=1 1% v =1

By (2) and (3)

(4) alL-1)<a+k—-1<a+L.

Suppose L = 2. By (3), k =2 so
2-1pi-1_pi—1

4po = =
(5) P2 =T 1 Sy 1

which gives the solution £k =2, L =2, p; = 2 and p2 = 3.

IfL=3 by 3),k=2andif L >4, by (4), « < L/(L —2) < 2, thus
from now on we assume a = 1.

If L > 10 we proceed as in (3):

L L+1 .
-1 ; 2 3 5 1 3(L+2
6) k= Hkpz < b 2.2 H“ﬁ :(4 )
P pz 1) Di 1 1 2 4- 1
Thus, by (2) and (6), a(L —1) < a+k—1< a+ (3L +2)/4. In particular,
1= o < 3L+2
(L2
It is sufficient to analyze those pairs which satisfy 2 < L < 10, k—1 < L,
2|k and 4 1 k. These conditions imply k € {2,6}.
If k=2 and L > 2 then, as in (5), pp = 3 and 22-3 = 2=L. =1 G (1)
is equivalent to

i=1 =

< 1, which is a contradiction.

sz— =

pfl

p?—l

which is impossible since p; < T
1
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Finaly, if £ = 6 we have

6 L 5 26 -1 P 2 LPG_
2.31—[2191-—2_1]_[z _3-71—£p2_
1= 1=

Thus, pa = 3 and p;;, = 7. This yields

1

7 96.36. 75 9537213, 19.43 T] A2

( ) H?’pl H pz_ 1
i1 17511

Hence, there exists 1 < i3 < L such that p;, = 19 and 22| 119;__11. Conse-

quently, by (7), 27 divides the right hand side but not the left hand side
of (1), which is impossible. =

LEmMMA 1. If (k,L,p1,...,pr) is a solution of (1) with p prime and
k=p* witha >0 then k=2, L =2, p1 =2 and p, = 3.

Proof. By Proposition 1, if p =2 then £ =2, L =2, p; = 2 and pg =3.
‘1

Suppose p # 2. For each p; there exists 1 < j < L such that pz\ P
By Fermat’s Little Theorem,

(8) pz-|p§’i_1—1 and p;|pf —1.
If p; |pj — 1 then p; = gp; + 1 with g € N. So

pz’Z( >gpz ~1 implies p;|p® and p; =p.

If Pijfpj — 1 then, by (8), (p®,p; — 1) > 1. In particular, p|p; — 1 so
p; = gp + 1 with g € N. Since

k b feY P (e
pi —1 PUY ~ - a PMY = \i—
p._1=§:(l>(gp)” and p*| ) <l>(gp)l g
' =1 =1

we conclude that

k
a’pi_l but a+11,pz_1
pi—1 1

If L = 2 we have two possibilities:

() p € {p1,p2}:
Without loss of generality suppose p = p1. Then

potP” —1pp“ 1 pp —1ph —1‘
p—1 p2—1

a Paf . . . .
Hence, pP"~1| 2 p_ll, which is impossible.



318 M. Huicochea

(+x) p & {p1,p2}:

o
We know that r;p* = 1;1711 with ptr; for i € {1,2}. Thus

—1p5 -1
P} Py = Y = r1rop™®
pr—1 pa—1
which contradicts the assumption p ¢ {p1,p2}.
If L = 3 then
3 3
- FL(p, 1) pi—1-2 4 6 48 ’
i=1 Pi P i=1 1"

which is impossible since 21k.
From now on we will assume L > 3; then there are two primes p;,, pi,

k1 k1
which are not p. By the work above, p® | % and p® | izfl; thus in (1)
p?@ divides the right hand side so there exists 1 < g < L such that p;, = p.
With this observation, (1) implies

aﬂ) 711—[ a -1 _ L1)pp —11—[ pp :pa(Lfl)m
z;ézo 17@0
with m € N and pfm. Hence, a +p® — 1 = a(L —1). Also
k_L ph—1 <L pi <LH+1¢+1_L+2
= = T g
i—1 Pi l(pz_l) i:1pz_1 i=2 t 2
Thus,
L
(L—l)—oz+k—1<a+%—l—a+L
in particular
< L d th <1
a< —— andthen a<l1.
2(L - 2)

This yields o = 0, which contradicts the assumption. =
LeEmMA 2. If (k,L,p1,...,pr) solves (1) for k with prime decomposition
k= HZ‘)(’;) g;" where o > 0 and 2 < q1 < -+ < qu), then L < w(k)(k+1).

Proof. Define Q; = ¢, Qo =1,
p@i 1
M; = {pj : there exists p; such that p; ‘ ~l}
plQi—l _ 1
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and Q; = Hle Q; . Note that
w(k) Ql

_H Qi1

i=1 P, —1
Hence, there is iy such that |[M;,| > L/w(k).

Q
Note that if p; | gl_ - then we have two possibilities:
-1

Py

() pj " = 1t
Let w € N be such that wp; + 1 = plQifl. Then

Qi Q Qz
p—1 (ij + )% —1 1
i1, Z O
b, -1

thus p; | Q; and p; = g;.
(o) pitp " — 1

By Fermat’s Little Theorem, p; | (p, Qi- 1Pi~t — 1 and p; | (p; Qi NQi 1,
Thus, (p; —1,Q;) > 1 and ¢; | p; — 1. Let pj = vg; + 1 with v € N Then

p—l v Qz_l
( —Z(Q’) ),

-1
71

and thereby Ql

In particular, for all p; € M, \ {g;, } we have Q;, \ pj=1 . Thus, Q ol

= q%o(leol Y divides the left hand side in (1), and the rlght hand side is

io
equal to

qi0 a7'0 H pk L with ap € {ai,, iy +k — 1}
4, 1
pf#qzo

Moreover, if all p; # ¢;, then ag = «;,, and if there is jg such that p;, = ¢;,
then ag = o, + k — 1. Consequently, we have the inequality

L

(o798 (w(k‘) — 1> < Oél'o(‘./\/lio| — 1) <ag < QG + kE—1.

Finally,

o +k—1
Ctio

L<w(/~c)< +1> <w(k)(k+1). n
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Main theorem. We order the prime numbers as P, =2 < P» =3 <
Ps=5<---

THEOREM 1. If k = H;"(’f) @ with oy >0 and 2 < ¢ < -+ < Qu(k)
primes then there is no solution (k,L,p1,...,pr) of (1).

Proof. Suppose that such a solution does exist. We have the inequality

S SUETN|
i:lpf_l(pi_l) pl_l B P_l 2 ’
so by [RS],
9) k<£(loP iy —2
g VO8I loglog P41 )’

where e = 1.78107 ... is Euler’s constant.
By Lemma 1, w(k) > 1 and thus k£ > 15 = 3 - 5. Therefore

e¢ 1
14 log P, _ P 17
< ( og L+1)< og log PL+1> so Pry1 > 17,
thus 1+ m > 2, which implies
€C
(10) 7T < - log Pr+1 <log Ppy1  so e’ < Priq.

We have k = []2] w(k) @t > 3T > 3%() and Lemma 2 yields L <
w(k)(k 4 1). By Table 4 and IR] (D)
(k+1)logk

P
(11) 2 < a(Pry) = L+1 < w(k)(k+1)+1 < on3

2+ log Pry1
Our next step is to prove the following two claims.
Cram 1. If z > 4 then
(x+1)logz
log 3

+1.

+1< 252
Proof. Define

fiRY DR,  flo)=g¥?_ @FDlse

- log 3
en
3 24l 4 Jogx 3 11
/ _2.1/2 _ " _2,.-1/2 z z?2
fi(z) 5% 7105;3 and f"(z) 2% Tog3

Note that = > (ﬁ)2 implies f”(z) > 0. Thus, if x > 4 > (ﬁ)2 we
have f'(x) > f/(4) > 0, and hence f(z) > f(4) > 0. =

(*) For all & > 55 prime, [R] gives the inequality m < w(z); for x < 55 prime,
this follows from Table 1.
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CrLaM 2. If > € then 2% > 8(1 + log z)°.

Proof. Let
fiRYT SR, f(z) =2 —8(1+loga)®.
Then
4 30
fl(x) =22 - 40(1“;’“) and  f"(z) =2 200+ 10%9;)2 (3 —logx)

Note that if z > €3 then f”(x) > 2. Hence, if x > €% then f'(z) > f'(e%) > 0,
and so f(x) > f(e%) > 0. m

Now we return to the proof of our theorem. Since Pr,i > e’, Claim 1
and the inequalities (9), (11) give us

Py <(k:+1)logk:+1<k3/2
2+ log Pr+1 log 3
and
k3% < <€C(log Pry1) (1 + 1>>3/2 < (e“log Ppi1)%/2.
2 loglog Pr11

In particular
P2, < (24 1log Pri1)%(e%log Pry1)® < €9 (1 4 log Ppi1)°
< 8(14log Ppy1)°.

But this contradicts Claim 2, showing there is no such solution. =

Table 1
P L gk~
1 0.74262
2 0.96817
3 1.38525
7 4 1.77398
11 5 250911
13 6 2.84778
17 7 351732
19 8  3.84270
23 9 4.47863
29 10 5.40309
31 11 5.70483
37 12 6.59428
41 13 7.17589
43 14 7.46372
47 15 8.03398
53 16 8.87728
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