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On the linear independence of the values of
Gauss hypergeometric function

by

VILLE MERILA (Oulu)

1. Introduction. The aim of this paper is to investigate the linear
independence of values of functions defined by the series
— (B)
(1.1) 2F1(1,B;Cyy) = Y 209k B,CeQ\ZT,
= (O
with v, € K*, 1 <v < D, where K is an algebraic number field.
The hypergeometric series 2 F1 (1, B; C; z) satisfies the first order differ-
ential equation

d
z(1—2) Y
with three regular singularities, {0,1,00}. It defines an analytic function
in the unit disc but which, as is well known, may be continued along any
path in C\ [1, 00). The arithmetic properties of this series have been widely
studied in particular interesting cases such as the binomial ([2], [3], [6], [S],
[18]) and logarithmic function ([13], [14], [28], [29], [35]), as well as a part
of a wider class of G-functions ([5], [9], [10], [12], [32], [33]; see also [4]).
Naturally, the references above represent only a fraction of the works in
the literature. Nevertheless, there are no linear independence results with
explicit approximations for 9 (1, B; C; z) in the generality of this paper. In
[34] Vasilenko employed first type Padé approximations to obtain the linear
independence over Q of values at distinct points, all sufficiently close
to the origin (with respect to normal absolute value). Ivankov proposed in
[16] a combination of an effective construction of a linear approximating
form and Siegel-Shidlovskii’s method to prove linear independence of more
general hypergeometric E- and G-functions, comprising also , over an

(2)+(C—Bz—1)y(z)+1-C=0
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imaginary (archimedean) quadratic field. For irrationality questions, general
theorems are given in [15]. In addition, note also the article [30] by Sorokin,
based on the works [23]—[27] of Nikishin. In that paper the question of linear
independence of values of a hypergeometric function connected to a certain
Markov function is studied with lower bounds that depend only on the
moduli of the coefficients of related linear forms.

In the first part of this paper we compute explicit second type Padé
approximations for the set of functions {2 F (1, B;C;~v,2)}, v =1,...,D, in
the spirit of Stihl [31], an approach originating from Maier [19] and thereafter
generalized by Chudnovsky [7]. See also [22], where linear independence is
considered for values of functions, and their derivatives, deriving from the
Heine series, a g-analogue of the Gauss series.

In Section 4 we show that these approximations are linearly indepen-
dent (Theorem 4.2), i.e. a certain determinant formed by the approximation
polynomials does not vanish identically. This is the most important contri-
bution of this work since the method of proof is new, and it applies also to
the case of Heine series considered in [22]. The essential ingredient of the
Padé construction, the application of the binomial (or g-binomial) theorem,
is also the foundation of the determinant consideration. Hence the method
may be applied, at least in some cases, to prove the independence of ap-
proximations for more general hypergeometric and ¢-hypergeometric series
presented in [20].

The last part of this work consists of analytic and arithmetic estimates
of the approximations, together with the proofs of the remaining theorems
and corollaries.

2. Notations and results. Let K be an algebraic number field of degree
k over Q. In particular, we write K = I in the case of an imaginary quadratic
field. For a finite place v of K over the prime p, we use the notation v|p,
whereas we write v|oo for the infinite place. Let us normalize the absolute
value | * |, of K so that if v|p, then [p|, = p~!, and if v|oo, then |z|, = |z|
for x € Q. Here, by | * | we mean the usual absolute value in Q. We shall
adopt the notation

Fllo =[x 52/ with ko = [Ky : Qu,

where K, is the completion of K with respect to v. Now, for every a € K*
we have the product formula
IT llafe =1,

weM

where Mg = M is the set of places on K. The height H(a) of o € K is
defined by the equation
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H(a)= [T llai  llall, = max{1, ]},

weM
and more generally for a vector B = (by, ...,bp) € KP*+! by
H(B)= ] IBI;» B}, = max{1,[|Bllw},
weM
where o o
Bl = nass [bily, thus (Bl = max b
Let & € Ky, 0 < ¢ < D, be linearly independent over the field K. Then,
by a linear independence measure of the numbers &,...,&p, we mean an

exponent y > 0 in the lower bound
|boo + - - +bpéply > HH7° Ve >0,

for every B = (bo,...,bp) € KPH1\ {0} and H = max{H(B), Hy}, where
Hy = Hy(e) € Z* is an effectively computable constant. When D = 1, we
set &1 =1, bg = 1 and call p an irrationality measure of &g, i.e.

€0 +biy > HTH75 Ve >0,
with B = (1,b1) € K? and H = max{H (by), Ho}, Hy € Z*.
As is customary, we make use of the Pochhammer notation
(a)o=1, (a)p=ala+1)---(a+n—1)
for the generalized factorial, and more generally we denote
(a;0)0 =1, (a;b), =ala+b)---(a+bln—1))
for every n € Z™.

Let B,C € Q*, say B = a/b, C = ¢/d, b/d = f/g, a,b,c,d, f,g € Z,
b,d > 1, ged(a,b) = ged(e,d) = ged(f,g) = 1. In addition, for v|p, let
ord,(d) > ord,(b) and 6, = 0, while 6, = 1 for v|oo. We shall also write
(2.1) Epn(a,b) =lem{a,a+b,...,a+bm—1)}, w,(d) = Hpordp("!)

pld

for m,n € Z™ and define

b
_ b 1
Hd = le/(p l)a )‘(b) = E gv bad € Z+7
pld

with ¢ the Euler totient function. We can now state the following theorem.

TEEOREM 2.1. éet v, € K*, 1 <v < D, be distinct algebraic numbers
and |I'|, < 1 where I' = (7y1,...,vp). If
(k — Kyby) log C + k(D + n) log H(I') + kydy log C,
Fo(D+n+1)

(2.2) log | T, * >
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with n € RT U{0} and
C = 5D4n+1dud(gluge)\(b))D+n7 C, = 3D2"+1dud(gugeA(b))D+’7,

then the set of D + 1 numbers {1,2F1(1,B;C;v1),...,2F1(1,B;C;vp)} is
linearly independent over K with a linear independence measure

< k(D +n+1)log|T |, — K, log((5/3)P271)
= (k — Ku0y) log C 4+ k(D +n)log H(T') + ko(D + 1+ 1) log [T'|y + Ky0y log

COROLLARY 2.2. Let v, € I* be such that (2.2) holds. Then, for B €
ZPH\ {0},

- (D+n)logH(I') + logC
= logCr+ (D +n)log H(T) + (D +n+1)log|T|

In particular, let v, = &,/q with &, € I* and q € Z1\ {0}. Choose n =0 and
let

(2.3) lal > 2dpa| 2| (Bgpge™ V| Z]. H(Z))",
where = = (&1,...,6p) and |Z], = min{1,|Z]}. Then the numbers in the
set

{1,2F1(1, B; C;61/q), - - -, 2F1(1, B; C3€p/q) }
are linearly independent over Zy and
log(CCP (H(Z)|=].) PP +Y)
log|q| —log(C,|Z[PH(Z)P|Z])
Further, if &, € Z1, then condition becomes
s

p< D+ =D +<(|q))-

lql > C|E
and in the case of the logarithmic function (B =1, C = 2) over K= Q,
(2.4) s> 3D2n+leD+n’r|D+n+1’ n >0,
with v, =1,/s, s > max|r,| = |r| > 1. When holds, then the numbers
1,log(1 —7r1/s),...,log(l —rp/s)
are linearly independent over Z with

log(5P4mteP+m) 4 (D + 1) log s
o= log s — log(3P2nt1eD+n) — (D +n+ 1) log |r|

COROLLARY 2.3. Consider v|p and let v, = r,/s € Q*, ged(ry,s) = 1,
max |r,| = |r|, ||, <1, B = (bo,...,bp) € ZP+1\ {0}. If
log(5P 4™ Y dpug(guge®)P+m) + (D + n) log max{s, ||}
D+n+1 ’

log |f|;1 >
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then the set {1,2F1 (1, B;C;r1/s),...,2F1(1,B;C;rp/s)} of p-adic numbers
1s linearly independent over Z with
< (D +n+1)log |,
"= Tog (P47 dpg(giige™® max{s, [r[})PH1) + (D + 5+ 1) log [TT,
An interesting choice of parameters is B = —1/¢,¢>0,C=1,7v,=p™ 1y,
r, € Z\{0}, m > 1, ptr,, ||, =p~™. Now, if

- log(5P4e*9P) 4+ Dlog|r|

I —0
o8P o (n=0),
then
|bo + b1(1 _pmﬁ)l/q +---+bp(1 _meD)l/q’p > fne
with
< (D + 1)mlogp
~ mlogp — log(5P4e*a)P) — Dlog |r|
(D + 1Dlog(5P4eMDP|r| D)
M mlogp — log(5P4e ) D|r|D) +1+ep(m)
for H = max{[bol, ... [bpl} > Ho.

REMARK 2.4. In [16] Ivankov employed effective Padé approximations
and Siegel’s method to obtain good lower bounds for linear forms in the
values of hypergeometric functions. For 9 F1 (1, B; C; z) the general theorem
for hypergeometric G-functions implies the linear independence over Zj of
the values

1,2F1(1,B;C;&1/q),...,2F1(1,B;C;¢p/q)
when &, € I*, |¢| > e PPHDL 0y > 0, ¢ € Zy and
2> maX{|A+ 1|a ‘B+ 1|’ |§n|71/|§n|71/’§n *fm”’v n#m, §22>3.

However, note that the dependence of the lower bound of |¢| on the number
of points in the linear form is of magnitude e©(P 2), whereas in our Corollary
2.2 it is €D by the inequality

Galochkin showed in [I2], as a special case of a more general theorem
for a class of G-functions, that the set of numbers

(2.5) {1,ln(1—;>,ln(1+;>}

is linearly independent over Q for any natural number ¢ > gg where qg >
25¢56/5 > 14 (at least). Corollary 2.2, on the other hand, implies the linear
independence of the numbers in when b > 18¢? (< €°). Note, however,
that in [14] Hata shows, in particular, that ¢ > 54 suffices for the linear
independence of the values in .
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3. Second type Padé approximations. In the following we shall
compute second type Padé approximations for the functions

oo

(B)k
(3.1) gv(2) —kzzo(c)k('yyz)k, v=1,...,D.
LEMMA 3.1. Let oy, i =0,..., DI, be defined by the equation
D DI
(3.2) H(% —w)l = Zai,lwi.
t=1 i=0

Then the coefficient ;| may be expressed as a sum

33 ou=(1" Y <l> (; )75—1'1 +onfsip

) T \u
Zl+...+lD:Z
fori=0,1,...,DI.

Proof. Use the binomial identity
!
=) = Y1)kt
i=0
THEOREM 3.2. Foralll € Z*, X€N, and 1 <v < D,

Aip(2)gu(2) = B (2) = R{%) (2),

where
3.4 A gl Z+p A Jitp= DL Di- ‘
( ) l)\ Z z+)\
Dl+/\ 1
(3.5) BY)(2) = Z g;;{nz",

(3.6) Zgl n?

with ord,— OR(V)( ) > (D+ DI+ A=p+1 and
min{n,DIl}
(v) (C)p—i(B)n—i n—i
= ODl—j v
LA Z P B) b i (C)ns !

Proof. We set the common approximation (denominator) polynomial

1=0

Dl

(Citp-Dt_pi—i
Aia(z) = Oil~—o——2 "
2 7).
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with p =1+ DI+ X — 1. By the Cauchy product, the coefficients of

AlA Zgl)\n

are determined as

min{n,DI}
v _ o Cpi(Bni
Jan = ; IDi-i (B)D1—i+A(C)n—i v

For the values A + DI < n < p, we compute
DI

g”\" ZU” C+n—Dl+i)pn(B+A+i)yprrvy P
=0

-1
= DIZPJZGMV :

where p; is defined by the equation

-1
j=0

By applying the operator ¥, where 9, = w(d/dw), to both sides of |D
we obtain

DI o D v=1,....,D
(37) Zai,l’}/;l/ij = ’19‘170 H <7t - w)l|w:,yy =0 A { ] -0 1—1
i=0 t=1 T '
Therefore,
gl(,l;\),n:[) Vn:)\+Dl,7Pa

and we set
ADil—-1

B(2) = Z a2

A+DI—1 min{n,Dl}

= Z Z Opi— 'Ll C+n—’)pn ’Y,Clﬂ'zn,

(B+n—14)Diyr—n

(v) ._ _ . ptl
R\ (2) == Z QM 2" =2P Zgl)\p+k+lz
n=p+1

in order to get

(3.8) Ap(2)gu(z) = B(2) = R\ (2), v=1,...,D. n
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4. The nonvanishing determinant. In this section we provide the
proof for the independence of the approximations computed in Section 3.
The core of the proof is Theorem 4.2 concerning the order of the deter-
minant as a polynomial in z connected to the systems of approximations.
This promptly yields the validity of Theorem 4.3, i.e. the nonvanishing of
the determinant. First, let us introduce a useful lemma the proof of which
goes back to [21] (see also [I1] and [I7] for further discussions on generalized
Vandermonde determinants).

LEMMA 4.1. Let n be a nonnegative integer, and let B,,(x) denote an
n X m matriz formed by applying x(d/dx) subsequently on its columns:

1 0 0 . 0
z2 222 A2 ... gm—lg2
Bp(x) =1 : :
zt iz’ 2ot im gt
2"t (n—1)2" Y (n—-1)22"t .. (n— 1)l

If n=mq + --- + mgq is a partition of n, then

) m]fl

det[Bp, (1) ... By, ()] Ha H il H )T

=1 1<j<i<d
THEOREM 4.2. If v, # Ym 75 0 for everym #m, 1 < n,m < D and
C—-—B=#0,-1,-2,..., then

detlg)yi 1 ppiliv 20, 1<j<D,1<v<D,
)

@) is the coefficient of the lowest term in Ry \ ; ().

WhETE G xtj-1,0+5

Proof. Firstly, let us compute

(B4+A+i)
AR
91 )\p+1 Zaz v

"CHAFiti-
_ A - o (B+A+i)1(C+X+i+l-1+B-0C) ;
I~ CHA+iti—1 W
Dl
B-C .
l+>\ B A 1 i
2_oulB+ +Uz« +C+A+i+b&>%

=0
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DI DI .
. . B+X+i)-1
A (B A Y B—-C . ( i+I+A
— W Z@ 00”( FA+ oy )Zioaz’lC+A+i+l—1
(B+A+i)1
B C I+A i
g2 z O titi-1
_ C— B 4+ 04, ;
(—D)Y Yy E Dy oy [

by applying (3.7) repeatedly. Let us introduce an auxiliary variable x, denote

DI ;
G\ ) = (7,) Z 0il (%/:,E)
e G P A Al

and form the matrix

GO\, x) e G\, z) ]
Q)= GYAN+j2) ... GPI\+jz)
GOAN+D—-1,2) ... GPIAN+D—1,2)]
Thus,
(4.1) detgy) ;14 sliv = (“DPUC = B)P (1 p)! det 2(1).
As a polynomial in z, we have
FO©0,z) ... F®)0,z)
det () = (71 -+ yp) x(z)+0A : - :
FOMD-1,2) ... FPND-1,x)

= (31 -1 e HPN det O(x)
with

. o, - 0<j<D-1.
'%EZ lC+A+z+g+l J

If v # Ym, n # m, then det _Q(O) is a nonzero Vandermonde determinant
times (v ---yp)P!/(C 4+ A +1—1)p, and hence

D
ord,—o det 2(x) = <2> + DA
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In particular, det £2(z) # 0 (as a polynomial of z). Consider next the fol-
lowing D x D(l + 1) and DI x D(l + 1) matrices:

90,1 91,0 9DI,1 0 0 0
CHA+1-1 CH+A+l " CH+A+DI+l-1 T
0 _9%90,1 oDI—1,l DI, 0 0
A — CHA+1 e C+A+Dl+1-1 C+A+DI+1 o
0 0 90,1 9DI,l
T CH+A+D+1-2 T T C4+A+DIl+D+1—2

and B = [By...By,... BT (a column vector with matrix entries), where

By, = [bijlpxpas1ys  bij = § Tj—iks @ <j < i+ Dk,
0, i+ Dk<j<D({+1).
Set A = [A B]Y. Then
A 0 O
(4.2) AV = |2 v = [0 9
B X(z) E

where by (3.7), O is a D x DI zero matrix and X (z) a DI x D matrix such
_~ D ~
that X (1) is zero, while det 2(x) = 2(2) det 2(z). Furthermore,

V(z)=[Vo(z) Vi ... Vpl,
where
1 . 1
Y1 e YDT
Vo(z) =
(,Ylw)DHDfl (,YDx)DlJerl
and

V,=[(C+A+i+1-1)i4];;, 0<i<DI+D-1,0<j<Il-1,

is a (DIl 4+ D) x | matrix. The entries of V' are polynomials in ¢ and after
elementary column operations (repeated cancgllations of lower terms of the
polynomials, i.e. the terms (C'+ A+ 1 — 1)i7+% in V,,), Lemma 4.1 yields

D (1) ! ,

det V() =T I[3' T (- #0

t=1 j=1 1<n<m<D
when v # 0 and v, # Y. Since rank B = DI, it follows that rank £ = DI
(E is independent of x), and thus by (4.2]),

det Adet V(z) = det Edet 2(z), det E # 0.

This implies that det A = 0 if and only if det fZ(l) = 0. However, det (AZ(a:)
# 0 (as a polynomial in x), which yields det A # 0 (does not depend on x).
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Furthermore,

D
det 2(z) = det Adet E~1aP* det V(z H

and in particular det £2(1) # 0, which together with proves the theo-

rem. =

THEOREM 43 If% % Ym £ 0 for everyn = m, 1 <n,m < D and

C—-—B#0,-1,— , then
(4.3)
—Aia(z) —Aiaga(2) —A1ap(2)
1 1 1
BZ(A)(Z) Bz(,/\)+1(z) Bl(,\)+D( )
Aaz) =1 N , #0.
B B ﬂﬁm>
D D (D)
Bl(,)\)(z) Bl(,A-)H(z) Bl )\+D( ) (D+1)x(D+1)
In particular,
Ol“dZ:() Al,,\ = degz AL)\.
Proof. By (3.8), we may transform the determinant (4.3]) into
Aia(z)  Appgi(z) A a+p(2)
1 1 1
BRE) RRGE) - Flol)

A

(44)  (=)PTALG) =] N , .
R%(z) R, (2) wﬁm>
D D D
RY(2) BB (=) . BB,
Because
ord,—g A;x1j(2) =0 and ord.—g Rl(f’)\)+j(z) >p+j+1, 7=0,...,

where p = (D + 1)l + A — 1, we notice that
D+1
OI‘dZ:() Al,)\(z) =pP- D+ < 9 )
exactly when

D
9 i iy = (DPUC = B)P T Ak det 2(1) # 0,

t=1

(4.5)  det]|

1<v,j<D.
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On the other hand, as
deg, Ajr1j(2) = Dl and deg, Bl()\)ﬂ <A+DL+j—-1,
it follows from (4.3 that
D+1
®&&M@§WD+<2 )

Thus, if (4.5)) is different from zero, then ord, A; y = deg, A; . =

5. Estimates for the approximation polynomials and for the
remainder

LEMMA 5.1. Let ¢,d € Z\ {0} with ged(e,d) =1 and p € P be such that
ptd. If p™|i!, then p™ | (c + dk;d); for i,m € Z*.

Proof. Since p 1 d, there exists d~! € Z such that dd~' = 1 (mod p™).
Thus,
(c+dk)(c+dk+1))---(c+dk+i—1))
=d'(cd +k)(cd +Ek+1)(cd +h+i—1)

fed M+ k+i—1
:dz<c B )i!EO (mod p™)

]
by the hypothesis p™ |i!, and so p™ | (c + dk;d);. =

As a consequence of Lemma 5.1 we have

Hpordp(i!) (C + El'ka d)l c7 Hpord (a!) H ordp (i!)

pld pld
Note also that if p|d, then p{ (c;d);, since gcd(c, d) =1.
Let us denote the coefficients of the polynomial A4; (z) by A; = opi—ia;,
and the coefficients of g, (z) by f,il’) = firh, ie.
v — O _ (B
i — ) k= .
(B)Dia—i (O
Then, for 0 <i< DI, 0<i+ k< DI+ X—1,
(C)prerti-1-i Bk (CH+E)prpxpi—i—i—x  (C+k)pik

473 = = = .
Tr (B) pi4a—i(C)k (B +k)piyr—i—k (B + k) Diar—ik
The partial fraction decomposition
—l—i—k
1 P bav;
5.1 = —
5-1) (B+K)Diyr—i—k ]Z; a+b(k + j)

eSS
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gives
(C+k)piwk
5.2
(5:2) (B + k) Diga—i—k
_ (CHh), ’Hi"“ p—l—i—k\ (-1)
ik Bkt

7=0
where we write
(CH+Ek)p—i-k _l|<0+k+l—1> (C’—I—p—i—l)
(p—1—i—Fk)! I p—l—i—k)
Altogether, we obtain the expression
(CH+E)pi-k _l'<0+k+l—1> (C—l—p—i—l) (p—1—i—k)!
(B+k)Dir—i-k l p—l—i—k)(B+E)piiriw
where, by and the first definition in ,
(p—1—1—k)!
(54) Epia-i(®) (B + k) Di4r—i—k
More precisely, since ged(b, Epj+a—i(a,b)) = ged(a, b) = 1, we have

prb pordp((p l—i—k)!)
E _i(a,b) € Z
(a+bkib)pro—ik (a.b)

This, together with ged(e,d) = 1, yields

(5.3)

€ Z.

a;
Epipa-i(a,b)d 2 g" Ry (d)wp—i-i-1(9) Z{Ck € Z,

where g is the denominator of b/d. Finally,
aifi
l!
LEMMA 5.2. For the coefficients of the approximation polynomials of
Theorem 3.2 we have

2 (a,b,d)
Il

and furthermore

25 (a,b, d) 00 (a,b,d)
fAl,)\(Z% %Bi)\)('z) € 2[717 -5 VD; Z]a

Epiya(a,b)d2gP P w(d)w,—1(g) €Z YO<i+k<DI+X-1.

aifi €7 YO<i+k<DI+X—1,0<i<DI,

where
2 (a,b,d) = d'=2gP" w1 (g)wi(d) Eprya(a,b).

Proof. The coefficients of the polynomial BZ(V/\)(z) are

91)\71— Z Afk Z Ulei,l’Ylyjaz‘fk

i+k=n i+k=n
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for0<n<DlI+X-—1, and

d'2gP " w(d)wy—1(9) Epiyala, b)
I
as can be seen by the previous discussion. m

LEMMA 5.3. If A = A(I) = |nl], n > 0, then for every w € M and |
sufficiently large,

max{] (25 (a,b,d) /1) Ay (2) s (25 (a,0,d) /1) BY) (2) ]}
< Céw (‘ (z)|5+n)l+c1 logl,

: aifk € Zu

where ¢c1 > 0 and
C = 524" dpg(gpge® )P,

and we denote I'(z) = (m12,...,7vpz) for brevity.

Proof. Firstly, we let w|oo and we estimate the sum

p"i"“ ( - k:> (—1))
B+k+jl|,

=0
p—l—i—k )
= o<i ik B+Z+j ; <p lj ! k) < Moe-l-ik
where
M= 0<ipoteivk BJFI;W‘ for [ large enough.

On the other hand, another simple application of the binomial theorem

yields
C+k+1-1 C+p—l—1 <22|—|C|-|+p+l+kfi72
l p—l—i—k)|= ’

and therefore by (5.2]) and ([5.3)) we obtain
(5:5) 125 (a,b,d) /1) A (2)

N ‘Q(D)(a b d)ilffm—'z(c)pi 7
R "I(B) pi4a-i

w

(©)p-

<o w|
< IN(B)pi+a—i

|2

1=0
Dl . 7

< “Ql(,?)(a” b, d)M4HCH+p—1 Z ‘Ulei,l‘w Z
=0
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Dl i

D - 4

= MQZ(,A)(aabv d)4!1C1+p—1 DlMBIZ EN -
=0 w

D
D _
< MO (a,b, A2 P T (el + 412
t=1

D
= M2 (a,b, AT T (2], + 4
t=1

D
< MY (a,,d)5PMNICTA2TT |ypal,.

t=1
Similarly,
D v
() (a,b,d) /1) B (2) ]
D A+Di—-1 '
:Ql{)\)(a,b,d)‘ Z 2" Z opi—i(aife/l)v, ™"
n=0 i+k=n w
D A+ DIl—1 '
<oPabd) S Al S lopiilel@ife/D] Il
n=0 i+k=n
b ADi—1 Dl A
< MO (a,b,d) Y el g2l =2 S gy 4 [
n=0 i=0
b ADl—-1 D
<MD bd) Y Il a4 Tl + 4!
n=0 t=1
I ADIl—1 D
< MOR (a,b, d)alICTH=2 5™ oD (23 + 4l )
n=0 t=1

< MY (a,b,d)5PHNICTH=2(Dy 4\ (T () [7,) DAL
If w|p, then by Lemma 5.2,
(207 (@,b,d) /1) B (2)

= max ‘Z" Z UDl—i,Wf(Ql(,l;)(aab,d)/“)aifkw

0<n<DI+A-1 )
i+k=n
0<i<DI
< n Tl
- Ognén[%)j-)\_l‘dw zI_SCa:Xn ‘ ‘w‘O—Dl z,l|w
0<i<DI
= T)w)" =1 | |np LD |
- OfnénDaz)—(i-)\—l(‘Z|w| |w) ’LI—Elka:Xn i1+"'£3%}iDl—i h/l|w ’7D|w ’ ”w

0<i<DI
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— ()"
OgnénDai}—&(-)\—l 17 (2)lk
X max max  (|yi|w/[Thw)' ™ -+ (7Dl /|Tw) P

i+k=n i1+-+ip=DIl—1
0<i<DI

< (|0(z)5) P
and also

O (@, b, d) /1) A (2)]w < =iy ip |
(23 (@b, d) AN < | | max ™ ol ek
< (0@

Thus, for every w € M we are left with the upper bound

2 (a,b,d)

2P (a,b,d)
(5.6) max{‘l'AM(z) B S e

!

)

B (2)

J

< G (IT(=)[5)"*,

w

where

C = M“Ql(,g)(a’ b, d)(Dl + /\)5DZ4HCH-i-/\—i-l—27

and 0,y = 1 if w|oo, while &,, = 0 if w|p.

By setting A = |nl], n > 0, and by making use of the well-known
estimates (the first inequality follows directly from and we refer to
Lemma 1 of [I] for the asymptotic bound)

won(d) < i, A}linoo 111(E]\J/\[4(6L, b)) _ ¢?b) Z 1_ A(D),

we are led to the estimate
2 (a,b,d) = d' 26" w, i (g)wi(d) Eprea(a, b)
< co(guge ™) PN (dpg)’
with c¢g > 0. From the upper bound we obtain in turn
(65.7) ma{|(25) (a5, )/ Ara () s [(2f3 (@ 0,) /1) B (=) )
< Co(Dl + )\)C6wl(|m’z})(l)+n)l < Ctswl(|m|>{v)(D+n)l+cl logl’
where ¢; > 0 and C = 524" dpug(gu,e? )P proving the lemma.
LEMMA 5.4. Let |I'(2)], <1 and ord,(d) > ord,(b) if v|p. Then
(263 (@b, ) /IR )] < CRTERIPHVesrsl e >0,
for every v € M, where
Cr = dpa(gnge )1+ P277130.
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Proof. Let v|oco. Then

k
R () < W)HZ\Q ,p+k+1!v!2\v

where, for sufficiently large [,

DI
kel (C)p-i(Bptht1—i
9 = |y, [Pt O DIyl v
\ ,p+k+1|” vl Z " (B)pi—ien(C)prrr—i |,
DI '
Lk . (B4p+i—Dlpy
— oii(B+A+1)— : v
vl Z i ) 1(6’4—p+l—Dl)k+17 v

1=0
= (=1 Pyl

Dl B+A+itl—2
ZUz‘,l -1

< (l _ 1)! . |’Yu|£,+)\+k2HBH+)‘+l_2

I

Jj=0

(1+ o)
Crp—Ditivi)™

(2

Di k
, B-C
127,)° 1
XZ‘O—Z,I(%/)‘”U‘ +C+p—Dl+i+j‘
1=0 Jj=0
- B_C k+1 Dl '
< (1= 1)L |y |bFATRlIBI+A+H 2<1+ |é+1—|1|) > o)
=0
=(1-1)- ‘,YV|£)+)\+k2HBH+A+l 2(1 4 ’C"+l |1|> H (Ivelo + 2|0l )
t=1

(l _ 1 ‘F‘P+12HBH+A+Z 23Dl

() (7))

Thus, we arrive at the estimate

IC+1—1]

XZ(F\U(HW'BHC' )

<ep(l = )I2BPITE)IY, e = ea(2) >0,

B-C
R ()] < TG - 1)l BIHA+ 23Dl<1_|_ | >
k

since
B -]

_— d |I'(z)]y < 1.
|C+l—1|—>0 and |I'(2)]y <
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By this upper bound we obtain
D _
\(Q{,A)( b, d)/l') ( o < T(dﬂd(gﬂg Ab ))D+77277+13D|F(Z)|UD+77+1)1

for v|oo.
Let now v|p. Then

D v D > v
(2 (a,b, ) RY (2) = (27 (a,b,d) /1)) 12,
k=0
where

) +k+1—1 _
iAptktl = ZUDZ i@ otk 1—iv0 ., k=0,1,....

By Lemma 5.2,

D v
(2 a,b,d) /)95 o
< maxl\(Ql(’f\’)(a b, d) /10 D1 1 fos a1 —ivE I,
< max [opi-ily 71 ksl T

< F[H-k-i—l B
IRt Oglg%l’fﬁkﬂ ilvs

with

. N <d>p+k+1—ia(a+b)---(a+b(p+/~c—i))
prhti=i = | 3 clet+d) - (c+dp+k—i)
We assume that ordy(d) > ordy(b). Firstly, if p|bd, then |fyiki1-ilp < 1,

and hence we may suppose p 1 bd. If pme (@) | (%3 Y) ptkt1—is T,y €L,y >0,
mp(z,y) being maximal, then

ordy((p+k+1—19)!) <my(z,y) <ordy((p+k+1—19)!)+ My(z,y)
by Lemma 5.1, where My (z,y) = |log(|z| +y(p+ k —7))/log p|. This yields
pihroily = P2 ED (0D < Mo eD < d(1C] 4 p + k)
for every 0 < i < DI, due to the inequality
log(d(|C] + p + k))
logp
By the above estimates, for [ large enough (|I'(2)|, < 1) we get

(58) (2 (@b.d)/MES @] < [TEE max| fpeinr—l, TG

<d(|C| +2p)|T ()17
< 2(|C| 4+ d)(D +n+ 1) (z)|PFr+Dl
< u—v( )| (D+n+1)l—c3 logl c3 > 0. m

Mpy(c,d) < . k=0,1,2,....
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REMARK 5.5. The estimates of the polynomials may, in many special
cases of B and C, be sharpened. For example, in the case of the logarithmic
function, i.e. B =1, C' =2, we have

Dl
l"‘A"’Z Dl—
5.9 A : i
(5.9) Ne Za,( ) )

=0
Dli 1 Z (H—)\-l-Dl z)
ODl—il = = ’Y )
i+k=n k+1 0
) +1i§ (l+>\+Dl z) .
R L (2) = (2m)? Opl—i]———————=7, "
n=0 i=0 Z P tn—it2

This yields C = C, = 37271 in Lemma 5.3. The polynomial (5.9) is
the same as the denominator polynomial Py, mn(z) appearing in [28] with
r=D,l=nand m= A\

6. Proof of Theorem 2.1 and the corollaries. Let
ay = (23 (a,b,d) /1) Ax(1) € Zn, ..., p),
b = (3 (a,b,d)/1)BR (1) € Zn. ..., o),
= (25 (a, b, d) R (1),
where by Lemmas 5.3 and 5.4
max{||a;]|w, Hbl(:j,\)Hw} < Cleu/®ul (|| T||% ) (D+m+O0gl) —. P (1) Wy € M

and

(6.1) s < ClRe/ O3 T (Pat D=0l —. R, (7).

Furthermore,

(6.2) H Pu(l) = ClH(T)(DJrn)lJrO(logl) —=: P(l)
weM

and suppose

Kovlu /K
(6.3) | T | PHtieH ()P < <CC) =: &,

i.e.

logC + (D +n)log H(I') — logé’
D+n+1

Since for all € > 0 there exists {j € N such that

I, 08 < IT)* W=l

log [ T']l;* >
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and
H(T)OUos) < H(T) I > I,
for every [ > [y we have
'p(l) < Cllr{(f)(DJr77+€)l7 RU(Z) < Cﬁnu//@)évlHTH1(]D+77+175)1'

Next, consider the linear form

—bo—i—Zbygy = (bo,...,bp) € KP*1\ {0}

Multiplication of this form by a; », yields

D
a17/\OL =L+ Z bVTl(,I/)\)O’
v=1

where

_boal>\0+2b bl/\OEK*
v=1

for some \g = X\ + 7, where 7 € [0,D — 1], by the nonvanishing of the
determinant in Theorem 4.3. By the product formula we have

1= J] ILlw= H HboaleJFZb bz,\ H HaMoL Zb 7’1(”,\)0 ;
w;év

weM

< I 1Bl Pu@{Ps(IILI + Bl Ru (D)}
weM
wH#v
=PWIBI;  HB)|L|l, + HB)C /P P0)R, (1)
— — *_1 J—
<CZH( )P Bl H(B)| Lo
+ H( )(CH(D)PHmtee T+ =o)t.

Since € > 0 may be chosen arbitrarily small, we know from ([6.3]) that
(CH( )D-HH-Eg 1HFHD+17+1—5)Z —~0 as | — 0,

and therefore we may find, by choosing H (B) large enough, say H(B) > Hy,
the maximum l1 of [ > ly such that

(6.4) H(B)(CH(T)PHe [T >

l\D\H

This in turn implies by taking the logarithm on both sides of (6.4, that
log H(B) + Iy log(&, [ T||7 " 1CH(I)PH) > 0
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and o
log H(B)

log (&, |||y " CH(T)P+n)

h<-

Thus, for | =1; + 1,
Czl+1H(f)(D+n)(ll+1)|,§H;—1H(§)HL”U > %

by the product formula, and

IB]l
HLIIUZ e
( )(CH( yP+m)h+
Gl Bl
> .
= H(B)L-log(CH D)D) log(er [TV T7H et @)P+m)’ C1 >0
Finally,
(6.5) Ll, > C[BI'H(B)™, C >,
where
~ log(&; YT+ )

ko log(& TP CH (T) D)
_ k(D+n+1)log ||, — kd,log((5/3)P21+1)
(8 kuby)logC+ k(D +n)log H(I) + iy (D +n+1)log Ty + Ky, log Cr

and

C = 524 dpg(gug )P, ¢, = 3P 21 dpug(gpuge®) P,
This proves Theorem 2.1.

Proof of the corollaries. 1K = Q or I and B € Z2 ™\ {0}, then H(B) =
max{|bo|,...,|bp|} and

\L|, > CH(B)™ C >0,

by the lower bound ( (6.5). Set v, = &,/q, where &, € I*, ¢ € Zz \ {0} and
write = = (£1,...,&p). Since |I'] = |q| 72| < 1, we have

() < HEH _ HEHG)
~ max{l,|=|} |=|*

and the claim follows from (6.3)). The remaining results in Corollary 2.2 are
straightforward computations, and Corollary 2.3 is a direct consequence of
Theorem 2.1.

=\ =% 1
=H(Z)Z]" "4,
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