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Trace formulas and class number sums
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Nathan Jones (Montréal)

1. Introduction. In [8], Hurwitz writes down formulas for sums of Hur-
witz class numbers H(−∆) as ∆ runs through quadratic progressions to a
prime modulus N . He also mentions that these formulas may be general-
ized to the case where the modulus is not prime. This paper generalizes
Hurwitz’s result to an arbitrary modulus N , and gives a modernized proof,
based on the Eichler–Selberg trace formula. First, we describe all of this
more precisely.

For any negative discriminant ∆, recall the Hurwitz class number

H(−∆) :=
∑

f(x,y)∈Q+
Z (∆)//SL2(Z)

2
|SL2(Z)f(x,y)|

.

Here we are denoting by

Q+
Z (∆) := {f(x, y) = αx2 +βxy+γy2 : (α, β, γ) ∈ Z>0×Z2, β2−4αγ = ∆}

the set of positive definite (not necessarily primitive) integral binary qua-
dratic forms of discriminant ∆, by Q+

Z (∆)//SL2(Z) its orbit space with re-
spect to the classical SL2(Z)-action

f ·
(
a b

c d

)
(x, y) := f(ax+ by, cx+ dy),

and by
SL2(Z)f(x,y) := {A ∈ SL2(Z) : f ·A = f}

the stabilizer in SL2(Z) of the form f(x, y). In addition, H(0) is defined to
be −1/12 and H(m) = 0 when m < 0.

Hurwitz shows, for example, that if N is prime, n > 1 is coprime to N ,
and a is any integer modulo N with the property that a2−4n is a quadratic
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nonresidue modulo N , then

(N + 1)
∑

t≡amodN

H(4n− t2) = 2σ(n) + h
(a)
1 ψ1(n) + · · ·+ h(a)

µ ψµ(n),

where σ(n) is the sum of the divisors of n. The h(a)
i ’s are coefficients which

do not depend on n, and the ψi(n)’s are the Fourier coefficients of the
q-expansions of certain weight 2 cusp forms for the modular curve X(N).
Thus, if we apply the Ramanujan bound |ψi(p)| ≤ 2p1/2 (see [3]), we obtain

(1)
∑

t≡amodN

H(4n− t2) =
2

N + 1
σ(n) +ON,ε(n1/2+ε).

Let us re-interpret this asymptotic formula. Note that, by pairing the
positive definite form f(x, y) with the negative definite form −f(x, y) we
have

H(−∆) =
∑

f(x,y)∈QZ(∆)//SL2(Z)

1
|SL2(Z)f(x,y)|

,

where the sum is now taken over the orbit space of the set of all integral
binary quadratic forms of discriminant ∆. Let M2×2(Z) denote the set of all
integral 2× 2 matrices, and for a fixed pair of integers t and n, define

T (t, n) := {A ∈M2×2(Z) : trA = t, detA = n}.

If t and n satisfy t2 − 4n = ∆, then there is a bijection

(2) QZ(∆)↔ T (t, n)

in which

αx2 + βxy + γy2 ↔
(

(t+ β)/2 −γ
α (t− β)/2

)
.

This bijection is a map of SL2(Z)-sets, where SL2(Z) operates by conjugation
on T (t, n). Thus we may re-write the Hurwitz class number as

H(−(t2 − 4n)) =
∑

A∈T (t,n)//SL2(Z)

1
|SL2(Z)A|

,

where T (t, n)//SL2(Z) denotes the set of SL2(Z)-conjugation orbits in
T (t, n) and

SL2(Z)A := {B ∈ SL2(Z) : B−1AB = A}.

In this paper we prove

Theorem 1. Let N ≥ 1 be any integer level , n ≥ 1 a nonsquare integer
coprime to N and A ⊂ GL2(Z/NZ) any SL2(Z/NZ)-conjugation orbit with

detA ≡ n mod N.



Trace formulas and class number sums 303

Then, for any ε > 0, we have∑
A∈T e

A(n)//SL2(Z)

1
|SL2(Z)A|

=
2|A|

|SL2(Z/NZ)|
σ(n) +Oε(|A|n1/2+ε),

where

T e
A(n) := {A ∈M2×2(Z) : A mod N ∈ A, detA = n and (trA)2 < 4n}.

Note that this theorem specializes to (1) in the case where N is prime
and A is the SL2(Z/NZ)-conjugation orbit of trace a and determinant n.

The case where n = p is prime is of particular interest. The work of
Deuring [4] (see also Theorem 14.18 of [2]) interprets the left-hand side of
(1) as essentially counting the number of isomorphism classes of elliptic
curves over Z/pZ whose Frobenius endomorphism has trace congruent to
a modulo N . Duke [5] uses this observation to unconditionally bound the
mean-square error in the Chebotarev density theorem for the Nth division
fields of elliptic curves over Q, for N prime. In a forthcoming paper we will
use Theorem 1 to strengthen Theorem 2 of [5].

Acknowledgments. This paper comprises a portion of my Ph.D. dis-
sertation. I would like to express gratitude to my advisor William Duke for
his guidance.

2. General framework. Let

A := SL2(Z/NZ)a SL2(Z/NZ)−1, a ∈ GL2(Z/NZ)

be as in Theorem 1, and define D ⊂ GL2(Z/NZ) to be the subgroup gener-
ated by a and the negative of the identity:

D = Da :=
〈
a,−

(
1 0
0 1

)〉
⊂ GL2(Z/NZ).

In order to obtain the theorem using trace formulas, we will make use of the
following properties of D:

1. The group D intersects A nontrivially:

D ∩A 6= ∅.
2. The group D is abelian, so that its space of class functions is spanned

by its multiplicative characters χ.
3. The negative of the identity matrix belongs to D:

−
(

1 0
0 1

)
∈ D.

We will employ a trace formula for the action of TD(n), the associated
degree n Hecke operator, on the space S2(ΓD, χ) of weight 2 cusp forms
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with character χ relative to the associated congruence group Γ = ΓD (for
definitions, see Section 3).

We remark that any other group D satisfying properties 1, 2 and 3
could be used in our proof in place of Da. In fact, one need not assume
D to be abelian, although it conveniently simplifies the proof. All that is
really necessary is that the multiplicative characters on D distinguish the
SL2(Z/NZ) conjugation orbits in D. For example, if

A ∩
{(
∗ ∗
0 ∗

)
mod N

}
6= ∅,

then one could use the trace formula for Γ0(N) with character as developed
in [10] or [7] to prove Theorem 1. Otherwise, we must use other congruence
groups. Chen [1] has also used trace formulas for groups other than Γ0(N)
(in the case of prime level and trivial character) to deduce the existence of
isogenies between the jacobians of certain modular curves.

3. Notation and background. Throughout this paper we use the
standard notation:

Γ (N) :=
{
γ ∈ SL2(Z) : γ ≡

(
1 0
0 1

)
mod N

}
.

In particular, Γ (1) denotes the full modular group SL2(Z). For any subset
S ⊆M2×2(Z/NZ) we put

TS := {A ∈M2×2(Z) : detA > 0, A mod N ∈ S}.

Further we define, for any integers t and n,

TS(n) := {A ∈ TS : detA = n} and TS(t, n) := {A ∈ TS(n) : trA = t}.

We abbreviate T := TM2×2(Z/NZ), so that our previous notation T (t, n) is
consistent.

If X is any set of matrices stable by left (resp. right) multiplication by
a group Γ of matrices, we use the usual notation Γ\X (resp. X/Γ ) for the
left (resp. right) coset space, whereas X//Γ denotes the space of conjugation
orbits, if Γ acts on X by conjugation. We denote by

Γx := {γ ∈ Γ : γxγ−1 = x}

the centralizer in Γ of x ∈ X. Finally, Z(Γ ) denotes the center of the
group Γ , and I denotes the 2× 2 identity matrix.

3.1. Preliminaries. We now briefly set up the background, following [9],
where full details (of the weight k > 2 case) may be found. For an even
positive integer weight k ≥ 2 and a function f on the upper half-plane we
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define (
f |k
(
a b

c d

))
(z) := (ad− bc)k/2(cz + d)−kf

(
az + b

cz + d

)
.

Suppose Γ is any Fuchsian group of the first kind and χ : Γ → C∗ is a
multiplicative character whose kernel has finite index in Γ . We consider the
space of holomorphic weight k modular forms with character χ for Γ ,

Mk(Γ, χ) = {f : H→ C : f holomorphic (also at cusps),
∀γ ∈ Γ, f |kγ = χ(γ)f}.

Note that if −I ∈ Γ we have

(3) χ(−I) 6= (−1)k ⇒ Mk(Γ, χ) = {0}.
The subspace of cusp forms is defined by

Sk(Γ, χ) := {f ∈Mk(Γ, χ) : f ≡ 0 at the cusps of Γ}.
We recall the action of Hecke operators on these spaces. Define the semigroup

Γ̃ := {g ∈ GL+
2 (R) : [Γ : gΓg−1 ∩ Γ ] <∞ and [gΓg−1 : gΓg−1 ∩ Γ ] <∞}.

Let Υ be any subsemigroup satisfying Γ ⊆ Υ ⊆ Γ̃ and assume that χ extends
to a character of Υ so that for α ∈ Υ and γ ∈ Γ we have

(4) αγα−1 ∈ Γ ⇒ χ(αγα−1) = χ(γ).

Given any finite union of double cosets

T =
⊔
α∈Υ ′

ΓαΓ (Υ ′ ⊂ Υ ),

denote by T (or by Tχ, when we wish to emphasize the character χ) the
Hecke operator

T : Sk(Γ, χ)→ Sk(Γ, χ),

defined by the finite sum

T (f) =
∑
α∈Υ ′

(detα)k/2−1
∑

α1∈Γ\ΓαΓ

χ(α1)f |kα1.

We refer to this situation by saying that the double coset space T defines
the Hecke operator T .

3.2. The Eichler–Selberg trace formula. We use the following trace for-
mula due originally to Eichler [6] (see also [11], which works out the χ|Γ =
nontrivial case). The set-up is as follows. Let T = Tχ be any Hecke operator
(defined by the double-coset space T ) acting on the space Sk(Γ, χ) of cusp
forms for Γ with character χ. Let

T h := {α ∈ T : (trα)2 > 4 detα and α’s fixed points are cusps of Γ}
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and
T e := {α ∈ T : (trα)2 < 4 detα}

denote the subsets of hyperbolic and elliptic matrices, respectively. If the
matrix α is hyperbolic, then let ηα and ζα be its real eigenvalues, taken in
either order, and define

sgnα := the sign of either eigenvalue.

If α is elliptic, then choose σ ∈ SL2(R) so that

σασ−1 = r

(
cos θ sin θ
− sin θ cos θ

)
(r > 0)

and define
ηα := reiθ, ζα := re−iθ.

Theorem 2. Suppose that the double-coset space T ⊂ GL+
2 (R) defining

T contains no scalar or parabolic elements. If −I ∈ Γ , assume also that
χ(−I) = (−1)k. Then the trace trT of the Hecke operator T is given by

(5) trT = −te − th + δ(χ, k)
∑

α∈Γ\T

χ(α),

where

δ(χ, k) :=
{

1 if k = 2 and χ|Γ ≡ 1,
0 otherwise,

(6)

te :=
∑

α∈T e//Γ

χ(α)
|Γα|

ηk−1
α

ηα − ζα
,

and

th :=
1

|Z(Γ )|
∑

α∈T h//Γ

χ(α) (sgnα)k
min{|ηα|, |ζα|}k−1

|ηα − ζα|
.

Theorem 1 is obtained by using a particular case of Theorem 2. We now
specify the Fuchsian group Γ and Hecke operator T we will use. Given the
discussion in Section 3.1, it remains to define Γ and Υ (and describe the
characters χ of Γ and how they extend to Υ ) as well as the double-coset
spaces T defining our Hecke operators.

Given any subgroup
D ⊂ GL2(Z/NZ)

with properties 1, 2 and 3 from Section 2, we take

Γ = ΓD := TD(1) = {γ ∈ Γ (1) : γ mod N ∈ D}
and Υ to be the semigroup TD. We fix a group homomorphism

χ : D ∩ SL2(Z/NZ)→ C∗.
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Since D is abelian, it is not hard to show that any such character may be
extended (in |D/(D ∩ SL2(Z/NZ))| different ways) to a character

(7) χ : D → C∗.
Pre-composition with reduction modulo N then defines a character

χ : ΓD → D → C∗

satisfying Γ (N) ⊆ kerχ. By (7), χ extends to a semigroup homomorphism

χ : TD → D → C∗,
and one verifies (4) immediately. We take our Hecke operators T = TD(n)
to be those defined by the double-coset space TD(n).

Note that, by property 3, we have

−TD(n) = TD(n).

If in addition χ(−I) 6= (−1)k, then by (3) the left-hand side of (5) must be
zero. Pairing α with −α in the various sums and using the identities

η−α = −ηα and ζ−α = −ζα,
we see that in this case the right-hand side of (5) is also zero. This shows

Remark 3. The formula (5), applied with Γ = ΓD and T = TD(n), is
still valid if χ(−I) 6= (−1)k.

We will also use (5) with D replaced by its “twin” D′, defined by

D′ := gDg−1, g :=
(

0 1
1 0

)
∈ GL2(Z/NZ),

together with χ’s twin

χ′ : D′ → C∗, χ′(A) := χ(g−1Ag).

The group Γ ′ := ΓD′ , the double-coset space TD′(n) and the Hecke operator
TD′(n) are defined just as for D.

4. Proof of Theorem 1. Having set up all the specifics, we are now
ready to prove Theorem 1.

4.1. Eliminating the weights from the elliptic term. We begin by us-
ing the twin group D′ to obtain (in the weight k = 2 case) an expression
involving the simpler elliptic term∑

α∈T e
D(n)//Γ

χ(α)
|Γα|

in place of
∑

α∈T e
D(n)//Γ

χ(α)
|Γα|

ηα
ηα − ζα

.

To do this, we express the sum of the traces

tr(TχD(n)) + tr(Tχ
′

D′(n)),
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using Theorem 2. (Note that since we assume n is not a square, the double-
coset space TD(n) (resp. TD′(n)) does not have any scalar or parabolic ele-
ments.) First, note that the map

TD(n)→ TD′(n), α 7→ gαg−1, g =
(

0 1
1 0

)
∈ GL2(Z),

allows us to write the elliptic term of tr(T χ
′

D′ (n)) as∑
α∈T e

D′ (n)//Γ ′

χ′(α)
|Γα|

ηk−1
α

ηα − ζα
=

∑
α∈T e

D(n)//Γ

χ′(gαg−1)
|Γgαg−1 |

ηk−1
gαg−1

ηgαg−1 − ζgαg−1

= −
∑

α∈T e
D(n)//Γ

χ(α)
|Γα|

ζk−1
α

ηα − ζα
,

where the second equality follows from the identities

ηgαg−1 = ζα and ζgαg−1 = ηα.

Thus, if k = 2, we see that tr(TχD(n)) + tr(Tχ
′

D′(n)) is equal to

(8) −
∑

α∈T e
D(n)//Γ

χ(α)
|Γα|

−
∑

α∈T h
D(n)//Γ

χ(α)
min{|ηα|, |ζα|}
|ηα − ζα|

+ 2 · δ(χ, 2)
∑

α∈Γ\TD(n)

χ(α).

4.2. Using orthogonality to pick out residue classes. We will now use the
orthogonality relations of the characters χ in such a way that our sums will
be over matrices α which are congruent modulo N to a prescribed matrix.
Using property 1 of Section 2, we may choose a ∈ D ∩A. We compute

1
|D∗|

∑
χ∈D∗

χ(a)[tr(TχD(n)) + tr(Tχ
′

D′(n))].

Using the orthogonality relations
1
|D∗|

∑
χ∈D∗

χ(a)χ(α) =
{

1 if α ≡ a mod N ,
0 otherwise,

together with (8), we find that the sum
1
|D∗|

∑
χ∈D∗

χ(a)[te(T
χ
D(n)) + te(T

χ′

D′(n)) + th(TχD(n)) + th(Tχ
′

D′(n))]

of the elliptic and hyperbolic terms is equal to∑
α∈T e

{a}(n)//Γ

1
|Γα|

+
∑

α∈T h
{a}(n)//Γ

min{|ηα|, |ζα|}
|ηα − ζα|

.
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Using the classical set bijections

Γ\TD(n)↔ Γ (1)\T (n)↔
{(

d b

0 n/d

)
: d |n, b mod (n/d)

}
,

as well as
{χ ∈ D∗ : χ|D∩SL2(Z/NZ) ≡ 1} ↔ (detD)∗

and the exact sequence

1→ D ∩ SL2(Z/NZ)→ D → detD → 1,

we find that the remaining term
1
|D∗|

∑
χ∈D∗

χ(a) · 2 · δ(χ, 2)
∑

α∈Γ\TD(n)

χ(α)

is equal to
2

|D ∩ SL2(Z/NZ)|
|Γ\TD(n)| = 2

[Γ : Γ (N)]
σ(n).

4.3. Passing from Γ to Γ (1). We have now expressed the trace
tr(TχD(n)) + tr(Tχ

′

D′(n)) in terms of a sum over Γ -conjugation orbits. We
will now convert this into a sum over Γ (1)-conjugation orbits.

Lemma 4. We have

(9)
∑

α∈T e
{a}(n)//Γ

1
|Γα|

= [Γ (1)a,N : Γ ]
∑

β∈T e
A(n)//Γ (1)

1
|Γ (1)β|

and

(10)
∑

α∈T h
{a}(n)//Γ

min{|ηα|, |ζα|}
|ηα − ζα|

= Oε([Γ (1)a,N : Γ ]n1/2+ε),

where
Γ (1)a,N := {γ ∈ Γ (1) : (γ mod N)a = a(γ mod N)}.

Proof. First note that, if β ∈ TA(n), then Γ (1)βΓ (1)−1 ∩ T{a}(n) 6= ∅,
and so we may take such a β to belong to T{a}(n). Thus, we may write the
elliptic term as∑

α∈T e
{a}(n)//Γ

1
|Γα|

=
∑

β∈T e
A(n)//Γ (1)

( ∑
α∈(Γ (1)βΓ (1)−1∩T e

{a}(n))//Γ

1
|Γα|

)

=
∑

β∈T e
A(n)//Γ (1)

( ∑
α∈Γ (1)a,NβΓ (1)−1

a,N//Γ

1
|Γα|

)
,
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and likewise with the hyperbolic term:∑
α∈T h

{a}(n)//Γ

min{|ηα|, |ζα|}
|ηα − ζα|

=
∑

0<d<
√
n

d|n

d

n/d− d
∑

β∈T h
A(±(n/d+d),n)//Γ (1)

( ∑
α∈(Γ (1)βΓ (1)−1∩T h

{a}(n))//Γ

1
)

≤
∑

0<d<
√
n

d|n

d

n/d− d
∑

β∈T (±(n/d+d),n)//Γ (1)

( ∑
α∈Γ (1)a,NβΓ (1)−1

a,N//Γ

1
)
.

Into how many Γ -conjugation orbits does Γ (1)a,NβΓ (1)−1
a,N decompose?

Writing a right-coset decomposition

Γ (1)a,N =
⊔
b∈B

Γb,

we have

(11) Γ (1)a,NβΓ (1)−1
a,N =

⋃
b∈B

Γbβb−1Γ−1.

If β is hyperbolic, then the centralizer Γ (1)β equals {±I}, and so, by prop-
erty 3 of the group D, the union (11) is disjoint. Thus, there are exactly
[Γ (1)a,N : Γ ] Γ -conjugation orbits in Γ (1)a,NβΓ (1)−1

a,N , and so∑
α∈T h

{a}(n)//Γ

min{|ηα|, |ζα|}
|ηα − ζα|

≤ 2[Γ (1)a,N : Γ ]
∑

0<d<
√
n

d|n

d

n/d− d
|T (n/d+ d, n)//Γ (1)|.

One can show that there is a bijection

T (n/d+ d, n)//Γ (1)↔
{(

d x

0 n/d

)
: x mod (n/d− d)

}
,

upon which (10) follows from∑
0<d<

√
n

d|n

d ≤
√
n
∑
d|n

1 = Oε(n1/2+ε).

If β is elliptic and Γ (1)β = {±I}, then again (11) is disjoint and (9) follows.
Otherwise, Γ (1)β is a group of order 4 or 6, and in that case we decompose
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the set B of coset representatives as B = B1 tB2, where

B1 = {b ∈ B : Γ (1)bβb−1 ⊆ Γ}, B2 = {b ∈ B : Γ (1)bβb−1 * Γ},

and note that, for b ∈ B2, Γ (1)bβb−1 ∩ Γ = {±I}. We then observe that for
any b, b′ ∈ Γ (1)a,N we have

Γbβb−1Γ−1 = Γb′βb′−1Γ−1

if and only if the equivalent conditions

b′b−1 ∈ Γ (1)b′β(b′)−1Γ ⇔ b′ ∈ ΓΓ (1)bβb−1b

hold. The first condition shows that unless b, b′ ∈ B2 we must have

Γbβb−1Γ−1 ∩ Γb′βb′−1Γ−1 = ∅,

and when b, b′ ∈ B2 the second condition shows that the number of conju-
gation orbits in ⋃

b∈B2

Γbβb−1Γ−1

collapses by a factor of 2/|Γ (1)β|. In this case we have∑
α∈Γ (1)a,NβΓ (1)−1

a,N//Γ

1
|Γα|

=
∑
b∈B1

1
|Γ (1)β|

+
2

|Γ (1)β|
∑
b′∈B2

1
2

=
[Γ (1)a,N : Γ ]
|Γ (1)β|

,

upon which (9) follows, concluding the proof of Lemma 4.

4.4. Finishing the proof. We have now shown that when k = 2,

1
|D|

∑
χ∈D∗

[tr(TχD(n)) + tr(Tχ
′

D′(n))]

= − [Γ (1)a,N : Γ ]
∑

β∈T e
A(n)//Γ (1)

1
|Γ (1)β|

+
2

[Γ : Γ (N)]
σ(n)

+Oε([Γ (1)a,N : Γ ]n1/2+ε).

On the other hand, writing the trace of each TχD(n) with respect to a basis
{f1, . . . , fg} ⊂ S2(Γ ) of Hecke eigenforms, together with

S2(Γ (N)) =
⊕

χ∈(Γ/Γ (N))∗

S2(Γ, χ)

and the Ramanujan bound

|λi(n)| = Oε(n1/2+ε) (TχD(n)fi = λi(n)fi)



312 N. Jones

for the Hecke eigenvalues, we also see that
1
|D|

∑
χ∈D∗

[tr(TχD(n)) + tr(Tχ
′

D′(n))] = Oε

(
genus of X(N)

[Γ : Γ (N)]
n1/2+ε

)
.

Thus,∑
β∈T e

A(n)//Γ (1)

1
|Γ (1)β|

=
2

[Γ (1)a,N : Γ (N)]
σ(n)+Oε

(
genus of X(N)

[Γ (1)a,N : Γ (N)]
n1/2+ε

)

=
2|A|

|SL2(Z/NZ)|
σ(n) +Oε

(
|SL2(Z/NZ)| |A|
|SL2(Z/NZ)|

n1/2+ε

)
,

finishing the proof of Theorem 1. For the genus of X(N), see [9, The-
orem 4.2.11], for example. Note that in case n = p is prime we obtain
the sharper error term O(|A|p1/2), with an absolute constant.

Corollary 5. Suppose B is any subset of GL2(Z/NZ) which is stable
by SL2(Z/NZ)-conjugation and which has constant determinant , i.e.

∀b, b′ ∈ B, det b = det b′.

Then the result of Theorem 1 holds when one replaces A by B, namely∑
A∈T e

B(n)//SL2(Z)

1
|SL2(Z)A|

=
2|B|

|SL2(Z/NZ)|
σ(n) +Oε(|B|n1/2+ε),

with the sharper error term O(|B|p1/2) (with an absolute implied constant)
if n = p is prime.

Proof. Write B =
⊔
iAi, where Ai are SL2(Z/NZ)-conjugation orbits,

and apply Theorem 1.
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