Simultaneous diagonal equations over \mathfrak{p}-adic fields

by
D. Brink (Brasília), H. Godinho (Brasília) and P. H. A. Rodrigues (Goiânia)

Let K be a finite extension of the field of p-adic numbers \mathbb{Q}_{p}. Let \mathcal{O} be the ring of integers in K and let \mathfrak{p} be \mathcal{O} 's unique maximal ideal. We say that K is a \mathfrak{p}-adic field.

Consider R simultaneous diagonal equations

$$
\begin{gather*}
a_{11} X_{1}^{k}+\cdots+a_{1 N} X_{N}^{k}=0 \\
\vdots \tag{*}\\
a_{R 1} X_{1}^{k}+\cdots+a_{R N} X_{N}^{k}=
\end{gather*}
$$

with coefficients $a_{i j}$ in \mathcal{O}. Write the degree as $k=p^{\tau} m$ with $p \nmid m$. A solution $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right) \in K^{N}$ is called non-trivial if at least one x_{j} is non-zero. It is a special case of a conjecture of Emil Artin that ($*$) has a non-trivial solution whenever $N>R k^{2}$. This conjecture has been verified by Davenport and Lewis for a single diagonal equation over \mathbb{Q}_{p} and for a pair of equations of odd degree over \mathbb{Q}_{p} (see [3] and [4]), but the general case remains open.

The main results of the present paper are the following two theorems.
Theorem 1. The system $(*)$ has a non-trivial solution if the number of variables N exceeds $(R k)^{2 \tau+5}$.

Theorem 2. Let n be the degree of the field extension K / \mathbb{Q}_{p}. Then $(*)$ has a non-trivial solution if N exceeds $4 n R^{2} k^{2}$.

Theorem 1 has the virtue of being independent of K and can be compared with Skinner [11] where the bound $N>k^{6 \tau+4}$ is given for a single diagonal equation. Theorem 2 is a natural generalisation of Knapp [7, Theorem 1]

[^0]and improves Dodson [6, Theorem 1] and Knapp [7, Theorem 3]. See also Skinner [11] for other references.

Define the integer $\Gamma(R, k)$ as minimal with the property that any system $(*)$ with $N>\Gamma(R, k)$ has a non-trivial solution over K. Then Theorems 1 and 2 can be restated as $\Gamma(R, k) \leq(R k)^{2 \tau+5}$ and $\Gamma(R, k) \leq 4 n R^{2} k^{2}$, respectively. The idea of the proof of the theorems is to first solve (*) in the finite residue ring $\mathcal{O} / \mathfrak{p}^{\gamma}$ (for a suitable exponent γ), and then lift this solution to K via a version of Hensel's lemma.

A solution $\mathbf{x} \in \mathcal{O}^{N}$ is called primitive if at least one coordinate x_{j} is a unit in \mathcal{O}. Define the integer $\Phi(R, k, \nu)$ as minimal with the property that any system $(*)$ with $N>\Phi(R, k, \nu)$ has a primitive solution modulo \mathfrak{p}^{ν}.

The Chevalley-Warning theorem (see [2, Lemma 4]) states that any system of homogeneous polynomials over a finite field has a non-trivial zero if the number of variables exceeds the sum of the polynomials' degrees. In the special case of systems of diagonal equations, the Chevalley-Warning theorem gives

$$
\begin{equation*}
\Phi(R, k, 1) \leq R k \tag{1}
\end{equation*}
$$

For general moduli $a, b \geq 1$ one has the relation

$$
\begin{equation*}
\Phi(R, k, a+b)+1 \leq(\Phi(R, k, a)+1) \cdot(\Phi(R, k, b)+1) \tag{2}
\end{equation*}
$$

This is shown using a well-known "contraction" argument (see examples in [4] and [11]). The idea is to construct a primitive solution modulo \mathfrak{p}^{a+b} in $N=(\Phi(R, k, a)+1) \cdot(\Phi(R, k, b)+1)$ variables as follows: First divide the left hand side of $(*)$ into $\Phi(R, k, a)+1$ subsystems of diagonal forms, each in $\Phi(R, k, b)+1$ variables, and solve each system primitively modulo \mathfrak{p}^{b}. Then multiply each of these solutions by a new variable to form a system of diagonal forms in $\Phi(R, k, a)+1$ variables. Since every coefficient is a multiple of \mathfrak{p}^{b}, to solve this new system primitively modulo \mathfrak{p}^{a+b} is basically to solve it modulo \mathfrak{p}^{a}. This results in a primitive solution modulo \mathfrak{p}^{a+b} to $(*)$ which proves (2).

Let $A=\left(a_{i j}\right)$ be the coefficient matrix of $(*)$. A solution $\mathbf{x} \in \mathcal{O}^{N}$ is called non-singular if the matrix $\left(a_{i j} x_{j}^{k}\right)$ has rank R modulo \mathfrak{p}, or equivalently, if the columns of A corresponding to the indices j with $x_{j} \not \equiv 0(\bmod \mathfrak{p})$ have rank R modulo \mathfrak{p}.

The following strong version of Hensel's lemma is a natural generalisation of [5, Lemma 9], from p-adic to \mathfrak{p}-adic fields. The definition of γ here is somewhat better than the value $2 e \tau+1$ often found in the literature (although Alemu [1] has a result for one equation similar to the lemma below).

Lemma 1. Let e be the ramification index of K over \mathbb{Q}_{p} and define

$$
\gamma:= \begin{cases}1 & \text { for } \tau=0 \\ e(\tau+1) & \text { for } \tau>0 \text { and } p \neq 2 \\ e(\tau+2) & \text { for } \tau>0 \text { and } p=2\end{cases}
$$

The system (*) then has a non-trivial solution in K if has a non-singular solution modulo \mathfrak{p}^{γ}.

Proof. We first show that a unit $u \in \mathcal{O}^{*}$ is a k th power if $u \equiv \xi^{k}\left(\bmod \mathfrak{p}^{\gamma}\right)$ for some $\xi \in \mathcal{O}^{*}$. This is the standard Hensel's lemma for $\tau=0$, so we may assume $\tau>0$. Then multiplication $x \mapsto k \cdot x$ maps \mathfrak{p}^{e} onto $k \cdot \mathfrak{p}^{e}=\mathfrak{p}^{e \tau+e}=\mathfrak{p}^{\gamma}$ for $p \neq 2$, and $\mathfrak{p}^{2 e}$ onto $k \cdot \mathfrak{p}^{2 e}=\mathfrak{p}^{\gamma}$ for $p=2$. For any $n>e /(p-1)$, the \mathfrak{p} adic exponential function and the \mathfrak{p}-adic logarithm are inverse isomorphisms between the additive group \mathfrak{p}^{n} and the multiplicative group $1+\mathfrak{p}^{n}$ ([9, Kapitel II, Satz 5.5]). It follows that exponentiation $x \mapsto x^{k}$ maps $1+\mathfrak{p}^{e}($ for $p \neq 2)$ and $1+\mathfrak{p}^{2 e}$ (for $p=2$) onto $1+\mathfrak{p}^{\gamma}$. The diagram shows the situation for $p \neq 2$:

Therefore, the elements of the set $\xi^{k} \cdot\left(1+\mathfrak{p}^{\gamma}\right)=\xi^{k}+\mathfrak{p}^{\gamma}$, to which u belongs, are all k th powers.

Now let $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right)$ be a non-singular solution to $(*)$ modulo \mathfrak{p}^{γ}. We may assume $x_{1}, \ldots, x_{R} \not \equiv 0(\bmod \mathfrak{p})$ and that the first R columns of A have rank R modulo \mathfrak{p}, i.e. form a non-singular matrix modulo \mathfrak{p}. Row operations on A will not change the solution set, so we may assume

$$
A=\left(\begin{array}{cccccc}
a_{11} & & 0 & a_{1, R+1} & \ldots & a_{1 N} \\
& \ddots & & \vdots & & \vdots \\
0 & & a_{R R} & a_{R, R+1} & \ldots & a_{R N}
\end{array}\right)
$$

with $a_{11}, \ldots, a_{R R} \not \equiv 0(\bmod \mathfrak{p})$. For each $i=1, \ldots, R$ we have $x_{i}^{k} \equiv$ $u_{i}\left(\bmod \mathfrak{p}^{\gamma}\right)$ with $u_{i}=-\left(a_{i, R+1} x_{R+1}^{k}+\cdots+a_{i N} x_{N}^{k}\right) / a_{i i}$. By the above, the equation $X^{k}=u_{i}$ has a solution x_{i}^{\prime} because it has the solution x_{i} modulo \mathfrak{p}^{γ}. We conclude that $\left(x_{1}^{\prime}, \ldots, x_{R}^{\prime}, x_{R+1}, \ldots, x_{N}\right)$ solves $(*)$.

The notion of a p-normalised system of diagonal equations over \mathbb{Q}_{p} was introduced in [5]. It is shown there that any system of the form $(*)$ over \mathbb{Q}_{p} has a non-trivial solution provided that any p-normalised system has a non-trivial solution. All of this is easily generalised to π-normalised systems with \mathfrak{p}-adic coefficients (see [7] for details).

Let $\mu(d)$ be the maximal number of columns of the coefficient matrix A which, when considered modulo \mathfrak{p}, lie in a d-dimensional subspace of \mathbb{F}_{q}^{N}. The key property of π-normalised systems is the inequality

$$
\begin{equation*}
\mu(d) \leq N-(R-d) N / R k \quad \text { for } d=0, \ldots, R-1 \tag{3}
\end{equation*}
$$

This is [5, Lemma 11] combined with [2, eq. (9)]. An equivalent statement of this inequality is that any matrix having $R-d$ rows which are linear combinations of the rows of A, independent modulo \mathfrak{p}, contains at least $(R-d) N / R k$ columns which are non-zero modulo \mathfrak{p}.

The following slight strengthening of [2, Lemma 2] essentially gives one extra non-singular submatrix.

Lemma 2. Suppose $(*)$ is π-normalised and has more than $k(t R-1)$ variables, where t is arbitrary. Then the coefficient matrix A contains t disjoint $R \times R$ submatrices which are non-singular modulo \mathfrak{p}.

Proof. For every $d=0, \ldots, R-1$, the assumption $N>k(t R-1)$ combined with (3) implies $\mu(d) \leq N-(R-d) t$ since $\mu(d)$ is integral. Now the conclusion follows by a combinatorial result of Aigner (see [8, Lemma 1] or the comment before [2, Lemma 2]).

Next, we extend and improve [2, Lemma 5] using the same idea of proof.
Lemma 3. Suppose $(*)$ is π-normalised and has more than $R k \cdot \Phi(R, k, \nu)$ $-k(R-1)^{2}$ variables, where ν is arbitrary. Then $(*)$ has a non-singular solution modulo \mathfrak{p}^{ν}.

Proof. Suppose first that $(*)$ has $N=k(t R-1)+1$ variables for some t to be defined later. Then, by Lemma $2, A$ has t disjoint $R \times R$ submatrices which are non-singular modulo \mathfrak{p}. Discard all variables not belonging to one of these t submatrices. Then we have $t R$ variables left. In each of all but one of the t submatrices, replace all R variables by one new variable. Then we have a new system with $t-1+R$ variables. This system, by definition, has a primitive solution modulo \mathfrak{p}^{ν} if $t-1+R>\Phi(R, k, \nu)$, hence if $t=\Phi(R, k, \nu)-R+2$. Not all the new variables of this solution can be zero modulo \mathfrak{p} since the columns corresponding to the old variables form a non-singular submatrix modulo \mathfrak{p} and so are linearly independent modulo \mathfrak{p}. Therefore, "inflating" the new variables again gives a non-singular solution to our original system $(*)$ in $N=R k \cdot \Phi(R, k, \nu)-k(R-1)^{2}+1$ variables, and the lemma is proved.

Recall that $\Gamma(R, k)$ is the minimal integer such that any system $(*)$ with $N>\Gamma(R, k)$ has a non-trivial solution. From Lemmas 1 and 3 it follows that

$$
\begin{equation*}
\Gamma(R, k) \leq R k \cdot \Phi(R, k, \gamma)-k(R-1)^{2} \tag{4}
\end{equation*}
$$

since any bound on $\Gamma(R, k)$ may be proved under the assumption that $(*)$ is π-normalised. For degree k not divisible by $p,(4)$ and (1) give

$$
\begin{equation*}
\Gamma(R, k) \leq(R k)^{2}-k(R-1)^{2} \tag{5}
\end{equation*}
$$

which extends [2, Theorem 3].
Now, Theorem 2 follows from (4) and the following lemma.
Lemma 4. With γ defined as in Lemma 1, we have

$$
\Phi(R, k, \gamma) \leq \begin{cases}p(p-1)^{-1} n R k & \text { for } p>2 \\ 4 n R k & \text { for } p=2\end{cases}
$$

Proof. To bound $\Phi(R, k, \gamma)$, we must find a primitive solution modulo \mathfrak{p}^{γ} to $(*)$. The additive group of the finite residue ring $\mathcal{O} / \mathfrak{p}^{\gamma}$ is equal to the direct sum of n cyclic subgroups of order $p^{\gamma / e}$,

$$
\mathcal{O} / \mathfrak{p}^{\gamma}=\mathbb{Z} \lambda_{1} \oplus \cdots \oplus \mathbb{Z} \lambda_{n}
$$

This can be seen for example by counting the number of elements of any given order in both groups and noting that these numbers are the same (see also [1] for a different proof and a more general statement). Writing each coefficient $a_{i j}$ of $(*)$ as a \mathbb{Z}-linear combination of the λ_{i} 's, we see that it suffices to solve $n R$ congruences

$$
\begin{equation*}
c_{i 1} X_{1}^{k}+\cdots+c_{i N} X_{N}^{k} \equiv 0\left(\bmod p^{\gamma / e}\right), \quad i=1, \ldots, n R \tag{6}
\end{equation*}
$$

with coefficients $c_{i j} \in \mathbb{Z}$. We shall only look for solutions $\mathbf{x} \in \mathbb{T}^{N}$ where $\mathbb{T}=\left\{x \in \mathbb{Q}_{p} \mid x^{p}=x\right\}$ is the set of Teichmüller representatives. Since $\left\{x^{k} \mid x \in \mathbb{T}\right\}=\left\{x^{(k, p-1)} \mid x \in \mathbb{T}\right\}$, we may in (6) replace the exponent k by $(k, p-1)$. Now, by a theorem of Schanuel [10], the system (6) has a non-trivial solution $\mathbf{x} \in \mathbb{T}^{N}$ if $N>n R(k, p-1)\left(p^{\gamma / e}-1\right)(p-1)^{-1}$. Recalling $k=p^{\tau} m$, we see that $(k, p-1)$ divides m and conclude that $\Phi(R, k, \gamma)$ is bounded by $n R(k, p-1) p^{\tau+1}(p-1)^{-1} \leq p(p-1)^{-1} n R k$ for $p \neq 2$, and by $4 n R k$ for $p=2$.

The next two lemmas and the final proof of Theorem 1 are much inspired by the ideas presented in Skinner [11].

Lemma 5. Any $a \in \mathcal{O}$ can be written as

$$
a \equiv c_{0}^{p^{\tau}}+\pi c_{1}^{p^{\tau}}+\pi^{2} c_{2}^{p^{\tau}}+\cdots+\pi^{p^{\tau}-1} c_{p^{\tau}-1}^{p^{\tau}}(\bmod p)
$$

with $c_{j} \in \mathcal{O}$ and π being a prime element of \mathcal{O}.
Proof. If $\mathcal{R} \subset \mathcal{O}$ is a set of representatives for $\mathcal{O} / \mathfrak{p}$, then so is $\left\{r^{p^{\tau}} \mid r \in \mathcal{R}\right\}$, because the map $x \mapsto x^{p^{\tau}}$ is a bijection $\mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$. Hence, with suitable $r_{n} \in \mathcal{R}$, we can write

$$
a=\sum_{n=0}^{\infty} r_{n}^{p^{\tau}} \pi^{n}=\sum_{j=0}^{p^{\tau}-1} \pi^{j} \sum_{i=0}^{\infty} r_{j+i p^{\tau}}^{p^{\tau}} \pi^{i p^{\tau}} \equiv \sum_{j=0}^{p^{\tau}-1} \pi^{j}\left(\sum_{i=0}^{\infty} r_{j+i p^{\tau}} \pi^{i}\right)^{p^{\tau}}(\bmod p)
$$

which proves the lemma.
Lemma 6. $\Phi(R, k, e) \leq \Phi\left(R p^{\tau}, m, e\right)$.
Proof. We have to find a primitive solution $\mathbf{x} \in \mathcal{O}^{N}$ to the R congruences

$$
a_{i 1} X_{1}^{k}+\cdots+a_{i N} X_{N}^{k} \equiv 0(\bmod p), \quad i=1, \ldots, R
$$

Write each polynomial in this system as a sum of p^{τ} polynomials using the above lemma on each coefficient $a=a_{i j}$. Thus it suffices to find a primitive solution to $R p^{\tau}$ congruences

$$
c_{i 1}^{p^{\tau}} X_{1}^{k}+\cdots+c_{i N}^{p^{\tau}} X_{N}^{k} \equiv 0(\bmod p), \quad i=1, \ldots, R p^{\tau}
$$

Since

$$
c_{i 1}^{p^{\tau}} X_{1}^{k}+\cdots+c_{i N}^{p^{\tau}} X_{N}^{k} \equiv\left(c_{i 1} X_{1}^{m}+\cdots+c_{i N} X_{N}^{m}\right)^{p^{\tau}}(\bmod p)
$$

it suffices to find a primitive solution to the $R p^{\tau}$ congruences

$$
c_{i 1} X_{1}^{m}+\cdots+c_{i N} X_{N}^{m} \equiv 0(\bmod p), \quad i=1, \ldots, R p^{\tau}
$$

Such a solution exists by definition for $N>\Phi\left(R p^{\tau}, m, e\right)$.
We can finally prove Theorem 1. Clearly, $\Phi\left(R p^{\tau}, m, e\right)$ is bounded by $\Gamma\left(R p^{\tau}, m\right)$, which is in turn bounded by $(R k)^{2}-m\left(R p^{\tau}-1\right)^{2}$ by (5) since m is not divisible by p. For $\tau=0$ we already have the bound (5) which is superior to the one given in Theorem 1. So assume $\tau>0$. Then Lemma 6 implies

$$
\begin{equation*}
\Phi(R, k, e)<(R k)^{2} \tag{7}
\end{equation*}
$$

From (4), (2), and (7) it now follows that
$\Gamma(R, k) \leq R k \cdot \Phi(R, k, \gamma) \leq R k \cdot(\Phi(R, k, e)+1)^{\gamma / e} \leq(R k)^{2 \gamma / e+1} \leq(R k)^{2 \tau+5}$.
This concludes the proof of Theorem 1.

References

[1] Y. Alemu, On zeros of diagonal forms over \mathfrak{p}-adic fields, Acta Arith. 48 (1987), 261-273.
[2] J. Brüdern and H. Godinho, On Artin's conjecture, I: Systems of diagonal forms, Bull. London Math. Soc. 31 (1999), 305-313.
[3] H. Davenport and D. J. Lewis, Homogeneous additive equations, Proc. Roy. Soc. London Ser. A 274 (1963), 443-460.
[4] —, 一, Two additive equations, in: Number Theory, W. J. LeVeque and E. G. Strauss (eds.), Proc. Sympos. Pure Math. 12, Amer. Math. Soc., Providence, RI, 1969, 7498.
[5] H. Davenport and D. J. Lewis, Simultaneous equations of additive type, Philos. Trans. Roy. Soc. London Ser. A 264 (1969), 557-595.
[6] M. M. Dodson, Some estimates for diagonal equations over \mathfrak{p}-adic fields, Acta Arith. 40 (1982), 117-124.
[7] M. P. Knapp, Systems of diagonal equations over \mathfrak{p}-adic fields, J. London Math. Soc. (2) 63 (2001), 257-267.
[8] L. Low, J. Pitman and A. Wolff, Simultaneous diagonal congruences, J. Number Theory 29 (1988), 31-59.
[9] J. Neukirch, Algebraische Zahlentheorie, Springer, Berlin, 1992.
[10] S. H. Schanuel, An extension of Chevalley's theorem to congruences modulo prime powers, J. Number Theory 6 (1974), 284-290.
[11] C. Skinner, Local solvability of diagonal equations (again), Acta Arith. 124 (2006), 73-77.

Departamento de Matemática Universidade de Brasília Brasília, DF 70910-900, Brazil
E-mail: brink@math.ku.dk hemar@unb.br

Instituto de Matemática e Estatística
Universidade Federal de Goiás
Goiânia, GO 74001-970, Brazil
E-mail: paulo@mat.ufg.br

[^0]: 2000 Mathematics Subject Classification: 11D72, 11D79.
 Key words and phrases: diagonal forms, Artin's conjecture, \mathfrak{p}-adic fields.
 The first two authors were partially supported by a grant from CNPq-Brasil.

