## Simultaneous diagonal equations over p-adic fields

by

D. BRINK (Brasília), H. GODINHO (Brasília) and P. H. A. RODRIGUES (Goiânia)

Let K be a finite extension of the field of p-adic numbers  $\mathbb{Q}_p$ . Let  $\mathcal{O}$  be the ring of integers in K and let  $\mathfrak{p}$  be  $\mathcal{O}$ 's unique maximal ideal. We say that K is a  $\mathfrak{p}$ -adic field.

Consider R simultaneous diagonal equations

with coefficients  $a_{ij}$  in  $\mathcal{O}$ . Write the degree as  $k = p^{\tau}m$  with  $p \nmid m$ . A solution  $\mathbf{x} = (x_1, \ldots, x_N) \in K^N$  is called *non-trivial* if at least one  $x_j$  is non-zero. It is a special case of a conjecture of Emil Artin that (\*) has a non-trivial solution whenever  $N > Rk^2$ . This conjecture has been verified by Davenport and Lewis for a single diagonal equation over  $\mathbb{Q}_p$  and for a pair of equations of odd degree over  $\mathbb{Q}_p$  (see [3] and [4]), but the general case remains open.

The main results of the present paper are the following two theorems.

THEOREM 1. The system (\*) has a non-trivial solution if the number of variables N exceeds  $(Rk)^{2\tau+5}$ .

THEOREM 2. Let n be the degree of the field extension  $K/\mathbb{Q}_p$ . Then (\*) has a non-trivial solution if N exceeds  $4nR^2k^2$ .

Theorem 1 has the virtue of being independent of K and can be compared with Skinner [11] where the bound  $N > k^{6\tau+4}$  is given for a single diagonal equation. Theorem 2 is a natural generalisation of Knapp [7, Theorem 1]

<sup>2000</sup> Mathematics Subject Classification: 11D72, 11D79.

Key words and phrases: diagonal forms, Artin's conjecture, p-adic fields.

The first two authors were partially supported by a grant from CNPq-Brasil.

and improves Dodson [6, Theorem 1] and Knapp [7, Theorem 3]. See also Skinner [11] for other references.

Define the integer  $\Gamma(R, k)$  as minimal with the property that any system (\*) with  $N > \Gamma(R, k)$  has a non-trivial solution over K. Then Theorems 1 and 2 can be restated as  $\Gamma(R, k) \leq (Rk)^{2\tau+5}$  and  $\Gamma(R, k) \leq 4nR^2k^2$ , respectively. The idea of the proof of the theorems is to first solve (\*) in the finite residue ring  $\mathcal{O}/\mathfrak{p}^{\gamma}$  (for a suitable exponent  $\gamma$ ), and then lift this solution to K via a version of Hensel's lemma.

A solution  $\mathbf{x} \in \mathcal{O}^N$  is called *primitive* if at least one coordinate  $x_j$  is a unit in  $\mathcal{O}$ . Define the integer  $\Phi(R, k, \nu)$  as minimal with the property that any system (\*) with  $N > \Phi(R, k, \nu)$  has a primitive solution modulo  $\mathbf{p}^{\nu}$ .

The Chevalley–Warning theorem (see [2, Lemma 4]) states that any system of homogeneous polynomials over a finite field has a non-trivial zero if the number of variables exceeds the sum of the polynomials' degrees. In the special case of systems of diagonal equations, the Chevalley–Warning theorem gives

(1) 
$$\Phi(R,k,1) \le Rk.$$

For general moduli  $a, b \ge 1$  one has the relation

(2) 
$$\Phi(R, k, a+b) + 1 \le (\Phi(R, k, a) + 1) \cdot (\Phi(R, k, b) + 1).$$

This is shown using a well-known "contraction" argument (see examples in [4] and [11]). The idea is to construct a primitive solution modulo  $\mathfrak{p}^{a+b}$  in  $N = (\varPhi(R, k, a) + 1) \cdot (\varPhi(R, k, b) + 1)$  variables as follows: First divide the left hand side of (\*) into  $\varPhi(R, k, a) + 1$  subsystems of diagonal forms, each in  $\varPhi(R, k, b) + 1$  variables, and solve each system primitively modulo  $\mathfrak{p}^b$ . Then multiply each of these solutions by a new variable to form a system of diagonal forms in  $\varPhi(R, k, a) + 1$  variables. Since every coefficient is a multiple of  $\mathfrak{p}^b$ , to solve this new system primitively modulo  $\mathfrak{p}^{a+b}$  is *basically* to solve it modulo  $\mathfrak{p}^a$ . This results in a primitive solution modulo  $\mathfrak{p}^{a+b}$  to (\*) which proves (2).

Let  $A = (a_{ij})$  be the coefficient matrix of (\*). A solution  $\mathbf{x} \in \mathcal{O}^N$  is called non-singular if the matrix  $(a_{ij}x_j^k)$  has rank R modulo  $\mathfrak{p}$ , or equivalently, if the columns of A corresponding to the indices j with  $x_j \not\equiv 0 \pmod{\mathfrak{p}}$  have rank R modulo  $\mathfrak{p}$ .

The following strong version of Hensel's lemma is a natural generalisation of [5, Lemma 9], from *p*-adic to  $\mathfrak{p}$ -adic fields. The definition of  $\gamma$  here is somewhat better than the value  $2e\tau + 1$  often found in the literature (although Alemu [1] has a result for one equation similar to the lemma below). LEMMA 1. Let e be the ramification index of K over  $\mathbb{Q}_p$  and define

$$\gamma := \begin{cases} 1 & \text{for } \tau = 0, \\ e(\tau + 1) & \text{for } \tau > 0 \text{ and } p \neq 2, \\ e(\tau + 2) & \text{for } \tau > 0 \text{ and } p = 2. \end{cases}$$

The system (\*) then has a non-trivial solution in K if it has a non-singular solution modulo  $\mathfrak{p}^{\gamma}$ .

*Proof.* We first show that a unit  $u \in \mathcal{O}^*$  is a *k*th power if  $u \equiv \xi^k \pmod{\mathfrak{p}^{\gamma}}$  for some  $\xi \in \mathcal{O}^*$ . This is the standard Hensel's lemma for  $\tau = 0$ , so we may assume  $\tau > 0$ . Then multiplication  $x \mapsto k \cdot x$  maps  $\mathfrak{p}^e$  onto  $k \cdot \mathfrak{p}^e = \mathfrak{p}^{e\tau+e} = \mathfrak{p}^{\gamma}$  for  $p \neq 2$ , and  $\mathfrak{p}^{2e}$  onto  $k \cdot \mathfrak{p}^{2e} = \mathfrak{p}^{\gamma}$  for p = 2. For any n > e/(p-1), the  $\mathfrak{p}$ -adic exponential function and the  $\mathfrak{p}$ -adic logarithm are inverse isomorphisms between the additive group  $\mathfrak{p}^n$  and the multiplicative group  $1+\mathfrak{p}^n$  ([9, Kapitel II, Satz 5.5]). It follows that exponentiation  $x \mapsto x^k$  maps  $1+\mathfrak{p}^e$  (for  $p \neq 2$ ) and  $1+\mathfrak{p}^{2e}$  (for p=2) onto  $1+\mathfrak{p}^{\gamma}$ . The diagram shows the situation for  $p \neq 2$ :



Therefore, the elements of the set  $\xi^k \cdot (1 + \mathfrak{p}^{\gamma}) = \xi^k + \mathfrak{p}^{\gamma}$ , to which *u* belongs, are all *k*th powers.

Now let  $\mathbf{x} = (x_1, \ldots, x_N)$  be a non-singular solution to (\*) modulo  $\mathfrak{p}^{\gamma}$ . We may assume  $x_1, \ldots, x_R \not\equiv 0 \pmod{\mathfrak{p}}$  and that the first R columns of A have rank R modulo  $\mathfrak{p}$ , i.e. form a non-singular matrix modulo  $\mathfrak{p}$ . Row operations on A will not change the solution set, so we may assume

$$A = \begin{pmatrix} a_{11} & 0 & a_{1,R+1} & \dots & a_{1N} \\ & \ddots & & \vdots & & \vdots \\ 0 & & a_{RR} & a_{R,R+1} & \dots & a_{RN} \end{pmatrix}$$

with  $a_{11}, \ldots, a_{RR} \not\equiv 0 \pmod{\mathfrak{p}}$ . For each  $i = 1, \ldots, R$  we have  $x_i^k \equiv u_i \pmod{\mathfrak{p}^{\gamma}}$  with  $u_i = -(a_{i,R+1}x_{R+1}^k + \cdots + a_{iN}x_N^k)/a_{ii}$ . By the above, the equation  $X^k = u_i$  has a solution  $x'_i$  because it has the solution  $x_i$  modulo  $\mathfrak{p}^{\gamma}$ . We conclude that  $(x'_1, \ldots, x'_R, x_{R+1}, \ldots, x_N)$  solves (\*).

The notion of a *p*-normalised system of diagonal equations over  $\mathbb{Q}_p$  was introduced in [5]. It is shown there that any system of the form (\*) over  $\mathbb{Q}_p$  has a non-trivial solution provided that any *p*-normalised system has a non-trivial solution. All of this is easily generalised to  $\pi$ -normalised systems with **p**-adic coefficients (see [7] for details). Let  $\mu(d)$  be the maximal number of columns of the coefficient matrix A which, when considered modulo  $\mathfrak{p}$ , lie in a *d*-dimensional subspace of  $\mathbb{F}_q^N$ . The key property of  $\pi$ -normalised systems is the inequality

(3) 
$$\mu(d) \le N - (R - d)N/Rk$$
 for  $d = 0, \dots, R - 1$ .

This is [5, Lemma 11] combined with [2, eq. (9)]. An equivalent statement of this inequality is that any matrix having R - d rows which are linear combinations of the rows of A, independent modulo  $\mathfrak{p}$ , contains at least (R-d)N/Rk columns which are non-zero modulo  $\mathfrak{p}$ .

The following slight strengthening of [2, Lemma 2] essentially gives one extra non-singular submatrix.

LEMMA 2. Suppose (\*) is  $\pi$ -normalised and has more than k(tR-1) variables, where t is arbitrary. Then the coefficient matrix A contains t disjoint  $R \times R$  submatrices which are non-singular modulo  $\mathfrak{p}$ .

*Proof.* For every d = 0, ..., R - 1, the assumption N > k(tR - 1) combined with (3) implies  $\mu(d) \leq N - (R - d)t$  since  $\mu(d)$  is integral. Now the conclusion follows by a combinatorial result of Aigner (see [8, Lemma 1] or the comment before [2, Lemma 2]).

Next, we extend and improve [2, Lemma 5] using the same idea of proof.

LEMMA 3. Suppose (\*) is  $\pi$ -normalised and has more than  $Rk \cdot \Phi(R, k, \nu) - k(R-1)^2$  variables, where  $\nu$  is arbitrary. Then (\*) has a non-singular solution modulo  $\mathfrak{p}^{\nu}$ .

Proof. Suppose first that (\*) has N = k(tR - 1) + 1 variables for some t to be defined later. Then, by Lemma 2, A has t disjoint  $R \times R$  submatrices which are non-singular modulo  $\mathfrak{p}$ . Discard all variables not belonging to one of these t submatrices. Then we have tR variables left. In each of all but one of the t submatrices, replace all R variables by one new variable. Then we have a new system with t - 1 + R variables. This system, by definition, has a primitive solution modulo  $\mathfrak{p}^{\nu}$  if  $t - 1 + R > \Phi(R, k, \nu)$ , hence if  $t = \Phi(R, k, \nu) - R + 2$ . Not all the new variables of this solution can be zero modulo  $\mathfrak{p}$  since the columns corresponding to the old variables form a non-singular submatrix modulo  $\mathfrak{p}$  and so are linearly independent modulo  $\mathfrak{p}$ . Therefore, "inflating" the new variables again gives a non-singular solution to our original system (\*) in  $N = Rk \cdot \Phi(R, k, \nu) - k(R - 1)^2 + 1$  variables, and the lemma is proved. ■

Recall that  $\Gamma(R, k)$  is the minimal integer such that any system (\*) with  $N > \Gamma(R, k)$  has a non-trivial solution. From Lemmas 1 and 3 it follows that

(4) 
$$\Gamma(R,k) \le Rk \cdot \Phi(R,k,\gamma) - k(R-1)^2$$

since any bound on  $\Gamma(R, k)$  may be proved under the assumption that (\*) is  $\pi$ -normalised. For degree k not divisible by p, (4) and (1) give

(5) 
$$\Gamma(R,k) \le (Rk)^2 - k(R-1)^2$$

which extends [2, Theorem 3].

Now, Theorem 2 follows from (4) and the following lemma.

LEMMA 4. With  $\gamma$  defined as in Lemma 1, we have

$$\Phi(R,k,\gamma) \le \begin{cases} p(p-1)^{-1}nRk & \text{for } p > 2, \\ 4nRk & \text{for } p = 2. \end{cases}$$

*Proof.* To bound  $\Phi(R, k, \gamma)$ , we must find a primitive solution modulo  $\mathfrak{p}^{\gamma}$  to (\*). The additive group of the finite residue ring  $\mathcal{O}/\mathfrak{p}^{\gamma}$  is equal to the direct sum of *n* cyclic subgroups of order  $p^{\gamma/e}$ ,

$$\mathcal{O}/\mathfrak{p}^{\gamma} = \mathbb{Z}\lambda_1 \oplus \cdots \oplus \mathbb{Z}\lambda_n.$$

This can be seen for example by counting the number of elements of any given order in both groups and noting that these numbers are the same (see also [1] for a different proof and a more general statement). Writing each coefficient  $a_{ij}$  of (\*) as a  $\mathbb{Z}$ -linear combination of the  $\lambda_i$ 's, we see that it suffices to solve nR congruences

(6) 
$$c_{i1}X_1^k + \dots + c_{iN}X_N^k \equiv 0 \pmod{p^{\gamma/e}}, \quad i = 1, \dots, nR,$$

with coefficients  $c_{ij} \in \mathbb{Z}$ . We shall only look for solutions  $\mathbf{x} \in \mathbb{T}^N$  where  $\mathbb{T} = \{x \in \mathbb{Q}_p \mid x^p = x\}$  is the set of *Teichmüller representatives*. Since  $\{x^k \mid x \in \mathbb{T}\} = \{x^{(k,p-1)} \mid x \in \mathbb{T}\}$ , we may in (6) replace the exponent k by (k, p - 1). Now, by a theorem of Schanuel [10], the system (6) has a non-trivial solution  $\mathbf{x} \in \mathbb{T}^N$  if  $N > nR(k, p-1)(p^{\gamma/e}-1)(p-1)^{-1}$ . Recalling  $k = p^{\tau}m$ , we see that (k, p-1) divides m and conclude that  $\Phi(R, k, \gamma)$  is bounded by  $nR(k, p-1)p^{\tau+1}(p-1)^{-1} \leq p(p-1)^{-1}nRk$  for  $p \neq 2$ , and by 4nRk for p = 2.

The next two lemmas and the final proof of Theorem 1 are much inspired by the ideas presented in Skinner [11].

LEMMA 5. Any  $a \in \mathcal{O}$  can be written as

$$a \equiv c_0^{p^{\tau}} + \pi c_1^{p^{\tau}} + \pi^2 c_2^{p^{\tau}} + \dots + \pi^{p^{\tau}-1} c_{p^{\tau}-1}^{p^{\tau}} \pmod{p}$$

with  $c_i \in \mathcal{O}$  and  $\pi$  being a prime element of  $\mathcal{O}$ .

*Proof.* If  $\mathcal{R} \subset \mathcal{O}$  is a set of representatives for  $\mathcal{O}/\mathfrak{p}$ , then so is  $\{r^{p^{\tau}} | r \in \mathcal{R}\}$ , because the map  $x \mapsto x^{p^{\tau}}$  is a bijection  $\mathbb{F}_q \to \mathbb{F}_q$ . Hence, with suitable  $r_n \in \mathcal{R}$ , we can write

D. Brink et al.

$$a = \sum_{n=0}^{\infty} r_n^{p^{\tau}} \pi^n = \sum_{j=0}^{p^{\tau}-1} \pi^j \sum_{i=0}^{\infty} r_{j+ip^{\tau}}^{p^{\tau}} \pi^{ip^{\tau}} \equiv \sum_{j=0}^{p^{\tau}-1} \pi^j \Big(\sum_{i=0}^{\infty} r_{j+ip^{\tau}} \pi^i\Big)^{p^{\tau}} \pmod{p},$$

which proves the lemma.

LEMMA 6.  $\Phi(R,k,e) \leq \Phi(Rp^{\tau},m,e).$ 

*Proof.* We have to find a primitive solution  $\mathbf{x} \in \mathcal{O}^N$  to the R congruences

$$a_{i1}X_1^k + \dots + a_{iN}X_N^k \equiv 0 \pmod{p}, \quad i = 1, \dots, R.$$

Write each polynomial in this system as a sum of  $p^{\tau}$  polynomials using the above lemma on each coefficient  $a = a_{ij}$ . Thus it suffices to find a primitive solution to  $Rp^{\tau}$  congruences

$$c_{i1}^{p^{\tau}} X_1^k + \dots + c_{iN}^{p^{\tau}} X_N^k \equiv 0 \pmod{p}, \quad i = 1, \dots, Rp^{\tau}.$$

Since

$$c_{i1}^{p^{\tau}} X_1^k + \dots + c_{iN}^{p^{\tau}} X_N^k \equiv (c_{i1} X_1^m + \dots + c_{iN} X_N^m)^{p^{\tau}} \pmod{p},$$

it suffices to find a primitive solution to the  $Rp^{\tau}$  congruences

 $c_{i1}X_1^m + \dots + c_{iN}X_N^m \equiv 0 \pmod{p}, \quad i = 1, \dots, Rp^{\tau}.$ 

Such a solution exists by definition for  $N > \varPhi(Rp^\tau,m,e).$   $\blacksquare$ 

We can finally prove Theorem 1. Clearly,  $\Phi(Rp^{\tau}, m, e)$  is bounded by  $\Gamma(Rp^{\tau}, m)$ , which is in turn bounded by  $(Rk)^2 - m(Rp^{\tau} - 1)^2$  by (5) since m is not divisible by p. For  $\tau = 0$  we already have the bound (5) which is superior to the one given in Theorem 1. So assume  $\tau > 0$ . Then Lemma 6 implies

(7) 
$$\Phi(R,k,e) < (Rk)^2$$

From (4), (2), and (7) it now follows that

$$\Gamma(R,k) \le Rk \cdot \Phi(R,k,\gamma) \le Rk \cdot (\Phi(R,k,e)+1)^{\gamma/e} \le (Rk)^{2\gamma/e+1} \le (Rk)^{2\tau+5}.$$

This concludes the proof of Theorem 1.

## References

- Y. Alemu, On zeros of diagonal forms over p-adic fields, Acta Arith. 48 (1987), 261–273.
- J. Brüdern and H. Godinho, On Artin's conjecture, I: Systems of diagonal forms, Bull. London Math. Soc. 31 (1999), 305–313.
- H. Davenport and D. J. Lewis, *Homogeneous additive equations*, Proc. Roy. Soc. London Ser. A 274 (1963), 443–460.
- [4] —, —, Two additive equations, in: Number Theory, W. J. LeVeque and E. G. Strauss (eds.), Proc. Sympos. Pure Math. 12, Amer. Math. Soc., Providence, RI, 1969, 74– 98.

- H. Davenport and D. J. Lewis, Simultaneous equations of additive type, Philos. Trans. Roy. Soc. London Ser. A 264 (1969), 557–595.
- [6] M. M. Dodson, Some estimates for diagonal equations over p-adic fields, Acta Arith. 40 (1982), 117–124.
- [7] M. P. Knapp, Systems of diagonal equations over p-adic fields, J. London Math. Soc. (2) 63 (2001), 257–267.
- [8] L. Low, J. Pitman and A. Wolff, Simultaneous diagonal congruences, J. Number Theory 29 (1988), 31–59.
- [9] J. Neukirch, Algebraische Zahlentheorie, Springer, Berlin, 1992.
- [10] S. H. Schanuel, An extension of Chevalley's theorem to congruences modulo prime powers, J. Number Theory 6 (1974), 284–290.
- C. Skinner, Local solvability of diagonal equations (again), Acta Arith. 124 (2006), 73–77.

Departamento de Matemática Universidade de Brasília Brasília, DF 70910-900, Brazil E-mail: brink@math.ku.dk hemar@unb.br

Received on 17.10.2007

(5549)