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Introduction. Let r and s be non-zero integers with r2 + 4s 6= 0.
A binary recurrent sequence of integers (un)n≥0 is a sequence such that
u0, u1 ∈ Z and

(1) un+2 = run+1 + sun for n = 0, 1, . . .

It is well known that if one denotes by α and β the two roots of the equation

(2) x2 − rx− s = 0,

then there exist two numbers c and d such that

(3) un = cαn + dβn for n = 0, 1, . . . ;

moreover, the numbers c and d can be easily computed in terms of u0, u1,
α and β, and they belong to K := Q[α]. In fact, c and d are conjugate
in K when α is irrational. We set dK := [K : Q]. We say that the sequence
(un)n≥0 is non-degenerate if cd 6= 0 and α/β is not a root of 1. From now on,
(un)n≥0 denotes a non-degenerate binary recurrent sequence and C1, C2, . . .
are positive computable constants which are either absolute or depend on
our sequence (un)n≥0.

In this paper, we deal with arithmetic properties of the numbers um
when m is a positive integer. Such properties have been considered before in
the literature. For example, in [14] (see Corollary 3.5), it is shown that there
exist computable positive constants C1, C2, depending only on the sequence
(un)n≥0, such that for m > n, m > C1, and un 6= 0,

(4) P

(
um

gcd(um, un)

)
> C2

(
m

logm

)1/(dK+1)

,

where for an integer k we use P (k) to denote the largest prime factor of k
with the convention that P (0) = P (±1) = 1 (see also [6] for some improve-
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ments of (4)). As a corollary, there exists a computable constant C3 depend-
ing only on (un)n≥0 such that whenever um |un for some m > n and un 6= 0
we have m < C3. This result has been improved by Pethő [10], who showed
the existence of two computable constants C4 and C5, depending only on
(un)n≥0, such that if un |um for some n > C4, then m > 2n−C5 logn. Since
Lucas sequences of the first type, i.e., binary recurrent sequences (un)n≥0

with u0 = 0, u1 = 1 for which formula (3) is

(5) un =
αn − βn
α− β for n = 0, 1, . . . ,

have the property that un |u2n for all n ≥ 1, it would seem that the above
result from [10] is best possible. However, only recently has it been noticed
(see [7]) that, in fact, one can say a lot more about the pairs of positive
integers (n,m) with n < m for which un |um only by looking at the two
numbers c/d and α/β. Indeed, the main result in [7] asserts the following:

1. If c/d and α/β are multiplicatively dependent, then there exists a
computable constant C6 such that un |um for infinitely many pairs (n,m)
with n < m < C6n. Moreover, such m and n can be chosen from certain
effectively computable arithmetic progressions of positive integers.

2. If c/d and α/β are multiplicatively independent, then there exist two
computable constants C7 and C8, depending only on (un)n≥0, such that if
un |um and C7 < n, then m > C8n

2/logn.

In a certain sense, what the above result says is that the divisibility
properties of the sequences (un)n≥0 for which c/d and α/β are multiplica-
tively dependent resemble the divisibility properties of the Lucas sequences
of the first type, while the divisibility properties of the sequences (un)n≥0

for which c/d and α/β are multiplicatively independent are quite different.
We will make this statement more precise later.

By replacing (un)n≥0 by (ηun)n≥0, where η is a greatest common de-
nominator of c and d, we may assume that c and d are algebraic integers,
and from now on we will work under this assumption. Notice that the above
replacement will affect, for example, the number gcd(um, un) only by the
constant factor η. For the purpose of the next theorem, we shall assume that
c/d and α/β are multiplicatively independent. Notice that un 6= 0 for all
n ≥ 0 in this case. Fix n < m and let D(m,n) := gcd(um, un)/S, where we
use S for the largest divisor of gcd(um, un) composed only of prime factors
p with p |NK(cdαβ). The reason for analyzing only this truncated greatest
common divisor D(m,n) of um and un comes from the fact that the divisor
S (more precisely, its size) is very easy to bound. Indeed, put l := gcd(r2, s).
Then (see [14, p. 74]) the numbers α1 = α2/l and β1 = β2/l are algebraic
integers and the principal ideals [α1] and [β1] are coprime in K. In particular,
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we may write

(6) un = lbn/2c(cαiαbn/2c1 + dβiβ
bn/2c
1 ),

where i = 0 or 1 according to whether n is even or odd. Since [α1] and
[β1] are coprime in K, it follows, by standard applications of linear forms in
p-adic logarithms (see, for example, [22]) together with the fact that un 6= 0
for all n ≥ 0, that if p is any fixed prime, then

(7) ordp(cαiα
bn/2c
1 − dβiβbn/2c1 ) < C9 logn for i = 0, 1,

where the constant C9 is computable but depends also on the prime num-
ber p. To summarize, if p is any prime dividing NK(cdαβ), we have

(8) ordp(un) =
{
C10n+O(logn) if p | l, where C10 = ordp(l)/2,

O(logn) if p - l,
where the two implied constants are both computable and depend only on
(un)n≥0.

Theorem 1. Let (un)n≥0 be a non-degenerate binary recurrent sequence
of integers. Assume that un is given by formula (3) with c and d algebraic
integers, and that c/d and α/β are multiplicatively independent. Then, for
any positive integers m > n, we have

(9) D(m,n) ≤ 2 exp(C11
√
m),

where D(m,n) is the largest divisor of gcd(un, um) free of primes dividing
NK(αβcd), and C11 := 2 log(max(|α|, |β|, |c|, |d|)).

As previously mentioned, the condition that c and d be algebraic integers
can be avoided. In fact, if c and d are just algebraic numbers, then the state-
ment of Theorem 1 still remains true with C11 replaced by 2 log(max(|α|, |β|,
|cη|, |dη|) where η is the greatest common denominator of c and d. In this
case, we also need to slightly modify the definition of D(m,n), and take
it to be the largest common divisor of um and un which is free of primes
dividing NK(αβcdη2). Notice that Theorem 1 says that if un |um and c/d
and α/β are multiplicatively independent, then m > C12n

2, where C12 can
be taken to be any constant slightly smaller than 1/C11 provided that m
is large, which is an improvement upon our previous results from [7]. The
proof of Theorem 1 above is entirely elementary. From Theorem 1, one may
read immediately statements of the sort

gcd(2m − 3, 2n − 3) ≤ 2 · 32
√
m for all m > n ≥ 0,

as well as

gcd(am − 2, an − 2) ≤ 2 gcd(a, 2) · a2
√
m for all m > n ≥ 0,

where a ∈ Z, a 6= 0,±2s, with s ≥ 0, inequalities which do not seem to have
been noticed before. A result of the same flavour as Theorem 1 above has
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recently been proved by Bugeaud, Corvaja and Zannier [3] and asserts that
if a and b are multiplicatively independent integers and ε > 0 is any positive
number then

gcd(am − 1, bm − 1) = O(exp(εm))

when m is large. The implied constant above depends on a, b and ε.
A better version of Theorem 1 above might be able to shed some light

on the primitive divisor problem for arbitrary binary recurrent sequences
of integers. Recall that for a given positive integer m a prime number p
with p |um is called primitive if p -un for any n < m for which un 6= 0. We
conjecture that for every non-degenerate binary recurrent sequence (un)n≥0

there exists a computable constant C13 such that um has a primitive divisor
for all m > C13. The fact that this is indeed so at least when c/d and α/β
are multiplicatively dependent is contained in the next theorem.

Theorem 2. Let (un)n≥0 be a binary recurrent sequence of integers and
assume that c/d and α/β are multiplicatively dependent. Then there exists
an effectively computable constant C13 which depends on c, d, α and β such
that um has a primitive divisor for m > C13. Moreover , there exists another
effectively computable constant C14 such that

(10) P (um) ≥ m− C14 for all m ≥ 0.

The above Theorem 2 is probably known to the experts and is implicit
in [7], but since we are unaware of the existence of a formal proof in the
literature we have decided to include it here. It would be interesting to find
a sharp dependence of C13 on c, d, α, and β. When c := 1/(α− β) and d :=
−1/(α− β) and α and β are coprime then C13 can be taken to be absolute
and its best value is C13 = 30 (see [1]). However, in the general case asserted
by Theorem 2 above C13 is not absolute. The example un := k!(2n−1) for all
n ≥ 0 with some positive integer k shows that C13 must depend on the prime
divisors of gcd([cα], [dβ]) in K. Taking α to be any real irrational quadratic
unit, β to be its conjugate, and K to be the quadratic field containing α,
and setting c := α−m, d := β−m with some large positive integer m, we see
immediately that um = 0 and um−1 = ±um+1. This example shows that
C13 must also depend on the size of the multiplicative relation between c/d
and α/β. It will be plain from our proof of Theorem 2 that, at least when c
and d are algebraic integers, C13 can be taken to depend only on the largest
prime factor of gcd([cα], [dβ]) · gcd([cβ], [dα]), the degree and class number
of K, as well as the minimal multiplicative relation between c/d and α/β.
When c and d are just algebraic numbers, our argument only shows that C13

depends also on the prime factors of the discriminant ∆ := (α− β)2 of our
recurrence (un)n≥0 as well. The same remarks apply to the constant C14.
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For sequences (un)n≥0 with c/d and α/β multiplicatively independent,
not only are we unable prove the existence of a primitive divisor for um
when m is large, but we cannot even prove that the divisibility relation

(11) um
∣∣
m−1∏

i=1

ui

does not happen for infinitely many positive integers m, although an imme-
diate application of our Theorem 1 shows that if

(12) um |un1 . . . unt ,

where 0 ≤ n1 ≤ . . . ≤ nt, then t > C15
√
m, where C15 is a computable con-

stant depending only on the sequence (un)n≥0, thus extending, for example,
Corollary 3.6 on page 67 in [14].

It could also be that our Theorem 1 might be used to get better lower
bounds on P (um) than the ones which follow from combining lower bounds
for linear forms in complex and p-adic logarithms with the prime number
theorem (such as inequality (4), for example) and which hold either for all
large enough values of m, or on sets of indices m of asymptotic density 1.
Such lower bounds do already exist in the literature and they have various
shapes according to whether the binary recurrent sequence involved is Lucas
or not. For example, it follows from results of [5], [13], [16] and [18] that for
fixed non-zero integers u, v with u 6= ±v the inequality

(13) P (um ± vm) >
m(logm)2

(log logm)2

holds for almost all positive integers m, while

(14) P (2p − 1) >
p(log p)2

log log p

for almost all prime numbers p. On the other hand, C. Pomerance points
out that it is still not known whether P (2n− 1) > 2n+ 1 for all but finitely
many positive integers n.

For general binary recurrent sequences, it follows from results of Stew-
art [20] that for all positive integers n, except perhaps a set of asymptotic
density zero,

(15) P (un) > ε(n)n logn,

where ε(n) is any real-valued function for which limn→∞ ε(n) = 0. For
these results and several related ones the reader should consult the excellent
survey [21].

It has also become customary, when proving results concerning non-
degenerate binary recurrent sequences of integers, to see to what extent one



86 F. Luca

can generalize such results to non-degenerate binary recurrent sequences
consisting of algebraic integers. Our results are easily amenable to such
generalizations. Assume that c, d, α and β are non-zero algebraic integers
and let K be a number field containing all four numbers c, d, α and β.
Put again dK := [K : Q] and let un be the algebraic integer in K given by
formula (3) for all n ≥ 0. Assume that α/β is not a root of 1. Then we have
the following generalizations of Theorems 1 and 2.

Theorem 3. Assume that c, d, α and β are non-zero algebraic integers
and that α/β is not a root of 1. Let K be the smallest number field containing
c, d, α and β and all their conjugates, and let dK be its degree over Q. For
every positive integer n define the algebraic integer un in K according to
formula (3). Assume that c/d and α/β are multiplicatively independent.
For any pair of positive integers m > n set D(m,n) to be the largest ideal
divisor of gcd([um], [un]) which is free of primes dividing NK(cdαβ). Then

(16) NK(D(m,n)) ≤ 2dK exp(dKC16
√
m),

where C16 := 2 logM , and M is the maximum of the absolute values of all
the conjugates of c, d, α and β.

Theorem 4. Assume that (un)n≥0 is given by formula (3) where c, d, α
and β are non-zero algebraic integers and α/β is not a root of 1. Assume
that c/d and α/β are multiplicatively dependent and let K be the smallest
number field containing c, d, α and β (but not necessarily their conjugates).
Then there exists an effectively computable constant C17 which depends on
c, d, α and β such that um has a primitive divisor for m > C17. Moreover ,
there exists another effectively computable constant C18 such that

(17) P (NK(um)) ≥ (m− C18)1/dK for all m ≥ 0.

By a primitive divisor of um in the statement of Theorem 4 above we
mean a prime ideal π inK such that π divides um but π does not divide un for
any n < m with un 6= 0. Notice that inequality (17) from Theorem 4 above
is weaker than its analogue (10) from Theorem 2 and the reason for this
is explained in Remark 1 following the proof of Theorem 4. Moreover, the
same remarks as the ones following the statement of Theorem 2 concerning
the dependence of the constants C17 and C18 on the given data apply here
as well.

We now leave the exciting world of binary recurrent sequences of integers
and we look at binary recurrent sequences of polynomials with rational
coefficients. To fix ideas, let r and s be non-zero polynomials in Q[X] such
that r2 + 4s 6= 0. A binary recurrent sequence of polynomials (un)n≥0 is
simply a sequence with u0, u1 ∈ Q[X] and such that
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(18) un+2 = run+1 + sun for n = 0, 1, . . .

If one denotes by α and β the two roots of the characteristic equation (2),
then one may again infer that there exist c and d such that

(19) un = cαn + dβn for n = 0, 1, . . .

Here, α is an algebraic integer of degree at most 2 over Q(X). Set again
K := Q(X)[α]. Then α, β, c and d are all in K, and if K 6= Q(X), then
α and β are conjugate in K, and so are c and d. We say again that the
sequence (un)n≥0 is non-degenerate if cd 6= 0, α/β is not a root of 1, and
at least one of the two functions α/β and c/d is not constant. The reason
for this last condition is that it is easy to prove that when α/β and c/d
are both constants, then there exist two polynomials f and g in Q[X] and a
non-degenerate binary recurrent sequence of integers (vn)n≥0 such that un =
fgnvn for all n ≥ 0. In particular, as an element of Q[X], the polynomial
un will be either zero or associated with the polynomial fgn, and hence its
divisibility properties are not all that interesting. Notice that when (un)n≥0

is non-degenerate, then at least one of the four polynomials r, s, u0 and u1

is not constant.
Our next result adresses primitive divisors for um. Here, for a positive

integer m we say that an irreducible factor p in Q[X] of um is primitive
for um if p does not divide un for any n < m for which un 6= 0. An ana-
logue of Theorems 2 and 4 can be easily formulated and proved to hold for
the case in which c/d and α/β are multiplicatively dependent, so we will
restrict ourselves to considering the case when c/d and α/β are multiplica-
tively independent. Moreover, to make the statement of the next theorem
clearer we shall assume that r and s are coprime, although this is not a
real obstruction and a general statement can be recovered from the result
below together with the pertinent analogues in the polynomial setting of the
remarks preceding formula (6).

Theorem 5. Let (un)n≥0 be a non-degenerate binary recurrent sequence
of polynomials satisfying the recurrence (18) and such that the general for-
mula of un is given by (19). Assume moreover that r and s are coprime and
that c/d and α/β are multiplicatively independent. Then there exists a com-
putable constant C19 such that um has primitive divisors for m > C19. In
fact , when α/β is not constant , a lot more holds, namely : For any positive
integer m let Prim(um) be the product of all the non-associated primitive
divisors of um. Then there exists a constant C20 such that

(20) deg(Prim(um)) > deg(um)− C20 for all m ≥ 0.

Finally , both constants C19 and C20 mentioned above are effectively com-
putable and they depend only on the degrees of the polynomials u0, u1, r
and s, but not on the polynomials themselves.
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We point out that in a certain sense Theorem 5 above suggests that in
the world of polynomials with rational coefficients the primitive part of um
behaves better when c/d and αβ are multiplicatively independent than when
they are multiplicatively dependent. Indeed, the Lucas sequence (un)n≥0 of
general term

(21) un :=
Xn − 1
X − 1

for n = 0, 1, . . .

has the property that Prim(um) = Φm(X), the mth cyclotomic polynomial,
and we thus have deg(Prim(um)) = φ(m), while deg(um) = m− 1. Since

φ(m) ≤ m−√m
for all positive integers m which are not primes, we see that an inequality of
the type (20) is impossible for almost all positive integersm in this particular
example. In fact, even worse,

(22) φ(m) < eγ
m

log logm
for infinitely many positive integers m, where γ is the Euler constant
(see [9]).

Current research in diophantine equations has also touched on equations
of the form un(x) = um(y) with solutions in integers x, y, and positive in-
tegers m > n, where (un)n≥0 is a binary recurrent sequence of polynomials
with rational coefficients (see, for example, [4]). In general, one conjectures
that a diophantine equation of the type f(x) = g(y) with integer solutions
x, y, where f and g are two polynomials with rational coefficients, has only
finitely many solutions (unless there are some obvious reasons for such an
equation to have infinitely many solutions), but in proving that this is in-
deed so for quite general polynomials f and g one goes about either by using
an old result of Siegel [15] concerning the finiteness of integer points on an
irreducible curve defined over Q of positive genus, or by using a quite new
result of Bilu and Tichy [2], which asserts that such equations do indeed
have only finitely many solutions unless, up to some affine transformations,
the pair of polynomials (f, g) belongs to one of five specific parametric fam-
ilies (called standard pairs in [2]), involving powers of polynomials, Dickson
polynomials, and a few others, instances in which infinitely many integer
solutions of such an equation may exist. Regardless of which method one
uses, one still has to check that the conditions from either the theorem of
Siegel, or the theorem of Bilu and Tichy, are fulfilled for the starting pair
of polynomials (f, g), and checking that is not always a trivial task. It is
our hope that our Theorem 5, or its method of proof, might make checking
such conditions easier for a diophantine equation of the sort un(x) = um(y)
in integer unknowns x, y, and positive integers m > n, where (un)n≥0 is a
binary recurrent sequence of polynomials, or variations of those.
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The proofs

The proof of Theorem 1. Throughout this proof, we write D := D(m,n),
and we assume that |α| ≥ |β|. Notice that if n ≤ √m, then the inequality (9)
is clear via

D ≤ |un| = |cαn + dβn| ≤ 2 max(|c|, |d|)|α|
√
m ≤ 2 exp(C11

√
m).

So, we assume that n >
√
m. We write m0 := m, m1 := n, and the Euclidean

algorithm
m0 := q0m1 +m2,

m1 := q1m2 +m3, . . . ,

mj := qjmj+1 +mj+2,

where we assume that j ≥ 0 is the smallest index for which mj+2 ≤
√
m.

Here, mi > mi+1 for all i = 0, 1, . . . , j + 1, and qi = bmi/mi+1c is always
a positive integer. The existence of j follows from the fact that we are
assuming that m1 = n >

√
m. We now fix i ∈ {0, 1, . . . , j+2}. We construct

recursively non-negative integers ri, si, ti, vi, and signs εi ∈ {±1} such that

(23) cridsiαmi + εic
tidviβmi ≡ 0 (modD)

for i = 0, 1, . . . , j + 2. Here, and in what follows, we will say that two
algebraic integers x and y from K are congruent modulo a rational integer
A if x − y = Az with an algebraic integer z in K. At i = 0 and 1 we have
the relations

um = cαm + dβm = cαm0 + dβm0 ≡ 0 (modD)

and
un = cαn + dβn = cαm1 + dβm1 ≡ 0 (modD),

and we may therefore set r0 = r1 = 1, s0 = s1 = 0, t0 = t1 = 0, v0 = v1 = 1,
and ε0 = ε1 = +1. Assume that k ≤ j is given and that ri, si, ti, vi have
been constructed for i = 0, 1, . . . , k + 1 in such a way that (23) holds with
some εi ∈ {±1}. From now on, we will forget about the εi’s (which, as the
reader will see, are irrelevant), and we will simply write them as ±1. To
construct rk+2, sk+2, tk+2, and vk+2, write

(24) crk+1dsk+1αmk+1 ± ctk+1dvk+1βmk+1 ≡ 0 (modD),

therefore
crk+1dsk+1αmk+1 ≡ ∓ctk+1dvk+1βmk+1 (modD),

and raising the above congruence to the power qk and regrouping we get

(25) cqkrk+1dqksk+1(αqkmk+1)± cqktk+1dqkvk+1(βqkmk+1) ≡ 0 (modD).

But we also have

(26) crkdskαmk ± ctkdvkβmk ≡ 0 (modD),
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and using mk = qkmk+1 +mk+2 we can write (26) as

(27) crkdskαmk+2(αqkmk+1)± ctkdvkβmk+2(βqkmk+1) ≡ 0 (modD).

We now write X := αqkmk+1 and Y := βqkmk+1 and treat the pair of congru-
ences (25) and (27) as a modular homogeneous system in the indeterminates
X and Y :

(28)
{
cqkrk+1dqksk+1X ± cqktk+1dqkvk+1Y ≡ 0 (modD),

crkdskαmk+2X ± ctkdvkβmk+2Y ≡ 0 (modD).

This system, together with the fact that its solution (X,Y ) = (αzk , βzk) with
zk := qkmk+1 has the property that both NK(X) and NK(Y ) are coprime
to D, leads to the conclusion that the determinant of the coefficient matrix
of (28) must be a multiple of D. In particular, we get

(29) c(rk+qktk+1)d(sk+qkvk+1)αmk+2 ± c(tk+qkrk+1)d(vk+qksk+1)βmk+2

≡ 0 (modD).

By looking at (23), we may set

(30)





rk+2 := rk + qktk+1,

sk+2 := sk + qkvk+1,

tk+2 := tk + qkrk+1,

vk+2 := vk + qksk+1.

It is now easy to see that

(31) ri = ti and si = vi for all i = 0, 1, . . . , j + 2.

Indeed, this holds at i = 0 and i = 1 and by induction on i via the recurrence
formulae (30). With (31), it follows that we may eliminate the numbers ti
and vi and simply conclude that

(32) cridsiαmi ± csidriβmi ≡ 0 (modD)

for all i = 0, 1, . . . , j + 2, where r0 = r1 = 1, s0 = s1 = 0, and

(33)
{
ri+2 = ri + qisi+1

si+2 = si + qiri+1
for i = 0, 1, . . . , j.

Let δi := ri − si. Then δ0 = δ1 = 1, and relations (33) imply

δi+2 = −qiδi+1 + δi.

We notice that δ2 = 1 − q0 ≤ 0 and δ3 = −q1δ2 + δ1 = −q1(1 − q0) + 1 =
q1(q0 − 1) + 1 > 0. By induction, δi > 0 for all i ≥ 1 odd, and δi < 0
for all i ≥ 4 even. Indeed, assume, for example, that i ≥ 5 is odd and
that (−1)kδk < 0 for all k < i except for δ2 which might be zero. Then
δi = −qiδi−1 + δi−2 ≥ δi−2 > 0. The same argument shows that δi < 0 for
all i ≥ 4 even. Let ∆i := (−1)i−1δi for i = 1, . . . , j+2. Then ∆i > 0 for all i
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except ∆2 which might be zero, and the numbers ∆i satisfy ∆1 = 1, ∆2 =
q0 − 1, and the recurrence

(34) ∆i+2 = qi∆i+1 +∆i for i = 1, . . . , j.

We may now rewrite relation (23) as

(35)
{

(cd)si(c∆iαmi ± d∆iβmi) ≡ 0 (modD) if i ≥ 1 is odd,

(cd)ri(d∆iαmi ± c∆iβmi) ≡ 0 (modD) if i ≥ 2 is even,

and since D is free of prime factors dividing NK(cd), it follows that we may
interpret (35) as

(36) e∆iαmi ± f∆iβmi ≡ 0 (modD) for i = 1, . . . , j + 2,

where {e, f} = {c, d}. More precisely, e = c, f = d, when i ≥ 1 is odd, and
e = d, f = c, when i ≥ 2 is even. The first thing we need to ensure is that the
divisibility relation (36) is non-trivial, that is, that the expression appearing
on the left hand side is never zero. Since at any rate e/f ∈ {c/d, d/c} and
c/d and α/β are multiplicatively independent, the expression on the left
hand side of (36) can be zero only for ∆i = 0 and mi = 0. But from what
we have said before ∆i = 0 is possible only when i = 2 and q0 = 1, and now
m2 = 0 and q0 = 1 imply m0 = q0m1 + m2 = m1, therefore m = n, which
is not possible. Next we notice that since relations (36) are not trivial, they
imply that

(37) D ≤ |e∆iαmi ± f∆iβmi | ≤ 2 exp(C11 max(∆i,mi))

for i = 0, 1, . . . , j + 2.

Notice that (37) needs some justification, the expressions on the left hand
side being only algebraic integers and not rational integers. That is, if a
positive integer D divides a non-zero algebraic integer ζ, then it is not true,
in general, that D ≤ |ζ|. To justify (37), notice that if K = Q, then e, f , α, β
are integers and (37) obviously holds. Assume now that α 6∈ Q. Then α and
β are conjugate in K, and so are c and d, therefore e and f . In particular, if
the sign in (36) is +1, then the expression at (36) is a rational integer and
so (37) holds. If on the other hand the sign is −1, then the expression at
(36) is of the form A

√
d, where A is an integer and d is the squarefree part

of the discriminant r2 + 4s of the characteristic equation (2) of our binary
recurrent sequence. In particular, the square of the expression on the left
hand side of (36) is a non-zero integer, and this implies again that inequality
(37) must hold.

Inequality (37) at i = j + 2 implies, in particular, that

(38) D ≤ 2 max(C11 max(∆j+2,mj+2)),

and since we already know thatmj+2 ≤
√
m, we conclude that the inequality
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asserted in Theorem 1 will follow provided that we show that

(39) ∆j+2 ≤
√
m.

Notice that for j = 0 we have

∆2 = q0 − 1 < q0 =
⌊
m

n

⌋
<
√
m,

because n >
√
m, so that (39) obviously holds if j = 0. From now on, we

assume that j > 0. To prove (39), we introduce a new finite sequence Ai for
i = 1, . . . , j + 2, satisfying A1 := 1, A2 := q0, and Ai+2 := qiAi+1 + Ai for
i = 1, . . . , j. Notice that A2 = q0 > q0 − 1 = ∆2 and A3 = q1A2 + A1 =
q1q0 + 1 > q1(q0 − 1) + 1 = q1∆2 + ∆1 = ∆3, and so, since the numbers
Ai and ∆i satisfy the same recurrence relation for i = 1, . . . , j + 2, we find
that Ai > ∆i for all i = 2, . . . , j + 2. We now notice that the numbers Ai
are related to the numbers mi via the relation

(40) m0 = Ai+1mi + Aimi+1 for i = 1, . . . , j + 1.

To check (40), notice that at i = 1 it simply says that

m0 = A2m1 + A1m2 = q0m1 +m2,

which obviously holds. Assuming that (40) holds for some i < j+1, we have

m0 = Ai+1mi + Aimi+1 = Ai+1(qimi+1 +mi+2) +Aimi+1

= (qiAi+1 + Ai)mi+1 + Ai+1mi+2 = Ai+2mi+1 + Ai+1mi+2,

and so it does indeed hold with the numbers Ai for i = 1, . . . , j+1 as defined
above. Evaluating (40) at i = j + 1 and using the fact that mj+1 >

√
m we

get
m = m0 = Aj+2mj+1 +Aj+1mj+2 ≥ Aj+2mj+1 > Aj+2

√
m,

therefore Aj+2 <
√
m. Since we also know that ∆j+2 < Aj+2, we get

∆j+2 <
√
m, which is precisely (39), and which concludes the proof of

our Theorem 1.

The proof of Theorem 3. Set again D := D(m,n), assume that n >
√
m

and proceed identically as in the proof of Theorem 1 to conclude that a
relation like (35) holds, namely

(41) e∆iαmi ± f∆iβmi ≡ 0 (modD),

where e/f ∈ {c/d, d/c}. Conjugating (41) by an arbitrary element σ of the
Galois group Gal(K/Q), we also get relations of the form

(42) σ(e)∆iσ(α)mi ± σ(f)∆iσ(β)mi ≡ 0 (modσ(D)).

Since the property of two numbers to be multiplicatively independent is pre-
served under conjugation by the σ’s, it follows that none of the expressions
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on the left hand side of (42) is zero. Taking the products of all the above
congruences (42) over all the σ’s, we get

(43) NK(D) |NK(e∆iαmi ± f∆iβmi),
and the integer on the right hand side of (43) is non-zero. Thus, by the
absolute value inequality, we immediately get

(44) NK(D) ≤ 2dK exp(dKC16 max(∆i,mi)) for i = 0, 1, . . . , j + 2.

Inequality (44) at i = j + 2 together with (39) implies (16) and concludes
the proof of Theorem 3.

The proofs of Theorems 2 and 4. We proceed to the proof of Theorem 4
and we shall point out at the appropriate moment why Theorem 2 is slightly
better.

First we assume that c and d are algebraic integers. This is part of
the hypothesis in Theorem 4. In the case of Theorem 2, if c and d are
not algebraic integers, we replace (un)n≥0 by (ηun)n≥0 where η is a greatest
common denominator of c and d, thus replacing (c, d) by (ηc, ηd) of algebraic
integers. Notice that since c = (αu0−u1)/(α−β) and d = (u1−βu0)/(α−β),
it follows that η divides (α− β)2.

Assume that c/d and α/β are multiplicatively dependent and belong
to K. We first show that there exists a number % ∈ K which is not a root of
unity, two coprime integers t and v > 0 (here, v = 1 when t = 0), and two
roots of unity ζ1 and ζ2 in K such that

(45) c/d = %tζ1 and α/β = %vζ2.

To prove this, we start with two integers k and l, not both zero, such that

(46)
(
c

d

)k
=
(
α

β

)l
.

Notice that k 6= 0 because k = 0 implies that l 6= 0, and now (46) leads to the
conclusion that α/β is a root of unity, which contradicts our assumptions.
If k < 0, we may replace (k, l) by (−k,−l) and relation (46) still holds.
Thus, we may assume that k > 0. If l = 0, we infer that c/d = ζ1 is some
root of unity in K, and we may set t := 0, v := 1, % := α/β, and ζ2 := 1.
Assume now that l 6= 0. Let d1 := gcd(k, l), and write k = d1k1, l = d1l1,
where now k1 and l1 are coprime. Taking d1th roots in (46), we conclude
that

(47)
(
c

d

)k1

=
(
α

β

)l1
ζ

with ζ some root of unity in K of order dividing d1. Let %1 denote the
common value of the two sides of (47). Clearly, %1 is not a root of 1. On the
one hand, taking k1th roots in (47), we get %1/k1

1 = c/d ∈ K, where %1/k1
1 is
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the determination of the k1th root of %1 for which the above equality holds.
On the other hand, (%1ζ

−1)1/l1 = α/β ∈ K, where again we set (%1ζ
−1)1/l1

for the unique determination of the l1th root of %1ζ
−1 such that the above

equality holds. Since k1 and l1 are coprime, there exist integers x and y so
that xl1 + yk1 = 1. Set

(48) % := (%1/k1
1 )x((%1ζ

−1)1/l1)y ∈ K.
Since any two determinations of any fixed root of a fixed complex number
differ multiplicatively just by roots of unity, relation (48) together with
the fact that x/k1 + y/l1 = 1/(k1l1) immediately gives the relations %l1 =
%

1/k1
1 ζ1 = cζ1/d and %k1 = (%1ζ

−1)1/l1ζ2 = αζ2/β with two roots of unity ζ1

and ζ2, and now the fact that all three numbers %, c/d, and α/β are in K
implies that ζ1 and ζ2 are in K as well. Setting now v := k1 and t := l1 we
have obtained a representation of the form (45). Since α/β is not a root of
unity, it follows easily that the exponents v and t are uniquely determined
and that the value of % is also uniquely determined up to roots of unity in K.

Having proved (45), we may now write % = γ/δ where γ and δ are
algebraic integers in K. The most canonical way of doing this for us is the
following. With the two integers x and y such that 1 = xl1 + yk1 = xt+ yv,
relations (45) imply that

% =
cxαyζ3
dxβy

,

where ζ3 := ζ−x1 ζ−y2 is a root of unity in K. Replacing % by %ζ−1
3 , it follows

that we may assume that

(49) % =
cxαy

dxβy
.

We put

(γ, δ) :=





(cxαy, dxβy) if x ≥ 0 and y ≥ 0,

(d−xβ−y, c−xα−y) if x ≤ 0 and y ≤ 0,

(cxβ−y, dxα−y) if x > 0 and y < 0,

(d−xαy, c−xβy) if x < 0 and y > 0.

All the above representations of % as a ratio of two algebraic integers γ
and δ have the property that if π is a prime ideal dividing both γ and δ,
then π divides the ideal D := gcd([cα], [dβ]) gcd([cβ], [dα]).

It thus follows that for any positive integer m we may write

(50) um =
dβm

δvm+t (δvm+t − ζmγvm+t).

In (50), the numbers ζm = −ζ1ζm2 are roots of unity, but they may obviously
depend on m. When (un)n≥0 is a binary recurrent sequence of integers,
(50) can be made more precise. Namely, if α is rational, then we may take
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% = γ/δ to be a rational number in reduced form, thus D := 1 and (50) holds
with ζm ∈ {±1}. When α is irrational, then upon setting γ and δ as before
and writing σ for the unique Galois automorphism of K over Q, the fact that
σ(c) = d and σ(α) = β implies immediately that σ(γ) = δ. Applying σ in
the equations (45) and using the fact that σ(c/d) = d/c, σ(α/β) = β/α and
σ(%) = %−1 we get σ(ζ1) = ζ1 and σ(ζ2) = ζ2. Thus, ζ1 = ±1 and ζ2 = ±1,
and this shows that ζm = ±1 in (50) in this case as well.

We now leave formula (50) for a while and we introduce some more
notations. Let U be the group of roots of unity inside K, and assume
that U contains R elements. We label the elements of U somehow, say
ζ1, . . . , ζR. U is cyclic and the field K contains a primitive root of unity
of order R whose degree over Q is φ(R), so φ(R) ≤ dK. In particular,
R < C21dK log log max(dK, ee), where C21 is an absolute constant. For two
fixed algebraic numbers γ and δ we say that the collection of algebraic in-
tegers (wm,i)m,i in K given by

(51) wm,i := δm − ζiγm for all m ≥ 0 and i = 1, . . . , R

is a generalized Lucas sequence in K.
We now neglect for a while the fact that the powers appearing in (50) run

only in a certain arithmetic progression of positive integers and we address
the primitive divisor problem for the generalized Lucas sequence (wm,i)m,i.
Fix a positive integer m and an index i ∈ {1, . . . , R}. We say that the
algebraic number wm,i has a primitive divisor if there exists a prime π in K
dividing wm,i such that π does not divide wn,j for any pair of integers n, j
with wn,j 6= 0 and 0 ≤ n < m.

We shall show that there exists a computable constant C22 depending
only on dK, the class number h := hK of K, and P (NK(D)), so that when
m > C22 then wm,i has a primitive divisor. The remaining part of this proof
is due to A. Schinzel. When [γ] and [δ] are coprime, it has been first shown
by Schinzel in [11], in the particular case R = 1 (i.e., when ζi = 1 always),
and then in the general case in [12], that such a constant C22 exists and
that it can be taken to depend only on dK. When R = 1, Stewart (see [17]
and [19]) showed that one may take C22 := max(2(2dK−1), e452d67

K ). Assume
now that [γ] and [δ] are not coprime. Write [γ] = D1I and [δ] = D1J , where
D1 := gcd([γ], [δ]). Notice that every prime divisor of D1 divides D. Let
λ1 be a generator of the principal ideal Dh

1 . Then, since [γh] = Dh
1 I

h and
[δh] = Dh

1J
h, it follows that γh = λ1γ1 and δh = λ1δ1, where γ1 and δ1 are

generators of the coprime principal ideals Ih and Jh, and obviously γ1/δ1

is not a root of 1. Let λ := λ
1/h
1 be any fixed determination of an hth

root of λ and write γ = λγ2 and δ = λδ2, where γ2 and δ2 are the unique
determinations of γ1/h

1 and δ
1/h
1 such that the above formulae hold. Notice

that (δ2/γ2)h = (δ/γ)h, so that δ2/γ2 is not a root of unity.
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Let K1 := K[λ1]. Then obviously dK1 ≤ hdK, so the degree of K1 can be
bounded in terms of dK and h. Since λ ∈ K1, we see that both γ2 and δ2

belong to K1, and obviously [γ2] and [δ2] are coprime in K1 (this is because
by considering the ideals [γ2]h and [δ2]h in K1 and intersecting them with
the ring of algebraic integers in K we get Ih and Jh which are coprime).
Thus, in K1, we have wm,i = λm(γm2 − ζiδm2 ), and [γ2] and [δ2] are coprime.
By Schinzel’s result from [12], there exists a constant C23 depending only on
dK1 such that if we set w′m,i := γm2 − ζiδm2 , then w′m,i has primitive divisors
for m > C23. It is easy to see that any primitive divisor π1 in K1 of w′m,i
sits above a rational prime p ∈ Z such that p > (m+ 1)1/dK1 . Indeed, since
π1 obviously does not divide either γ2 or δ2, it follows that δ2 is invertible
modulo π1 and (γ2/δ2)m ≡ ζi (modπ1). Since π1 is also primitive, it follows
that the order of γ2/δ2 in the finite field OK1/π1 is at least m. Since on
the other hand this order divides NK1(π1) − 1 ≤ pdK1 − 1, we do indeed

get p ≥ (m + 1)1/dK1 . Thus, choosing C24 := P
1/dK1
1 ≥ P (NK(D1))1/dK1

and imposing that m > C22 := max(C23, C24), it follows that w′m,i has a
primitive divisor π1 in K1 which does not divide λ. It is now clear that if π is
the prime ideal in K such that π1 sits above π, then π is a primitive divisor
of wm,i. In particular, π does not divide γδ. We now set C17 (respectively
C13) to be such that vm + t > max(|t|, C22) whenever m > C13. Take
m > C13 and take π to be a primitive prime divisor of wvm+t,i, where i
is the index in {1, . . . , R} so that ζi = ζm. Since π does not divide δ, it
follows that π divides um. It is clear that π does not divide dβm, because
dβm

δvm+t = cαm

γvm+t ζm implies that if π divides dβm, then π divides cαm as well,
therefore π divides D, which is not possible by our choice of the constant
C24. Thus, if π is not primitive for um, there exists n < m so that π divides
δvn+t − ζnγvn+t 6= 0. Clearly, vn + t < vm + t. When vn + t ≥ 0 we get a
contradiction with the fact that π is primitive for wvm+t,i. If vn + t < 0,
then

δvn+t − ζnγvn+t = −
(
ζnγ

vn+t

δvn+t

)
(δ−vn−t − ζ−1

n γ−vn+t)

= −
(
ζnγ

vn+t

δvn+t

)
w−vn−t,j ,

where we write j for the index in {1, . . . , R} such that ζj = ζ−1
n . Thus, π

divides w−vn−t,j and since −vn− t = |vn+ t| ≤ |t| < vm+ t, we get again
a contradiction with the fact that π is primitive for wvm+t,i.

This completes the proof of the existence of the primitive divisors for
both instances of Theorems 2 and 4. It remains to justify the inequalities
(10) and (17). In the case of Theorem 2, we have ζm = ±1 and the numbers δ
and γ are either coprime integers, or quadratic conjugate algebraic numbers.
When m > C22, wm,±1 has primitive prime divisors π in K which sit above
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rational primes p ∈ Z, which are primitive in the classical sense for the Lucas
sequence of first or second kind (according to whether ζm = −1 or +1) whose
roots are γ and δ. Thus, this rational prime p divides wm,±1 and it is known
that such a prime number p is congruent to either 1 or −1 modulo m. This
shows that P (um) ≥ vm+ t− 1 > m− (|t|+ 1) for m > C13, which implies
that P (um) > m − C14 for all m ≥ 0 with C14 := C13 + |t| + 2. Finally,
inequality (17) follows in the same way from the fact that for m > C22 any
primitive divisor of wm,i is a prime ideal π of K sitting above a rational
prime p ∈ Z with the property that both δ and γ are invertible modulo π
and that the order of δ/γ modulo π is at least m. Since this order divides
NK(π)−1 ≤ pdK−1, we get P (NK(wm,i)) > (m+1)1/dK . Thus, for m > C17,
we have P (NK(um)) > (vm+ t+ 1)1/dK > (m− (|t| − 1))1/dK , and therefore
P (NK(um)) > (m− C20)1/dK for all m ≥ 0 with C20 := |t|+ C17.

Remark 1. The arguments employed in the above proof show that un-
der the assumptions of Theorem 4 we can conclude that for infinitely many
positive integers m the slightly better inequality P (NK(um))>C25m

1/(dK−1)

holds, and, in fact, for large x, the number of such positive integers m < x
is � x/log x, where both C25 and the implied constant are effectively com-
putable in terms of the sequence (un)n≥0. To see this, recall that the num-
bers v and t defined in the proof of Theorem 4 are coprime, so by Dirichlet’s
theorem on primes in arithmetic progressions it follows that for large x,
the number of positive integers m < x for which vm + t = q is a prime is
� x/log x. When vm+ t = q is a large prime, um has a prime divisor π in
K sitting above a rational prime p ∈ Z such that pf − 1 ≡ 0 (mod q), where
f ≤ dK is the dimension of the finite field OK/π as a vector space over Zp.
In particular,

q | pf − 1

or, equivalently,

q
∣∣ ∏

d|f
Φd(p),

and from the above divisibility relation we deduce that p > C25m
1/(dK−1)

for large m.

Remark 2. As the reader might have noticed, the bulk of the proofs
of Theorems 2 and 4 consists in proving that if δ, γ and ζ are non-zero
algebraic integers in an algebraic number field K such that ζ is a root of
unity and δ/γ is not a root of unity, then for all sufficiently large values of
the positive integer m, the algebraic number δm−ζγm is divisible by a prime
ideal not dividing any of the numbers γn− ζ ′δn for 0 < n < m and any root
of unity ζ ′. This fact is not new and has been proved by Schinzel in [12], but
only for the case in which δ and γ are coprime. Thus, our Theorems 2 and
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4 are a bit more general not only in the above sense, but also because they
apply to quite general binary recurrent sequences of algebraic integers (in
particular, to any binary recurrent sequence (un)n≥0 of algebraic integers
for which the equation um = 0 has a non-negative integer solution m).

The proof of Theorem 5. A non-degenerate binary recurrent sequence of
polynomials with rational coefficients (un)n≥0 behaves essentially differently
in the case when α/β is not a constant, than in the case where α/β is a
constant. So, we shall treat the two cases separately. From now on, all the
effectively computable constants C26, C27, . . . that will show up, except for
C42, will depend only on the degrees of the polynomials u0, u1, r, and s
but not on the polynomials themselves. We start with the most interesting
situation.

Case 1: α/β is not constant. Write

(52) um =
∏

p|um
pαp = A(m)B(m),

where
A(m) :=

∏

p|um
αp>1

pαp and B(m) :=
∏

p|um
αp=1

p.

We first show that there exists an effectively computable constant C26 such
that deg(A(m)) ≤ C26. Suppose first that p |A(m) is a prime divisor of
s = −αβ. Since pαp |um, we have the divisibility relations

(53) pαp | c2(−s)m + (cd)β2m and pαp | (cd)α2m + d2(−s)m.
These relations, and many others that will appear throughout this proof, are
to be interpreted in the ring of algebraic integers in the algebraic function
field K := Q(X)[α]. Assume first that m > αp. Then, from (53), we get
pαp | cd(α2m + β2m). From the binomial formula and the fact that p | s we
infer that

r2m ≡ (α+ β)2m (mod p) ≡ α2m + β2m (mod p),

and since r and s are coprime, we conclude that pαp | cd. In particular,
αp ≤ deg(cd) ≤ C27 (notice that cd is a non-zero polynomial). If m ≤ αp,
(53) implies that pm | cd(α2m + β2m), and the above argument shows that
m ≤ C27. From the recurrence relation un+2 = run+1 +sun for n = 0, 1, . . . ,
one finds immediately, by induction on n, that

deg(un) ≤ C28(n+ 1) for all n ≥ 0,

where
C28 := max(deg(u0),deg(u1),deg(r),deg(s)).
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Hence, since m ≤ C27 when m ≤ αp, we deduce, from the fact that pαp |um,
that

αp ≤ deg(um) ≤ C28(m+ 1) ≤ C29,

where C29 := C27(C28 + 1). The above argument shows that if we write
A(m) = A1(m)A2(m), where

A1(m) :=
∏

p|A(m)
p|s

pαp and A2(m) :=
∏

p|A(m)
p-s

pαp ,

then deg(A1(m)) ≤ C29. It remains to bound the degree of A2(m). Write

A3(m) =
∏

p|A2(m)

pαp−1.

Notice that A3(m) is equal to A2(m)/rad(A2(m)), where for a non-zero
polynomial f we write rad(f) for the polynomial which is the product of
all the non-associated irreducible factors of f . If A2(m) = 1, then there is
nothing to prove. So, we may assume that deg(A3(m)) ≥ 1. We may also
assume that m ≥ 2, otherwise deg(A(m)) ≤ max(deg(u0),deg(u1)) ≤ C28.
Taking derivatives in the congruence

(54) cαm + dβm ≡ 0 (modA2(m))

we get

(55) (c′α+mcα′)αm−1 + (d′β +mdβ′)βm−1 ≡ 0 (modA3(m)).

We treat the system of congruences (54) and (55) as a homogeneous linear
system modulo A3(m) in the indeterminates X := αm−1 and Y := βm−1,
and as such we write it as

(56)
{
cαX + dβY ≡ 0 (modA3(m)),

(c′α+mcα′)X + (d′β +mdβ′)Y ≡ 0 (modA3(m)).

Let ∆ := −s(cd′ − c′d) + mcd(αβ′ − α′β) be the discriminant of the above
system. It is easy to see that (β − α)2∆2 = (r2 + 4s)∆2 is a polynomial
with rational coefficients. Indeed, if K = Q(X), then ∆ is an element of
Q[X], while when dK := [K : Q(X)] = 2, the fact that (r2 + 4s)∆2 is an ele-
ment of Q[X] follows from the fact that the four pairs (α, β), (c, d), (α′, β′)
and (c′, d′) consist of conjugate elements in K and the first two consist of
algebraic integers in K while the last two consist of elements of K whose
denominators divide r2 + 4s = (β − α)2. If ∆ = 0, the function cαm/(dβm)
is a constant, and we may write cαm = γdβm, where γ is a constant which
is not a root of unity because c/d and α/β are multiplicatively independent.
In particular, γ 6= −1. But in this case, um = dβm(1 + γ) 6= 0, and since
A2(m) |um and A2(m) is coprime to s, we see that A2(m) | cd, therefore
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deg(A2(m)) ≤ C27. Finally, if ∆ 6= 0, then we may solve the above sys-
tem (56) with Cramer’s rule and find that both A3(m) | (r2 + 4s)∆2αm−1

and A3(m) | (r2 + 4s)∆2βm−1. In particular,

(57) A3(m) | (r2 + 4s)∆2 gcd(αm−1 + βm−1, (−s)m−1).

Since r and s are coprime and m ≥ 2, the polynomials αm−1 + βm−1 and
sm−1 are coprime, and therefore A3(m) | (r2 + 4s)∆2. Thus,

deg(A3(m)) ≤ deg((r2 + 4s)∆2) ≤ C30,

and now

(58) deg(A2(m)) ≤ 2 deg(A3(m)) ≤ 2C30.

Thus,

(59) deg(A(m)) = deg(A1(m)) + deg(A2(m)) ≤ C26,

where we set C26 := C29 + 2C30.
Next we prove that there exist constants C31 and C32 such that

(60) deg(um) ≥ C31m− C32.

We split the argument into two subcases.

Subcase 1: deg(s) > 0. We write k := deg(s) and we show that (60)
holds with C31 = k/2 and some constant C32. To prove this, we introduce
the sequence (wn)n≥0 by

wn := (β − α)dαn − (β − α)cβn for n = 0, 1, . . .

An immediate computation shows that

c =
βu0 − u1

β − α and d =
−u0α+ u1

β − α ,

therefore
w0 = (β − α)(d− c) = (−u0α+ u1)− (βu0 − u1)

= 2u1 − u0(α+ β) = 2u1 − u0r ∈ Q[X],

and
w1 = (β − α)(dα− cβ) = (−u0α

2 + u1α)− (β2u0 − βu1)

= u1(α+ β)− u0(α2 + β2) = u1r − u0(r2 + 2s)

is a polynomial in Q[X] as well. Since obviously

(61) wn+2 = rwn+1 + swn for n = 0, 1, . . . ,

it follows that (wn)n≥0 is a non-degenerate binary recurrent sequence of
polynomials with rational coefficients. Notice that wn is never zero because
c/d and α/β are multiplicatively independent. The polynomials un and wn
are related via the formula

(62) (r2 + 4s)u2
n − w2

n = 4(r2 + 4s)cd(−s)n for n = 0, 1, . . .
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We now choose

C33 := 2C26 + C27 + 2C28 ≥ 2 deg(A(m)) + deg(cd) + deg(r2 + 4s)

and let m > C33. We set D := gcd((r2 + 4s)u2
m, w

2
m) and notice that (62)

implies that D = (r2 +4s) gcd(u2
m, cds

m). From the way we have chosen the
constant C33, we infer that deg(D) < C33 < m. Thus, we may write (62) as

(63)
(r2 + 4s)u2

m

D
− w2

m

D
=

4(r2 + 4s)(cd)(−s)m
D

,

which is a polynomial relation of the type A+B = C with

(64) A :=
(r2 + 4s)u2

m

D
, B := −w

2
m

D
, C :=

4(r2 + 4s)cd(−s)m
D

,

where the three polynomials A, B, C are coprime, non-zero, and at least one
of them (namely C) is non-constant. We now recall the following theorem
due to Mason (see [8]).

Mason’s Theorem. Let A, B, C be three non-zero and coprime poly-
nomials with at least one of them non-constant and such that A + B = C.
Then

max(deg(A),deg(B),deg(C)) ≤ N(ABC)− 1,

where for a non-constant polynomial f we denote by N(f) the number of
distinct complex roots of f .

To prove now that deg(um) ≥ C31m − C32 when m > C33, we argue as
follows. We look at formula (63). If

deg((r2 + 4s)u2
m) ≥ deg(4(r2 + 4s)cd(−s)m),

then (60) obviously holds with any C32 > 0. If

deg((r2 + 4s)u2
m) < deg(4(r2 + 4s)cd(−s)m),

then
deg(w2

m) = deg(4(r2 + 4s)cd(−s)m),

therefore deg(wm) ≥ C31m + deg((r2 + 4s)cd)/2. From (63), (64) and Ma-
son’s Theorem, we get

2 deg(wm)−deg(D) = deg
(
w2
m

D

)
= max(deg(A),deg(B),deg(C))

≤ N(ABC)−1 = N

(
(r2 +4s)2(cd)w2

mu
2
m(−s)m

D3

)
−1

≤ N((r2 + 4s)cdwmum)− 1

< deg(um) + deg(wm) + deg((r2 + 4s)cd),



102 F. Luca

therefore
deg(um) ≥ deg(wm)− deg(D)− deg((r2 + 4s)cd)

≥ C31m− deg(D)− deg((r2 + 4s)cd)
2

≥ C31m− C32,

where we set

C32 :=
C31

2
+ C28 + C33 ≥

deg((r2 + 4s)cd)
2

+ deg(D).

Subcase 2: deg(s) = 0. In this case, s is a non-zero constant, and since
α/β is not constant, we see that deg(r) > 0. We will show that there exists
an index i ≤ C28 + 1 such that deg(rui) > deg(ui−1). Assume for the
moment that we have proved this. Since ui+1 = rui + sui−1 and deg(s) = 0,
we get deg(ui+1) = deg(rui) = deg(r) + deg(ui) > deg(ui). By induction,
one proves immediately that for m > i

(65) deg(um) = (m− i) deg(r) + deg(ui),

and so, in particular, (60) holds with C31 := deg(r) and C32 :=C28(C28 +1)
> ideg(r). It remains to prove the existence of such an index i. But if

(66) deg(r) + deg(ui) = deg(rui) ≤ deg(ui−1)

for all i = 0, 1, . . . , j, where j := C28 + 1, then, by summing up (66) for
i = 1, . . . , j, we get

deg(uj) ≤ deg(u0)− j deg(r) < deg(u0)− C28 < 0,

which is impossible.
Having now proved (60), we conclude at least that the inequality (20)

which is claimed by our Theorem 5 is non-void. We now have enough facts
about the general term um of our binary recurrent sequence of polynomials
to be able to prove that um has primitive divisors for large m and that
inequality (20) does indeed hold.

We denote by Q the polynomial Q := s(cd)(r2 + 4s)u0, and we write

(67) B(m) := C(m)D(m),

where

(68) C(m) :=
∏

p|B(m)
p|Q

p and D(m) :=
∏

p|B(m)
p-Q

p.

Clearly, deg(C(m)) ≤ deg(Q) ≤ C34, where

C34 := 4C28 + C27 ≥ deg(cd) + deg(s) + deg(r2 + 4s) + deg(u0).

It suffices to look for the prime divisors p of D(m) which are not primitive
for um. Notice that by (60) we know that

deg(D(m)) ≥ deg(um)− deg(A(m))− deg(C(m)) ≥ C31m− C35
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with C35 := C26 + C34, and, in particular, the degree of D(m) increases
linearly in m for large m. Let p be a prime divisor of D(m) which is not
primitive for um. Then there exists m1 < m such that p |um1 . Since p does
not divide cds(r2 + 4s), it must divide the (m−m1)th term Lm−m1 of the
Lucas sequence of polynomials with rational coefficients given by

(69) Ln :=
αn − βn
α− β for n = 0, 1, . . .

From the well-known divisibility properties of the Lucas sequence (Ln)n≥0,
it follows that there exists a positive integer l < m such that p |Ll and such
that l is minimal with this property. In particular,

(70) p |Φl(α, β),

where for a positive integer n we use the notation Φn(X,Y ) ∈ Q[X,Y ] for the
homogenization of the cyclotomic polynomial Φn(X) ∈ Q[X]. It is easy to see
that Φn(α, β) is a non-constant polynomial in Q[X]. Moreover, since p |um,
p -Q but p |Φl(α, β), there exists a unique positive integer k < l such that
p |uk. In particular, p |uk and p |uk+l, and we conclude that p |D(k + l, k),
where D(k + l, k) is the greatest common divisor of uk+l and uk which is
free of primes dividing scd. An analogue of Theorem 1 to the polynomial
setting can be easily formulated and proved to hold, and it yields

(71) deg(D(k + l, k)) ≤ C36
√
k + l ≤ C37

√
l,

where C36 depends only on C28 and C37 :=
√

2C36. In particular, we get

(72) deg(p) ≤ C37

√
l.

We now show that

(73) deg(p) ≥ φ(l)/2.

To see this, pick x to be any root of the irreducible polynomial p and set
Kx := Q[x]. Clearly, dKx = [Kx : Q] = deg(p). From (70), it follows that
Φl(α, β)(x) = 0, therefore there exists a primitive root of unity ζ of order d
such that

(74) α(x)− ζβ(x) = 0.

If K = Q(X), then α/β is a non-constant element of Q(X), and since p is
coprime to Q we see that s(x) = −α(x)β(x) 6= 0. Relation (74) now implies
that

ζ =
α(x)
β(x)

∈ Kx,

therefore Kx contains the cyclotomic field Q[ζ]. In particular,

deg(p) = dKx ≥ [Q[ζ] : Q] = φ(l),
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which is a better inequality than (73). Assume now that dK = 2. Then (74)
implies that

(α(x)− ζβ(x))(β(x)− ζα(x)) = 0,

and since α(x)β(x) = −s(x) 6= 0, we may write the above equation as

ζ2 − α(x)2 + β(x)2

α(x)β(x)
ζ + 1 = 0,

and both α(x)2+β(x)2 = r(x)2+2s(x) and α(x)β(x) = −s(x) belong to Kx.
Thus, ζ satisfies an algebraic equation of degree 2 over Kx, and since the
degree of ζ over Q is precisely φ(l), we get inequality (73). Putting together
(72) and (73), we get

(75) φ(l) ≤ C38

√
l,

where C38 := 2C37. But it is well known that there exists an absolute con-
stant C39 such that

(76) φ(n) > C39
n

log logn

for all positive integers n > 1. The combination of (75) and (76) gives

C39
l

log log l
≤ C38

√
l

and we get
l < C40.

In particular, k < C40, and any non-primitive prime divisor p of um dividing
D(m) divides

(77)
∏

1≤k<C40

uk.

We finally set C41 to be an upper bound for the degree of the polyno-
mial (77), and C20 := C35 + C41, and notice that the above arguments
imply that inequality (20) does hold with this constant C20. The fact that
the polynomial Prim(um) is non-constant for large m is a consequence of
(20) and (70). This case is therefore settled.

Case 2: α/β is constant. In this case, we shall first show that α and
β are both constants. Indeed, with γ := α/β we know that γ 6= ±1, and
α = γ

1+γ r and β = 1
1+γ r. In particular, s = αβ = γ

(1+γ)2 r
2, therefore

the constant γ/(1 + γ)2 = s/r2 is rational. Since we are assuming that r
and s are coprime, both r and s are rational constants. So, α and β are
both constants. We let ∆ be the greatest common denominator of r and
s, and we replace the pair (r, s) by (∆r,∆2s), and the recurrent sequence
(un)n≥0 by (∆nun)n≥0. After this replacement, the two roots α and β of the
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characteristic equation (2) of our binary recurrent sequence of polynomials
(un)n≥0 become algebraic integers. We introduce the sequences of

(78) Ln :=
αn − βn
α− β and L′n := αn + βn for n = 0, 1, . . . ,

and let c1 and d1 be the two polynomials in Q[X] such that

(79) un = c1Ln + d1L
′
n

for all n ≥ 0. It is a straightforward computation to verify that the pair
(c1, d1) is related to (c, d) via

(80) c1 =
(c− d)(α− β)

2
and d1 =

c+ d

2
.

Since c/d is not constant, it follows that c1d1 6= 0 and c1/d1 is not a con-
stant either. By replacing (un)n≥0 by (un/λ)n≥0, where λ := gcd(c1, d1),
we may assume that c1 and d1 are coprime. Clearly, none of them is zero,
and at least one of them is non-constant. We now show that deg(um) =
max(deg(c1),deg(d1)) for large m. This is obvious if deg(c1) 6= deg(d1). So,
we assume that deg(c1) = deg(d1) = δ, and we let µ1 and ν1 be the leading
coefficients of c1 and d1, respectively. Then deg(um) < δ precisely when

(81) µ1Lm + ν1L
′
m = 0.

But it is easy to see that the binary recurrent sequence of integers (vn)n≥0

given by

(82) vn := µ1Ln + ν1L
′
n for n = 0, 1, . . .

is non-degenerate, and therefore there exists a constant C42 such that vm 6= 0
for m > C42. In particular, um is not constant for m > C42.

We now show that every prime divisor of um is primitive when m > C42.
Indeed, assume that this were not so and pick a prime divisor p of um such
that there exists n < m for which p divides un. We set X := c1, Y := d1 and
notice that the divisibility relations p |um and p |un lead to the homogeneous
linear system

(83)
{
LmX + L′mY ≡ 0 (mod p),

LnX + L′nY ≡ 0 (mod p),

in the field Q[X]/p which has the non-zero solution (X,Y ) modulo p (this
solution (X,Y ) is indeed non-zero modulo p because X = c1 and Y =
d1 are coprime polynomials). In particular, p must divide the determinant
LmL

′
n −L′mLn of the coefficient matrix of the above system, and since this

determinant is an integer (i.e., a constant), it must be zero. Hence,

LmL
′
n = LnL

′
m,
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which is easily seen to be equivalent to
(
α

β

)m−n
= 1,

with m−n > 0, contradicting the fact that α/β is not a root of 1. This case
is therefore settled as well and the proof of our Theorem 5 is complete.
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art for their valuable comments on a previous version of the manuscript and
for pointing out to me some bibliographical references. Special thanks are
due to Professor A. Schinzel who supplied the second part of the present
proof of Theorems 2 and 4 improving on my original proof of these results
which was a lot longer. This work was partially supported by the grants
SEP-CONACYT 37259-E and 37260-E.

References

[1] Y. Bilu, G. Hanrot and P. M. Voutier, Existence of primitive divisors of Lucas and
Lehmer numbers, J. Reine Angew. Math. 539 (2001), 75–122.

[2] Yu. F. Bilu and R. F. Tichy, The Diophantine equation f(x) = g(y), Acta Arith.
95 (2000), 261–288.

[3] Y. Bugeaud, P. Corvaja and U. Zannier, An upper bound for the GCD of an − 1
and bn − 1, preprint, 2001.

[4] A. Dujella and R. F. Tichy, Diophantine equations for second-order recursive se-
quences of polynomials, Quart. J. Math. 52 (2001), 161–169.
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