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and the distribution of fractional parts {ξ(p/q)n}
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Yann Bugeaud (Strasbourg)

1. Introduction. It is well known (see e.g. [7, Chapter 1, Corollary
4.2]) that for almost all real numbers θ ≥ 1 the sequence {θn} is uniformly
distributed in [0, 1]. Here and in what follows, {·} denotes the fractional
part. However, very few results are known for specific values of θ, and the
distribution of {(p/q)n} for coprime positive integers p > q ≥ 2 remains
an unsolved problem. Vijayaraghavan [10] showed that this sequence has
infinitely many limit points, but we are unable to decide whether

lim sup
n→∞

{(
p

q

)n}
− lim inf

n→∞

{(
p

q

)n}
>

1
2
.

A striking progress has recently been made by Flatto, Lagarias & Pollington
[5], who proved that, for all positive real numbers ξ, we have

(1) lim sup
n→∞

{
ξ

(
p

q

)n}
− lim inf

n→∞

{
ξ

(
p

q

)n}
≥ 1
p
.

They were inspired by a paper of Mahler [8], who studied the hypothetical
existence of so-called Z-numbers, i.e. positive real numbers ξ such that 0 ≤
{ξ(3/2)n} < 1/2 for all integers n ≥ 0. Extending this definition, Flatto et
al. introduce, for an interval [s, s+ t[ included in [0, 1[, the set

Zp/q(s, s+ t) :=
{
ξ ∈ R : s ≤

{
ξ

(
p

q

)n}
< s+ t for all n ≥ 0

}
.

To prove (1), they show that the set of s such that Zp/q(s, s+ 1/p) is empty
is dense in [0, 1− 1/p]. Their argument uses Mahler’s method, as explained
in a preliminary work by Flatto [4] (for more bibliographical references,
we refer the reader to [4] and [5]), and also relies on a careful study of
contracting linear transformations which are very close to those investigated
in [2] and [3].
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The purpose of the present work is to show how the methods used in [2]
and [3] apply to the transformations considered in [5], and to derive some
interesting consequences. For instance, we prove that Zp/q(s, s + 1/p) is
empty for almost all (in the sense of Lebesgue measure) real numbers s in
[0, 1− 1/p] and we answer both questions posed at the end of [5].

Acknowledgements. I express my gratitude to the referee for pointing
out many mistakes and inaccuracies in an earlier draft of this text.

2. Statement of the results. Before stating our results, we introduce
some notation, which will be used throughout. Let τ be a real number with
0 ≤ τ < 1. For any integer k, set

εk(τ) = [kτ ]− [(k − 1)τ ],

where [·] denotes the integer part. The sequence (εk(τ))k∈Z only takes values
0 and 1 and, for τ irrational, it is usually called the characteristic Sturmian
sequence associated to τ . For any nonzero rational a/b, with a and b coprime,
the sequence (εk(a/b))k∈Z is periodic with period b.

Our first result concerns the sets Zp/q(s, s + 1/p) and complements a
result of Flatto et al. who proved in [5] that the set of s in [0, 1 − 1/p] for
which Zp/q(s, s+ 1/p) is empty is a dense set.

Theorem 1. Let p > q ≥ 2 be coprime integers. Then the set Zp/q(s, s+
1/p) is empty for a set of s of full Lebesgue measure in [0, 1− 1/p] . More
precisely , this set is empty when there exists a rational number a/b, with
b > a ≥ 1, such that

b−2∑

k=1

ε−k(a/b)
(
q

p

)k
+
(
q

p

)b

1 +
q

p
+ · · ·+

(
q

p

)b−1 ≤ {(p− q)s} ≤

b−2∑

k=1

ε−k(a/b)
(
q

p

)k
+
(
q

p

)b−1

1 +
q

p
+ · · ·+

(
q

p

)b−1 .

Further , if for some s in [0, 1 − 1/p] the set Zp/q(s, s + 1/p) is nonempty ,
then there exists an irrational number τ in ]0, 1[ such that

(2) {(p− q)s} =
p− q
p

∞∑

k=1

ε−k(τ)
(
q

p

)k
.

The proof of Theorem 1 is given in Section 3 and relies upon the main
result of [2]. It also allows us to answer (in Theorem 3) a problem posed by
Flatto et al. at the end of [5].

As an immediate application, we considerably improve Corollary 1.4a
of [5].
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Corollary 1. The set Z3/2(s, s+ 1/3) is empty if

s ∈ {0} ∪ [8/57, 4/19] ∪ [4/15, 2/5] ∪ [26/57, 10/19] ∪ {2/3}.
To prove Corollary 1, we check that the three intervals are given by

Theorem 1 applied to the rationals 1/3, 1/2 and 2/3. Further, since for any
irrational τ in ]0, 1[ there exist k ≥ 1 and l ≥ 1 such that ε−k(τ) = 1 and
ε−l(τ) = 0, we get 1

3 (
∑∞
k=1 ε−k(τ)(2/3)k) 6= 0, 2/3, and hence, by the last

part of Theorem 1, the sets Z3/2(0, 1/3) and Z3/2(2/3, 1) are empty (a fact
already proved in [5]).

We have not been able to determine whether Zp/q(s, s+1/p) is empty for
all values of s. However, we obtain some additional information concerning
the sets Zp/q(s, s+ 1/p) for exceptional values of s.

Theorem 2. Let p > q ≥ 2 be coprime integers. Let s in [0, 1 − 1/p]
satisfy (2) for some irrational τ . Then

Card{ξ : 0 ≤ ξ ≤ x and ξ ∈ Zp/q(s, s+ 1/p)} = O((logq x)3).

Theorem 2 considerably improves Theorem 1.1 of [5] for t = 1/p, where
the estimate O(xγ) is obtained with γ = logq min{2, p/q}. Its proof is
given in Section 4, where we get strong conditions on [ξ] for ξ belonging
to Zp/q(s, s+ 1/p).

3. Proof of Theorem 1. In all what follows, for a map F and an
integer n ≥ 0, we denote by Fn the map F ◦ · · · ◦ F , composed n times.

Keeping the notation of Section 3 of [5], we define for any real numbers
β > 1 and 0 ≤ α < 1 the map fβ,α by

fβ,α(x) = {βx+ α} for x ∈ [0, 1[.

We set

Sβ,α := {x ∈ [0, 1[ : 0 ≤ fnβ,α(x) < 1/β for all n ≥ 0}.
Theorem 3.4 of [5] asserts that Sβ,α is finite as soon as 0 6∈ Sβ,α, which is
the case for a dense set of values of α in [0, 1] (see Theorem 3.5 of [5]). The
problem of the existence of values of α such that Sβ,α is infinite is left open
in [5]. Indeed, setting

Eβ := {α ∈ [0, 1[ : Sβ,α is an infinite set},
Flatto et al. conjecture that, for all β > 1, the set Eβ is nonempty and
perfect, and has Lebesgue measure zero. The present section is concerned
with the study of this problem, which we solve in Theorem 3 below.

In the rest of this section, f stands for fβ,α.

Lemma 1. Assume that there exists an integer N ≥ 1 with fN (0) = 0
and such that fk(0) 6∈ {0} ∪ [1/β, 1[ for any integer 1 ≤ k ≤ N − 1. Then
Sβ,α is the finite set {0, f(0), . . . , fN−1(0)}.
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Proof. We use the notation of Lemmas 3.1–3.3 of [5], and we only point
out which slight changes should be made in their proofs to get our lemma.
A continuity argument shows that α is the right endpoint of the interval
IN−1 = [·, α[. It follows that R−1 is empty, whence all the Rk’s, k ≥ 0, are
empty. Arguing as in [5], we denote by pn the left endpoint of Ln for n ≥ 0,
and we set

qk := lim
j→∞

pk+jN , 0 ≤ k ≤ N − 1.

Each qk coincides with a right endpoint of some Ij , 0 ≤ j ≤ N−1. It follows
that Sβ,α = {q0, . . . , qN−1} = {0, f(0), . . . , fN−1(0)}, as claimed.

Lemma 2. Let β > 1. Then, for each α in [0, 1[, the set Sβ,α is infinite
if , and only if , fNβ,α(0) 6∈ {0} ∪ [1/β, 1[ for all integers N ≥ 1.

Proof. The “only if” part follows from Lemma 1 and Theorem 3.4 of [5],
which states that fN (0) ≥ 1/β implies that Sβ,α is a finite set. To prove the
“if” part, we assume that

(3) 0 < fN (0) < 1/β for all integers N ≥ 1,

and we show by contradiction that the fk(0)’s, k ≥ 1, are distinct. To this
end, assume that 1 ≤ k < l are minimal with fk(0) = f l(0). Then there is
an integer j with 0 ≤ j ≤ [β] such that

fk−1(0) = f l−1(0) + j/β.

By (3), we must have j = 0, which, by minimality of k, yields k = 1. It
follows that f l−1(0) = 0, a contradiction with (3).

Lemma 3. Let β > 1 and put γ = 1/β. Set J1
1 (γ) = [γ, 1[ and , for

coprime integers b > a ≥ 1,

Jab (γ) =
[∑b−1

k=1 ε−k(a/b)γk + γb

1 + γ + · · ·+ γb−1 ,

∑b−1
k=1 ε−k(a/b)γk + γb−1

1 + γ + · · ·+ γb−1

]
.

Then the intervals Jab (γ) are disjoint for different choices of coprime integers
b > a ≥ 1. Further , the set Sβ,α is finite if , and only if , there exist coprime
integers b ≥ a ≥ 1 such that α ∈ Jab (γ). Moreover , Sβ,α is empty if , and
only if , α is the left endpoint of some Jab (γ), and otherwise Sβ,α has exactly
b elements, which are cyclically permuted under the action of f if α is in
Jab (γ) but is not its left endpoint. Finally , Sβ,α is infinite if , and only if ,
there exists some irrational number τ in ]0, 1[ such that

α = (1− γ)
∞∑

k=1

ε−k(τ)γk.
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The proof of Lemma 3 depends heavily on results obtained in [2] (see
also [3]) concerning the function

Tγ,α : x 7→ {γx+ α},
where 0 < γ ≤ 1 and 0 ≤ α < 1 are real numbers such that γ + α > 1. The
map Tγ,α is piecewise linear, contracting and is continuous except on the
left at θ := (1− α)/γ. For n ≥ 1, we put

(4) Tnγ,α(1) = Tn−1
γ,α (γ + α− 1) = Tn−1

γ,α ( lim
x→1−

Tγ,α(x)).

In [2] we have obtained a precise description of the dynamics of Tγ,α.

Proposition 1. Let α and γ be real numbers with 0 < γ < 1 and 0 ≤
α < 1. Let a and b be coprime integers with b ≥ a ≥ 1 and define the interval
Iab (γ) by

Iab (γ) =
[

P ab (γ)
1 + γ + · · ·+ γb−1 ,

P ab (γ) + γb−1 − γb
1 + γ + · · ·+ γb−1

]
,

where P ab is the polynomial

P ab (γ) =
b−1∑

k=0

ε−k(a/b)γk.

Then the map Tγ,α has an attractive periodic orbit with the same dynamics
as the rotation T1,a/b if , and only if , α ∈ Iab (γ).

Proof. This is Théorème 1.1 of [3]. Observe that in the case b = a = 1 of
the proposition, the attractive orbit of Tγ,α is equal to {0} when γ+α ≤ 1.

Remark 1. Let γ be a real number with 0 < γ < 1. It follows from
Proposition 1 that the intervals Iab (γ) are disjoint for different choices of
a, b. Indeed, for distinct rational numbers a/b and a′/b′, the rotations T1,a/b
and T1,a′/b′ have different dynamics.

Remark 2. In [2] and [3], we gave two different proofs of Proposition 1:
one dynamical (see [2]) and one algebraic (see [3]). The dynamical proof
rests on the study of the position of the critical point θ := (1−α)/γ of Tγ,α,
which lies in [0, 1[, since γ + α > 1. We assumed that θ 6∈ T nγ,α([0, 1[) for
some integer n ≥ 1, and we set

b := inf{n : θ 6∈ Tnγ,α([0, 1[)}+ 1.

Since θ is the only discontinuity of Tγ,α, it is easy to see that for any n ≥ b
the set Tnγ,α([0, 1[) is the union of b disjoint intervals, whose lengths tend to
zero when k goes to infinity. To give a more precise result, it is convenient
to introduce some notation.

Notation. For any real numbers x < y in [0, 1], we write 〈x, y〉 for the
closed interval [x, y] if y < 1 and x > 0; also, we write 〈x, 1〉 for {0} ∪ [x, 1[
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and 〈0, x〉 for [0, x]. Moreover, for any increasing function f on ]x, 1[, we
write f(〈x, 1〉) for 〈f(x), f(1)〉.

With these notations, we have

T b−1
γ,α ([0, 1[) = [0, 1[ \

b−1⋃

k=1

〈T kγ,α(1), T kγ,α(0)〉

and θ ∈ 〈T b−1
γ,α (1), T b−1

γ,α (0)〉. As shown in [2], the critical point θ is in
〈T b−1
γ,α (1), T b−1

γ,α (0)〉 if, and only if, there exists a positive integer a < b,
coprime with b, such that α is in Iab (γ).

We now have all the tools to prove Lemma 3.

Proof of Lemma 3. Let β > 1 and 0 ≤ α < 1. Put γ = 1/β. We
readily verify that the conclusion of the lemma holds when α is in J1

1 (γ), by
Lemma 2. Thus, we now assume that 0 ≤ α < γ. We recall that f stands
for fβ,α. We observe that f is a bijection from [0, 1/β[ onto [0, 1[, and we
denote by g := gβ,α the inverse of this restriction, i.e. for x ∈ [0, 1[,

(5) gβ,α(x) =





1
β
x+

1− α
β

, 0 ≤ x < α,

1
β
x− α

β
, α ≤ x < 1.

Thus g is piecewise linear, contracting and continuous, except on the left
at α.

The maps Tγ,1−α and g1/γ,α are closely related. Namely, for any x in
[0, 1[, we have

(6) {Tγ,1−α(x) + α} = g1/γ,α({x+ α}) = γx.

Assume now that the set Sβ,α is finite. In view of Lemma 2, there exists
a positive integer N such that fNβ,α(0) ∈ 〈1/β, 1〉. Denote by b the smallest
positive integer with this property. Then we have 0 ∈ gb(〈γ, 1〉), or, equiva-
lently, α ∈ gb−1(〈γ, 1〉). Since α < γ, we have b ≥ 2. According to Lemma
3.1 of [5], the sets gk(〈γ, 1〉) for 0 ≤ k ≤ b − 1 are nonempty intervals. It
follows from (6) and (4) that

gb−1(〈γ, 1〉) = 〈T b−1
γ,1−α(γ − α) + α, T b−1

γ,1−α(1− α) + α〉
= 〈T bγ,1−α(1) + α, T bγ,1−α(0) + α〉.

Consequently, α belongs to gb−1(〈γ, 1〉) if, and only if, 0 is in 〈T bγ,1−α(1) + α,

T bγ,1−α(0)+α〉, which, since α<γ, is equivalent to α/γ belongs to 〈T b−1
γ,1−α(1),

T b−1
γ,1−α(0)〉. Setting u := 1− α, we have shown that

α ∈ gb−1(〈γ, 1〉)
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if, and only if,

(7)
1− u
γ
∈ 〈T b−1

γ,u (1), T b−1
γ,u (0)〉.

Notice that the condition α < γ is equivalent to γ + u > 1. According to
Remark 2 following Proposition 1, we know that (7) holds if, and only if,
there exists a positive integer a < b, coprime with b, such that

(8) u ∈ Iab (γ).

As u = 1− α, Proposition 1 implies that (8) can be rewritten as

(9)
∑b−1
k=0(1− ε−k(a/b))γk + γb − γb−1

1 + γ + · · ·+ γb−1 ≤ α ≤
∑b−1
k=0(1− ε−k(a/b))γk

1 + γ + · · ·+ γb−1 .

Since εk(1−a/b) = 1− εk(a/b) for any integer k not a multiple of b and not
congruent to one modulo b (to see this, it suffices to note that [−ja/b] =
−[ja/b]− 1 if b does not divide j), (9) becomes

∑b−1
k=1 ε−k(1− a/b)γk + γb

1 + γ + · · ·+ γb−1 ≤ α ≤
∑b−1
k=1 ε−k(1− a/b)γk + γb−1

1 + γ + · · ·+ γb−1 ,

which proves that the set Sβ,α is finite if, and only if, there exist coprime
integers b ≥ a ≥ 1 such that α ∈ Jab (γ).

Further, for α in Jab (γ), a direct calculation shows that Sβ,α is empty if
α is the left endpoint of Jab (γ), and has exactly b elements otherwise.

Moreover, we infer from Lemma 2 and (8) that Sβ,α is infinite if, and
only if,

1− α ∈ [0, 1[ \
⋃

1≤a≤b
(a,b)=1

Iab (γ),

that is (see [2, Théorème 2] (1) or [3, p. 207]) if, and only if, there exists
some irrational number τ in ]0, 1[ such that

1− α = (1− γ)
∞∑

k=0

ε−k(τ)γk,

and the last assertion of the lemma follows since ε0(τ) = 1 and ε−k(τ) =
1− ε−k(1− τ) for any integer k ≥ 1.

Finally, the fact that the intervals Jab (γ) are disjoint follows from (8),
(9), and Remark 1.

(1) There is a misprint in the statement of [2, Théorème 2]: one should read (S(α))−k
instead of (S(α))k.
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Theorem 3. For any real number β > 1, the set

Eβ := {α ∈ [0, 1[ : Sβ,α is an infinite set} = [0, 1[ \
⋃

1≤a≤b
(a,b)=1

Jab (γ)

has measure zero, is uncountable and is not closed.

Proof. Denote by µ the Lebesgue measure. It follows from Lemma 3 that

µ(Eβ) = 1−
∞∑

b=1

ϕ(b)(γb−1 − γb)
1 + γ + · · ·+ γb−1 ,

where ϕ is the Euler totient function, i.e. ϕ(b) counts the number of integers
a, 1 ≤ a ≤ b, which are coprime to b. Since

γb−1 − γb
1 + · · ·+ γb−1 = (1− γ)2 γb−1

1− γb for b ≥ 1,

and
∞∑

b=1

ϕ(b)
γb−1

1− γb =
1

(1− γ)2 ,

we infer from Theorem 309 of [6] that µ(Eβ) = 0.
Further, the last assertion of Lemma 3 combined with Théorème 2 of [2]

implies that Eβ is uncountable. Moreover, if the irrational number τ tends
to a rational number, then (1 − γ)

∑∞
k=1 ε−k(τ)γk tends to an endpoint of

some interval Jab (γ). Hence, Eβ is not closed.

Remark 3. An interesting open problem is to determine the Hausdorff
dimension of the sets Eβ .

To complete the proof of Theorem 1, we recall a crucial result of [5].

Proposition 2 ([5, Theorem 3.2]). Let p > q ≥ 2 be coprime integers,
and let s ∈ [0, 1−1/p]. If the set Sp/q,{(p−q)s} is finite, then Zp/q(s, s+ 1/p)
is empty.

Proof of Theorem 1. This statement easily follows from Lemma 3 and
Theorem 3, combined with Proposition 2.

4. Proof of Theorem 2. We now investigate the behaviour of f := fβ,α
when α is in Eβ . Recall that gβ,α is defined in (5). The following lemmas
answer a question posed by Flatto et al. at the end of [5].

Lemma 4. Let β > 1 and α ∈ Eβ. For n ≥ 0, put

In := gnβ,α([1/β, 1[).
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Then
Sβ,α := [0, 1[ \

⋃

n≥0

In.

In particular , Sβ,α has measure zero.

Proof. Arguing as in Lemma 3.1 of [5], we use the fact that fn(0) 6∈
[1/β, 1[ for all n ≥ 0 to deduce that the In’s, n ≥ 0, are mutually disjoint.
If x ∈ [0, 1[ is in some In with n ≥ 0, we infer that fn(x) ∈ [1/β, 1[, whence
x 6∈ Sβ,α. Otherwise, it is clear that x ∈ Sβ,α. Further,

µ
(⋃

n≥0

In

)
=
(

1− 1
β

)∑

n≥0

1
βn

= 0,

as claimed.

As in [5], we associate to f = fβ,α the natural symbolic dynamics, which
assigns to each x in [0, 1[ the integer

Sf (x) = [βx+ α],

and we call the sequence

an := Sf (fn(x)), n ≥ 0,

the f -expansion of x. If x is in Sβ,α, then 0 ≤ fnβ,α(x) < 1/β for all n ≥ 0,
and its f -expansion is uniquely composed of 0’s and 1’s.

Lemma 5. Let β > 1 and α ∈ Eβ. Let τ in ]0, 1[ be defined by

α =
(

1− 1
β

) ∞∑

k=1

ε−k(τ)
βk

.

The set Sβ,α is uncountable, not closed and , for any x in Sβ,α, there exists
0 ≤ η < 1 such that the f -expansion of x is the Sturmian sequence (an)n≥0

given by
an = [(n+ 1)τ + η]− [nτ + η].

Proof. We point out that τ is irrational. We first show that g and the
(irrational) rotation

R1−τ : x 7→ {x+ 1− τ}, x ∈ [0, 1[,

are semi-conjugate.
We claim that the intervals In, n ≥ 0, are ordered as the sequence

({n(1− τ)})n≥0. To see this, for any β′ > 1, we define

Ψβ′(τ) =
(

1− 1
β′

) ∞∑

k=1

ε−k(τ)
β′k

,
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and we observe that, for any n ≥ 0, the function

β′ 7→ inf(gnβ′,Ψβ′ (τ)([1/β
′, 1[))

is continuous on ]1,+∞[ and tends to {n(1− τ)} when β ′ tends to 1.
We set Φ(0) = 0 and, for n ≥ 1, Φ(In) = {n(1−τ)}. The map Φ is mono-

tone and, by Lemma 4, is defined on a dense subset of [0, 1[, thus, we can
extend it by continuity to [0, 1[. Consequently, the set Sβ,α is uncountable
and not closed. For all y ∈ [0, 1[, we have

Φ ◦ gβ,α(y) = R1−τ ◦ Φ(y),

hence,

(10) Rτ ◦ Φ(z) = Φ ◦ fβ,α(z)

for z ∈ [0, 1/β]. Since Φ(0) = 0 and f((1− α)/β) = 0, we deduce from (10)
that Φ((1− α)/β) = 1− τ . It follows that

0 ≤ z < 1− α
β

if and only if 0 ≤ Φ(z) < 1− τ.

By induction, (10) implies for any integer n ≥ 1 that

(11) 0 ≤ fn(z) <
1− α
β

if and only if 0 ≤ Rnτ (Φ(z)) < 1− τ.

Let x ∈ Sβ,α and denote by (an)n≥0 its f -expansion. It follows from (11)
that an = 0 if, and only if, 0 ≤ Rnτ (Φ(z)) < 1− τ . Hence,

an = [(n+ 1)τ + Φ(z)]− [nτ + Φ(z)],

and the proof of Lemma 5 is complete.

We need to recall an important result of [5]. For the definition of T -
expansion, we refer the reader to [5].

Proposition 3. Let p > q ≥ 2 be coprime integers. Then a positive real
number ξ is in Zp/q(s, s + 1/p) if , and only if , both conditions (C1) and
(C2) below hold :

(C1) 0 ≤ fn(q({ξ} − s)) < q/p for all n ≥ 0,
(C2) the T -expansion (an) of [ξ] and the f -expansion (bn) of q({ξ} − s)

are related by
σ(an) = bn for all n ≥ 0,

where σ is the permutation of {0, 1, . . . , q − 1} given by

σ(i) ≡ −pi− [(p− q)s] (mod q).

Further , the set Zp/q(s, s+ 1/p) contains at most one element in each unit
interval [m,m+ 1[, where m is a nonnegative integer.

Proof. This follows from Proposition 2.1 and Theorem 1.1 of [5].
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Proof of Theorem 2. Let ξ be in Zp/q(s, s+ 1/p). By Proposition 3 and
Lemma 5, the T -expansion of [ξ] is an infinite Sturmian word. It has been
shown by Mignosi [9] (see [1] for an alternative proof) that, for any integer
m ≥ 1, there are O(m3) Sturmian words of length m (recall that any sub-
word of a Sturmian sequence is called a Sturmian word). Since Lemma 2.2
of [5] asserts that the first m terms of the T -expansion of an integer g are
uniquely determined by g modulo qm, we conclude that at most O(m3) in-
tegers less than qm may have a Sturmian T -expansion, and Theorem 2 is
proved.
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