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1. Introduction. Let µn be the set of nth roots of unity in a fixed
algebraic closure Q of Q. Let µ∞ =

⋃
n∈N µn, µ∗n = µn \{1}, µ∗∞ = µ∞ \{1},

where N is the set of positive integers. A circular distribution (cf. [1], [2]) is
a Galois equivariant map f from µ∗∞ to Q× such that

∏

ζd=ε

f(ζ) = f(ε) for ε ∈ µ∗∞ and d ∈ N.

We denote by Σ the set of all circular distributions. Let

Rn := Z[Gal(Q(µn)/Q)]

be the group ring of the Galois group Gal(Q(µn)/Q) and R := lim←−Rn be the
projective limit of Rn with respect to the natural restriction maps. Then Σ
has a natural R-module structure. Let ψ be the element of Σ defined by

ψ(ζ) = 1− ζ, ζ ∈ µ∗∞.
By finding elements in Σ but not in Rψ, Coleman checked that Σ 6= Rψ.
He defined a subgroup F of Σ consisting of f ∈ Σ satisfying, for each prime
number l and n ∈ N with (l, n) = 1,

f(εζ) ≡ f(ζ) modulo primes over (l)

for all ε ∈ µ∗l , ζ ∈ µ∗n. Coleman conjectured

Conjecture (Coleman). F = Rψ.

In [11], by using the Iwasawa theory (cf. [5]) and arguments involving
Euler systems (cf. [6], [8] and [9]) we showed that the values of F and
Rψ on µ∗n are “essentially” equal for all n. In [10], we were able to show
that Greenberg’s conjecture implies that the values of F and Rψ on µ∗n are
equal for all n. In this paper we investigate to what extent the equality of
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values of F and Rψ implies Coleman’s conjecture. Let C(n) be the group
of Sinnott’s cyclotomic units in the field Q(µn) (cf. [12], [13]),

C(n) := {(1− ζ)r | ζ ∈ µn, r ∈ R}.
Note that the set of values of Rψ on µ∗n is C(n). Hence throughout this
paper we will assume that F(µn) = C(n) for all n. For each n ∈ N, let ζn
be a primitive nth root of unity in µn such that ζmmn = ζn for all m,n ∈ N.
Let D(n) be the R-submodule of C(n) generated by 1− ζn. We prove

Theorem A. Let f ∈ F . Then f(ζn) ∈ D(n) for all n ∈ N.

We first show that F(ζn) is a cyclic Rn-module. Let n = pe11 · · · perr .
Let En denote the group of global units of the nth cyclotomic field and
Cn := C(n) ∩En. In general Cn is generated as an R-module by

{1− ζt | t ‖n, t is divisible by at least two distinct primes}

∪
{1− ζai

p
ei
i

1− ζpeii

∣∣∣∣ i = 1, . . . , r

}
,

which is a set of cardinality
∑r

i=2

(r
i

)
+ r =

∑r
i=1

(r
i

)
= 2r − 1. Then we use

a basis for Cn modulo ±µn constructed by M. Conrad (see §2).
In Section 3, we compute the torsion subgroups Σtor and Ftor of Σ and

F respectively. For any set S of square free odd numbers, let δS be the
function on µ∗∞ defined by

δS(ζn) =

{−1 if n involves only primes in S,

1 otherwise.

Let D be the R-submodule of Σ generated by δS for all such S. When S is
the set of all square free odd numbers, we denote δS by δodd. We prove

Theorem B. Σtor = D, Ftor = 〈δodd〉.
Acknowledgements. We would like to thank Robert Coleman for his

helpful comments and suggestions. We also would like to thank Sung Han
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2. F(ζn) is cyclic. Let Ẑ be the profinite group lim←−(Z/nZ) =
∏
p Zp. Let

χ : Gal(Q(µ∞)/Q)→ Aut(µ∞) = Ẑ× =
∏
p Z×p be the cyclotomic character

defined by ζσ = ζχ(σ) for all ζ ∈ µ∞. Recall that

Σ :=

{
f : µ∗∞ → Q×

∣∣∣∣
• ∏ζd=ε f(ζ) = f(ε) for ε ∈ µ∗∞ and d ∈ N,
• σ(f(ζ)) = f(ζχ(σ)) for σ ∈ Gal(Q(µ∞)/Q)

}
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and

F :=

{
f ∈Σ

∣∣∣∣
for each prime number l and n ∈ N with (l, n) = 1,

f(εζ) ≡ f(ζ) modulo primes over (l) for all ε ∈ µ∗l , ζ ∈ µ∗n

}
.

Let F(ζn) := {f(ζn) | f ∈ F} and Fn := F(ζn)∩En, where En is the group
of units in Q(µn). Let C(n) be the group of circular numbers of the nth
cyclotomic field Q(µn), as defined above, and Cn the group of circular units
(in the sense of Sinnott [12]),

Cn := C(n) ∩ En.
It follows from

F(µn)

C(n)
∼= Fn
Cn

for all n ∈ N

that we can transform results on F(ζn), C(n) into those on Fn, Cn and
vice versa. Furthermore the fact (cf. [10]) that if n is divisible by two dis-
tinct primes then f(ζn) is always a unit allows us to supress the distinction
whether f(ζn) lies in C(n) or Cn.

Let n = pe11 · · · perr . For each pi we choose ai ∈ N such that ai generates
(Z/peii Z)× as a multiplicative group. If pi = 2 then we assume ei ≥ 2,
(Z/2eiZ)× = Z/2Z×Z/2ei−2Z and choose a generator ai of Z/2ei−2Z. Write
a ‖ b when a divides b and a is prime to b/a. In general, Cn is generated as
an R-module by

{1− ζt | t ‖n, t is divisible by at least two distinct primes}

∪
{1− ζai

p
ei
i

1− ζpeii

∣∣∣∣ i = 1, . . . , r

}
,

which is a set of cardinality
∑r

i=2

(r
i

)
+ r =

∑r
i=1

(r
i

)
= 2r − 1. Finding a

minimal set of generators over R depends heavily on the prime factors of
n (cf. [4]). For instance if n = pq, p generates Z/qZ and q generates Z/pZ
then one sees easily that Cpq = R(1 − ζpq); p = 3, q = 5 will satisfy this
condition. On the other hand, C55 6= R(1 − ζ55) as C5 is not contained in
R(1− ζ55).

Now, we want to show that F(ζn) is a cyclic Rn-module generated by
1− ζn. For n |m we let

sm,n :=
( ∑

σ∈Gal(Q(µm)/Q(µn))

σ
)
∈ Rm

and denote the norm map from Q(µm) to Q(µn) by Nm,n.
For motivation, let us consider the case n = prq where p and q are

distinct primes. For f ∈ F , if f(ζprq) ∈ C(prq) then it follows from the
formula

(1− ζprζq)sprq,pr−1q = (1− ζpr−1ζpq )
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that f(ζprζ
p−(r−1)

q ) can be expressed in the following form:

(1) f(ζprζ
p−(r−1)

q ) = (1− ζprζp
−(r−1)

q )ar(1− ζpr)br(1− ζq)cr ,
for some ar, br, cr ∈ Rprq. The product condition

∏

ζd=ε

f(ζ) = f(ε)

for ε ∈ µ∞ and d ∈ N is known to be equivalent to the following conditions
(see Section 2 of [10]):

• For any prime number l and square free integer r with (r, l) = 1,

Nlr,rf(ζlζr) = f(ζr)
Frl−1 if r 6= 1.

• For n− i ≥ 1,

Nlnr,ln−1rf(ζlnζ
i
r) = f(ζln−iζ

l
r).

Here Frp is Frobenius at p. It then follows from Nprq,pqf(ζprζ
p−(r−1)

q ) =
f(ζpζq) and (1) that

(1− ζpζq)ar(1− ζp)br((1− ζq)cr)p
r−1

= (1− ζpζq)a1(1− ζp)b1(1− ζq)c1

for all n ≥ 1. Even if the exponent pr−1 in the last term on the left hand
side is large, it may be compensated for by the first term as

(1− ζpq)spq,q = (1− ζq)Frp−1.

This problem occurs because (1−ζprq)Rprq and (1−ζq)Rq are not necessarily
linearly disjoint over Z,

1 6= (1− ζprq)s(p
rq,q)Rprq = (1− ζq)(Frp−1)Rq ⊂ (1− ζprq)Rprq ∩ (1− ζq)Rq .

With this regard, the expression of (1) seems to be possible without (1−ζq)cr
equaling 1. We will show this is not the case.

We mention here that the study of inverse limits of circular units was
considered in a long and interesting paper [7] of Kuz’min. In the first section
of [7], Kuz’min finds a set of generators for P∞, the inverse limit of P n, the
circular units modulo roots of unity over the cyclotomic Zp extension. He

presents Pn as a product of Dn and P−1 in order to obtain the inverse
limit of Pn as that of Dn. We show that the inverse limit of P n can be
obtained only in terms of Dn independently of P−1 using a nice basis found
by Conrad. This basis behaves well with respect to the norm maps in the
cyclotomic Zp extension.

Conrad constructed a basis Bn for the group of cyclotomic units (modulo
±µn) of the nth cyclotomic field. (The “modulo ±µn” does not concern us
since −ζn = (1−ζn)1−τ for the complex conjugation τ .) The relative circular
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units Ĉn are defined to be the group

Cn
±µn

∏
d|n, d6=nCd

.

Theorem 2.1. If B̂d ⊂ Cd maps to a basis of Ĉd for d |n then Bn =⋃
d|n B̂d maps to a basis of Cn/(±µn).

Proof. See Theorem 5.3 of [3].

Indeed, Conrad constructed a basis Bn =
⋃
d|n B̂d of Cn so that B̂d

induces a basis for the group of relative cyclotomic units Ĉd ([3, pp. 13,

14]). In what follows by B̂d ⊂ Cd we denote a subset of Cd which maps to a

basis of Ĉd. Let D(n) be the cyclic Rn-module generated by 1− ζn and Dn

be the units in D(n),

D(n) := (1− ζn)Rn = {(1− ζn)rn | rn ∈ Rn}, Dn := D(n) ∩ En.
Note that D(n) = Dn if n is divisible by two distinct primes. Let n =
pe11 · · · perr . It follows from the observation

D(pa1
1 · · · parr ) ⊂ D(pb11 · · · pbrr ) for 1 ≤ ai ≤ bi

that Cn =
∏
d‖nDd. It also follows that

Ĉn =

∏
a‖nDa∏

d|n, d6=n
∏
b‖dDb

≈ Dn∏
n′ |n, p1···pr |n′ Dn′

.

From this we are led to the following

Lemma 2.2. Let b ∈ B̂n. Then we can write b = (1 − ζn)rn for some
rn ∈ Rn.

Let 〈B̂d〉 denote the group generated by B̂d.

Lemma 2.3. Npwf,pvf (〈B̂pwf 〉) = 〈B̂pvf 〉 for 1 ≤ v ≤ w.
Proof. The norm map Npwf,pvf induces a surjective map from Ĉpwf to

Ĉpvf :

Dpwf
Npwf,pvf−−−−−−→ Dpvf −−−−→ 0

y
y

Ĉpwf
Npwf,pvf−−−−−−→ Ĉpvf −−−−→ 0.

Theorem 2.4 (= Theorem A). Let f ∈ F . Then f(ζn) ∈ C(n) if and
only if f(ζn) = (1− ζn)rn for some rn ∈ Rn.

Proof. The “if” direction is clear, now we take care of the “only if” direc-
tion. If n is a prime power then it follows immediately from the hypotheses
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that f(ζn) = (1− ζn)rn. Now suppose n is divisible by two distinct primes.
We know that in this case f(ζn) is a unit and hence f(ζn) lies in the group
of circular units, Cn. Let n = pe11 · · · perr . Let f(ζn) =

∏
n′|nG(n′) mod ±µn

for some G(n′) ∈ 〈B̂n′〉. We claim that all the G(n′) terms with p1 · · · pr - n′
are trivial. Suppose p |n and write

f(ζn) =
∏

p|a|n
G(a)

∏

p-b|n
G(b) mod ±µn.

Suppose w ∈ N and write

f(ζnpw) =

w+e1∏

i=1

∏

d| n
pe1

G′(pid)
∏

p-b
G′(b) mod ±µnpw .

Applying Nnpw,n and using Lemma 2.3 we see that

f(ζn) =
∏

p|a
G′′(a)

(∏

p-b
G′(b)

)pw
mod ±µn,

for someG′′(a) ∈ 〈B̂a〉. From this and Theorem 2.1 it follows that
∏
p-b|nG(b)

∈ ±µn. Thus our claim is proved and hence

f(ζn) =
∏

G(n′),

where the product is taken over n′ |n where p1 · · · pr |n′. It then follows from
Lemma 2.2 and the facts that

G(n′) ∈ 〈B̂n〉 for all n′ with p2 · · · pr |n′

and that ±µn ⊂ Dn that

f(ζn) = (1− ζn)rn for some rn ∈ Rn.
Let An be the annihilator of Dn in Rn,

An := {rn ∈ Rn | urn = 1 for all u ∈ Dn}.
One can obtain a well defined restriction map respma,pna fromApma intoApna
(m ≥ n ≥ 1) using the norm maps Npma,pna; then respma,pnaApma ⊂ Apna
and hence we have a well defined map

respma,pna : Rpma/Apma → Rpna/Apna.
From Theorem 2.4 we have

Corollary 2.5. Let f ∈ F . Then f(ζpna) ∈ Cpna if and only if f(ζpna)
= (1− ζpna)rpna for some (rpna) ∈ lim←−(Rpna/Apna).

By taking inverse limits with respect to the restriction maps the short
exact sequence,

1→ Apna → Rpna → Rpna/Apna → 1



Circular distributions 319

produces the left short exact sequence

1→ lim←−Apna → lim←−Rpna → lim←−Rpna/Apna.
In general A∞ := lim←−Apna is not zero. When a = 1, we have A∞ 6= 1 for all
prime p and

1→ lim←−Apn → lim←−Rpn → lim←−Rpn/Apn → 1.

This implies that in Corollary 2.5 we can lift elements (rpn) ∈ lim←−(Rpn/Apn)

to (rpn) ∈ lim←−Rpn . We refer to [10] for the details.

3. Σtor and Ftor. In this section, we will compute the torsion subgroups
Σtor,Ftor of Σ and F respectively. We begin by considering interesting ex-
amples found by Coleman. For any set S of square free odd numbers, let δS
be the function on µ∗∞ defined by

δS(ζn) =

{−1 if n involves only primes in S,

1 otherwise.

Then one can easily check that δS ∈ Σ \ F and δ2
S = 1. Conversely, we

can characterize Coleman’s examples to be those f ∈ Σ such that f 2 = 1.
Indeed suppose that f ∈ Σ, f 2 = 1. Thus f(ζn) = ±1 for any ζn ∈ µ∗∞. We
take

S = {m | m is square free and f(ζm) = −1}.
If S is an empty set then f = 1 from the definition of the circular dis-
tribution. Let n ∈ S and n = p1 · · · pr. If n is even, say p1 = 2, then
f does not satisfy the axiomatic definition of circular distribution: Let
w = p2

1p2 · · · pr, v = p1 · · · pr. Then

1 = (−1)2 = Nw,vf(ζw) = f(ζv) = −1.

Hence the set S consists of odd numbers. We now claim that f = δS. By
the definition of δS and the distributive property of f we have

f(ζn) = δS(ζn) =





−1 if n = qe11 · · · q
eg
g with ei ≥ 1 for 1 ≤ i ≤ r

and q1 · · · qg ∈ S,
1 otherwise.

This shows that f = δS . Let D be the R-submodule of Σ generated by δS
for all such S. We obtain the following

Lemma 3.1 (Coleman). D is the submodule of Σ consisting of all ele-
ments f such that f2 = 1.

The above lemma provides us the subgroup D of 2-torsions of Σ. First
we will show that D is the torsion subgroup of Σ. We fix some notations. Let
{p1, . . . , pr} be a set of (temporarily fixed) distinct primes and P := p1 · · · pr.
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Let X = X(P ) denote the set of all numbers divisible only by P ,

X := {pc11 · · · pcrr | ci ≥ 1 for all i = 1, . . . , r}.
Let

Xi := {p1 · · · pcii · · · pr | ci ≥ 1} ⊂ X.
For any subset T of N and f ∈ Σ, let

T (f) := {f(ζt) | t ∈ T ⊂ N}
and let Q(T (f)) := Q(α | α ∈ T (f)). For each m ≥ n, we write

dmn (f) := [Q(f(ζm)) : Q(f(ζn))] ∈ N, dT (f) := [Q(T (f)) : Q] ∈ N ∪ {∞}.
We start with the following

Proposition 3.2. Suppose that f ∈ Σ. Then X(f) is contained in {±1}
if and only if dX(f) is finite. Moreover Xi(f) is not contained in ±µP/pi if

and only if d
Ppn+1

i
Ppni

(f) is equal to pi for all sufficiently large n.

Proof. Suppose that dX(f) is finite. Then there are positive integers
e1, . . . , er such that Q(X(f)) ⊂ Q(µpe11 ···p

er
r

). For any s and nj > ej such

that s ≡ 1 mod p
nj
j for j = 1, . . . , i − 1, i + 1, . . . , r, we have f(ζa) =

Npsi a,a
f(ζpsia) = f(ζpsia)

psi where a = pn1
1 · · · pnrr . As s can be made arbi-

trarily large, it follows that f(ζa) ∈ ±µa/pnii and hence

f(ζa) ∈
⋂

i=1,...,r

±µa/pnii ⊂ {±1}.

By the norm coherence property, we conclude X(f) ⊂ {±1}. Conversely, if
X(f) ⊂ {±1} then clearly dX(f) is finite.

If d
Ppn+1

i
Ppni

(f) is equal to pi for all sufficiently large n then Xi(f) is not

contained in any finite set and hence not contained in ±µP/pi . To prove

necessity suppose that d
Ppn+1

i
Ppni

(f) 6= p for infinitely many n. Then there are

infinite sequences of numbers, n1 < n2 < · · · , and s1 < s2 < · · · , such

that d
Pp

nj+1
i

Pp
nj
i

(f) = 1, sk ≡ 1 mod pg for g = 1, . . . , i − 1, i + 1, . . . , r and

sk−1 < nk < sk. It follows from

f(ζPpski
) = (N

Pp
nk+1
i ,Pp

sk
i
N
Pp

sk+1
i ,Pp

nk+1+1

i

f(ζ
Pp

sk+1
i

))p

that

f(ζPps1i
)

= NPp
st
i ,Pp

s1
i
f(ζPpsti

) =
∏

k=2,3,...,t

(N
Pp

nk
i ,Pp

sk−1
i

N
Pp

sk
i ,Pp

nk+1

i

f(ζPpsti
))p

t
i .

This leads to the conclusion that Xi(f) ⊂ ±µP/pi .
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In the following corollary we assume that P is prime.

Corollary 3.3. Let P = p be prime. Suppose f ∈ F . Then dX(f) 6∈
{±1} if and only if dX(f) =∞. Moreover , in this case dp

n+1

pn (f) = p for all
sufficiently large n.

Proof. This follows immediately from Proposition 3.2.

Corollary 3.4. Σtor = D.
Proof. Apply Lemma 3.1 and Proposition 3.2.

The following example which is contained in Coleman’s examples of D
was suggested to us by Bae.

Example.

δodd(ζn) =

{−1 if n is odd,

1 otherwise.

Then δodd ∈ F . We will show that it generates the torsion subgroup Ftor

of F .

Theorem 3.5 (= Theorem B). Ftor = {1, δodd}.
Proof. By Corollary 3.4, Ftor is contained in D, Ftor ⊂ Σtor = D. Sup-

pose that 1 6= f ∈ D ∩ F . Thus f = δS for some nonempty set S. We claim
that f = δodd. Let n ∈ S and n = p1 · · · pr. Let t 6= n be a square free
odd number. Let q be a prime such that (q, n) = 1, q | t. It follows from the
congruence conditions of F that

−1 = f(ζp1···pr) ≡ f(ζqp1···pr) modulo primes over q.

Since q is an odd prime we have f(ζqp1···pr) = −1. In this way one can
easily arrive at f(ζt) = −1. It follows from the norm coherence property
that f(ζs) = −1 for all odd numbers s as we wanted to show.

We will show elsewhere that δodd can be written in the form δodd(ζn) =
(1− ζn)rn for all n, but is not contained in Rψ. We are led to the question,
an affirmative answer to which would be a slight modification of Coleman’s
original conjecture on the circular distributions:

Does F equal Rψ ⊕ Ftor ?

References

[1] R. Coleman, Division values in local fields, Invent. Math. 53 (1979), 91–116.
[2] —, On an Archimedean characterization of the circular units, J. Reine Angew. Math.

356 (1985), 161–173.
[3] M. Conrad, Construction of bases for the group of cyclotomic units, J. Number

Theory 81 (2000), 1–15.



322 S. Seo

[4] R. Gold and J. Kim, Bases for the cyclotomic units, Compositio Math. 71 (1989),
13–27.

[5] K. Iwasawa, On Zl-extensions of algebraic number fields, Ann. of Math. 98 (1973),
246–326.

[6] V. A. Kolyvagin, Euler systems, in: The Grothendieck Festschrift, Vol. 2, Birkhäuser,
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