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1. Introduction. Let 0 = λ0 < λ1 < · · · < λm. Our starting point
is the following question. How large can the maximum of a trigonometric
polynomial

Sm(t) =
m∑
j=0

Aj cos(λjt), Aj ∈ R,

be on the real line? Since
π�

−π
|Sm(t)|2 dt = 2π

(
|A0|2 +

1
2

m∑
j=1

|Aj |2
)
,

the inequality

max
t∈[−π,π]

|Sm(t)| ≥
(
|A0|2 +

1
2

m∑
j=1

|Aj |2
)1/2

obviously holds. But how large can

(1.1) max
t∈[−π,π]

Sm(t)

be? To give a decent lower bound for (1.1) looks rather difficult.
The result below stated in [BE] is straightforward from [DeL, pp. 285–

288], which offers an elegant book proof of the Littlewood Conjecture first
shown in [Ko] and [McPS]. The book [Bo] deals with a number of related
topics. Littlewood [L61, L64, L66, L68] was interested in many closely related
problems.
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Theorem 1.1. Let λ0 < λ1 < · · · < λm be nonnegative integers and let

Sm(t) =
m∑
j=0

Aj cos(λjt), Aj ∈ R.

Then
π�

−π
|Sm(t)| dt ≥ 1

60

m∑
j=0

|Am−j |
j + 1

.

The above theorem can be used to obtain a nontrivial lower bound for
(1.1).

Theorem 1.2. Let λ1 < λ2 < · · · < λm be positive integers and let

Sm(t) =
m∑
j=1

Aj cos(λjt), Aj ∈ R.

Then

max
t∈[−π,π]

Sm(t) ≥ 1
240π

m−1∑
j=0

|Am−j |
j + 1

.

To see Theorem 1.2 observe that
π�

−π
Sm(t) dt = 0,

and hence with S+
m(t) := max{Sm(t), 0} and S−m(t) := min{Sm(t), 0}, we

have
π�

−π
S+
m(t) dt =

π�

−π
S−m(t) dt =

1
2

π�

−π
|Sm(t)| dt,

which, together with Theorem 1.1, gives Theorem 1.2.
Let Ln be the collection of all algebraic polynomials of degree n with

coefficients in {−1, 1}. Observe that if P ∈ Ln then the Parseval formula
gives

π�

−π
|P (eit)|2 dt = 2π(n+ 1).

Hence
max

t∈[−π,π]
|P (eit)| ≥

√
n+ 1

for every P ∈ Ln. In 1957 Erdős [Er] made the following conjecture.

Conjecture 1.3. There is an absolute constant c > 0 such that

max
t∈[−π,π]

|P (eit)| ≥ (1 + c)
√
n+ 1

for every P ∈ Ln.
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This is still quite an open problem today. Even the following weaker
version of the above conjecture has not been proved yet.

Conjecture 1.4. There is an absolute constant c > 0 such that

max
t∈[−π,π]

|P (eit)| ≥
√
n+ 1 + c

for every P ∈ Ln.

However, as a consequence of Theorem 1.2 we can observe at least the
following result, the derivation of which may also be found in [B93].

Theorem 1.5. There is an absolute constant c > 0 such that

max
t∈[−π,π]

|P (eit)| ≥
√
n+ c log n

for every P ∈ Ln.

Proof. Let P ∈ Ln. Observe that

Q(eit) := |P (eit)|2 = P (eit)P (e−it) = n+ 1 + Sn(t), t ∈ R,

with

Sn(t) :=
n∑
j=1

Aj cos(jt),

where each Aj is a sum of n+1−j terms from {−2, 2}. Therefore if n+1−j
is odd then Aj is a nonzero (even) integer, that is, |Aj | ≥ 2 and the theorem
follows from Theorem 1.2.

To improve Theorem 1.5 it would be fundamental to improve Theo-
rem 1.2 at least in the case when the modulus of each or every second coeffi-
cient Aj is a nonzero integer, or a real number at least 1. This seems beyond
reach at the moment. However, we can significantly improve Theorem 1.2
for the interesting classes of Littlewood cosine polynomials

Tq(t) =
q∑
j=0

aj cos(jt), aj ∈ {−1, 1},

at least in the case when p = 2q + 1 is an odd prime. This is the content of
our main result, Theorem 2.1. To this end we rely heavily on Ruzsa’s paper
[Ru], who claims the best result today to solve Chowla’s Cosine Problem in
[Ch] below.

Problem 1.6. Let A ⊂ N be a finite set of distinct integers and set

m(A) := − min
t∈[−π,π]

∑
a∈A

cos(at).

What is m(n) := min {m(A) : A ⊂ N, |A| = n}?
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In the Introduction of [Ru] Ruzsa writes: “Let A be a finite set of positive
integers, |A| = n, and write

f(x) =
∑
a∈A

cos(ax).

Since f(0) > 0 and
	2π
0 f(x) dx = 0, we have min f(x) < 0. It is a difficult

question to estimate this minimum uniformly for every set of size n. Bourgain
[B84] proved

min f(x) < −c1 exp(c2(log n)c3)

with unspecified absolute constants c1 > 0, c2 > 0, and c3 > 0. In another
paper [B86] he showed that one can take c3 = 1/2 under the assumption
that A ⊂ [1, n2

√
logn]. Our aim is to prove this without restriction.

Theorem 1. With the above notations we have

min f(x) < −c4 exp(c5(log n)1/2)

with a positive absolute constant c4 and c5 =
√

(log 2)/8.”

Note that min f(x) in the above quotation denotes the smallest value
of f(x) on the (period [0, 2π) of the) real number line. Note also that the
above quotation corrects two misprints in Ruzsa’s paper by removing the
minus sign from the exponent at two places.

2. New result. We denote by Zp the additive group of p elements
{0, 1, . . . , p−1} under addition modulo p. Let yj := j/p for j = 0, 1, . . . , p−1,

Ep := {y0, y1, . . . , yp−1} and E∗p := Ep ∪
{

3
2p

}
.

Theorem 2.1. If p = 2q + 1 is a prime, then the maximum of a Little-
wood cosine polynomial

Tq(2πt) =
q∑
j=0

aj cos(2πjt), aj ∈ {−1, 1},

on E∗p is at least c1 exp(c2(log q)1/2) with an absolute constant c1 > 0 and
c2 =

√
(log 2)/8.

We remark that the corrected form of Cramér’s conjecture about the
maximal size of the gap g(pk) between a prime pk and the next prime pk+1

says that

g(pk) := pk+1 − pk ≤ K(log pk)2 with K := 2 exp(−γ) = 1.1229 . . . ,

where γ is the Euler constant. The probabilistic model behind the corrected
form of Cramér’s conjecture is explained by A. Granville in [Gr]. See also
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Soundararajan’s survey [So]. Modulo the truth of Cramér’s conjecture, and
even modulo the much weaker conjecture

g(pk) = o(exp(c(log pk)1/2)) with c =
√

(log 2)/8

a version of Theorem 2.1 remains obviously valid for all positive integers q.
That is, modulo the above mentioned conjectures, if q > 0 is an integer,
then the maximum of a Littlewood cosine polynomial

Tq(2πt) =
q∑
j=0

aj cos(2πjt), aj ∈ {−1, 1},

on the real line R is at least c1 exp(c2(log q)1/2) with an absolute constant
c1 > 0 and c2 =

√
(log 2)/8.

3. Lemmas. Let e(x) := exp(2πix). To prove the theorem we need a
few lemmas. Slightly weaker versions of these are essentially due to Bourgain
and Ruzsa. Let p = 2q + 1 be a prime and let Z′p := {1, . . . , q} ⊂ Zp.

Lemma 3.1. Let A′ ⊂ Z′p and A := −A′ ∪A′ ⊂ Zp. Let

f(x) =
∑
a∈A

e(ax) = 2
∑
a∈A′

cos(2πax).

Let |A| = n,
K := min

x∈Ep
f(x),

and

(3.1) k :=
⌊

log n
4 logK + c6

⌋
with a suitable absolute constant c6 > 0. Then there are distinct integers

β1, . . . , βk ∈ Zp

and a set B ⊂ Zp such that

B +
{ k∑
j=1

εjβj : εj ∈ {0, 1}
}
⊂ A,

the 2k sums in { k∑
j=1

εjβj : εj ∈ {0, 1}
}
⊂ Zp

are all distinct, and |B| ≥
√
n.
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Lemma 3.2. Let A′ ⊂ Z′p and A := −A′ ∪ A′ ⊂ Zp. Suppose ε ∈ (0, 1)
and |A| < (1− ε)p. Let

f(x) =
∑
a∈A

e(ax) = 2
∑
a∈A′

cos(2πax).

Suppose that there are sets S, T ⊂ Zp, an integer 0 6= d ∈ Zp, and a positive
integer L ≥ 2/ε such that |S|, |T | ≥ L and S + T + {0, d} ⊂ A. Then

min
x∈Ep

f(x) ≤ −1
2

(εL)1/2.

Lemma 3.3. Let A′ ⊂ Z′p and A := −A′ ∪ A′ ⊂ Zp. Suppose |A| < 7
8p.

Let
f(x) =

∑
a∈A

e(ax) = 2
∑
a∈A′

cos(2πax).

Then with |A| = n we have

min
x∈Ep

f(x) ≤ −c4 exp(c5(log n)1/2)

with an absolute constant c4 > 0 and c5 =
√

(log 2)/8.

To prove the above lemmas we modify the proofs of Lemmas 2.1 and 3.1
in [Ru] by integrating over the discrete measure

µp :=
1
p

p−1∑
j=0

δxj ,

rather than over the usual Lebesgue measure, where δx is the measure with
support {x} and mass 1 at x. We will exploit the discrete orthogonality
relations

〈e(jx), e(kx)〉p :=
�
e(jx)e(kx) dµp =

�
e((j − k)x) dµp = δj,k,

where

δj,k :=
{

0, j 6= k,
1, j = k,

for j, k ∈ {0, 1, . . . , p− 1}.

Proof of Lemma 3.1. Throughout the proof we use the notation

‖f‖α :=
�
|f(x)|α dµp, ‖f‖∞ := max

x∈Ep
|f(x)|,

for numbers α > 0 and functions f defined on Ep. Also, we define

(f ∗ g)(x) :=
�
f(t)g(x− t) dµp

for functions f and g defined on Ep. We find inductively

β1, . . . , βk ∈ Zp and B0, B1, . . . , Bk ⊂ Zp
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with the following properties for every j = 0, 1, . . . , k. First, the 2j numbers
j∑

ν=1

ενβν , εν ∈ {0, 1},

are all distinct in Zp. Next, we always have

(3.2)
j∑

ν=1

ενβν +Bj ⊂ A

and

(3.3) |Bj | ≥Mj = (4K2)−jn.

The last property asserts that the function

gj(x) =
∑
b∈Bj

e(bx)

has a decomposition

(3.4) gj = h
(j)
1 + h

(j)
2 + h

(j)
3

such that

|h(j)
1 (x)| ≤ f(x) +K, x ∈ Ep,(3.5)

|h(j)
2 (x)| ≤ Lj := 4jKj+1, x ∈ Ep,(3.6)

‖h(j)
3 ‖1 ≤ ηj := (8K2)jn−1/2.(3.7)

An important consequence of (3.5) is

(3.8) ‖h(j)
1 ‖1 ≤ ‖f +K‖1 = K.

We start with B0 := A. The above decomposition of g0 = f will be

h
(0)
1 (x) := f(x)+ := max(0, f(x)), h

(0)
2 (x) := −f(x)− := −min(0, f(x)),

L0 := K, h
(0)
3 := 0.

Assume now that the set Bj ⊂ Zp, the integers β1, . . . , βj ∈ Zp and the
functions h(j)

ν , ν = 1, 2, 3, are given. We are going to find Bj+1 ⊂ Zp and
the functions h(j+1)

ν . To simplify notation we shall write B, M , g, hν , L, η
for Bj , Mj , gj , h

(j)
ν , Lj , ηj , and B′, M ′, g′, h′ν , L′, η′ for Bj+1, Mj+1, gj+1,

h
(j+1)
ν , Lj+1, ηj+1. Write |B| = m (≥M).

We will search for B′ in the form B′ = B ∩ (B − α), and then put
βj+1 := α. This guarantees (3.2).

To estimate the size of such an intersection, first observe that∑
α∈Zp

|B ∩ (B − α)| = m2(3.9)
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and ∑
α∈Zp

|B ∩ (B − α)|2 = ‖g‖44.(3.10)

To estimate this quantity we start with

‖g − h2‖2 ≥ ‖g‖2 − ‖h2‖2 ≥ ‖g‖2 − ‖h2‖∞ ≥
√
m− L

and
‖g − h2‖1 = ‖h1 + h3‖1 ≤ ‖h1‖1 + ‖h3‖1 ≤ K + η

by (3.8) and (3.7). By Hölder’s inequality we have

‖g − h2‖4 ≥
‖g − h2‖3/22

‖g − h2‖1/21

≥ (
√
m− L)3/2

(K + η)1/2
≥ 8

9
m3/4K−1/2,

if we suppose

(3.11) η < cK, L < c
√
M ≤ c

√
m

with a suitably small absolute constant c > 0. This implies

‖g‖4 ≥ ‖g − h2‖4 − ‖h2‖4 ≥
8
9
m3/4K−1/2 − L ≥ 7

8
m3/4K−1/2

if L
√
K < cm3/4 with a suitably small absolute constant c > 0. This as-

sumption follows from the second inequality of (3.11), since L ≥ K by (3.6).
Hence by (3.10) we obtain

(3.12)
∑
α∈Zp

|B ∩ (B − α)| ≥ 1
2
m3

K2
.

The contribution of terms satisfying |B ∩ (B − α)| ≤ 1
4m/K

2 to the sum in
(3.12) is at most 1

4m
3/K2 by (3.9), so at least 1

4m
3/K2 comes from α such

that |B∩(B−α)| > 1
4m/K

2. As each summand is at most m2, we infer that
there are at least 1

4m/K
2 values of α such that |B ∩ (B − α)| > 1

4m/K
2.

We shall select our βj = α from these values. This guarantees the in-
ductive step for (3.3). To arrange that the sums

∑j+1
ν=1 ενβν are distinct we

need to avoid the at most 3j numbers of the form
j∑

ν=1

δνβν , δν ∈ {−1, 0, 1}.

If we suppose that

(3.13) 3j ≤ m

8K2
,

then we still have at least m/(8K2) values of β to choose from. We have to
find the decomposition of g′ and show properties (3.5)–(3.7). Write eα(x) =
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e(αx). With this notation we can write g′ as a convolution

g′ := g ∗ (geα).

If we substitute the decomposition of g into this formula we get an expression
for g′ as a sum of nine convolutions, which will be dealt with in different
ways.

First observe that

|h1 ∗ (h1eα)| ≤ |h1| ∗ |h1| ≤ (f +K) ∗ (f +K) = f +K2

for every input x ∈ Ep. In the last step we use the fact that f ∗f = f , which
is equivalent to the property that each coefficient of f is 0 or 1.

Clearly, we can decompose h1 ∗ (h1eα) as

h1 ∗ (h1eα) = h′1 + h′2,1,

where |h′1| ≤ f + K and |h′2,1| ≤ K2 − K for every input x ∈ Ep. The
function h′2,1 will contribute to h′2. Other contributions to h′2 come from the
convolutions involving h2 and h1 or h3. We have

‖(h1 + h3) ∗ (h2eα)‖∞ ≤ ‖h1 + h3‖1‖h2‖∞ ≤ (K + η)L,

and the same estimate holds for ‖((h1 + h3)eα) ∗ h2‖∞. So finally

h′2 := h′2,1 + (h1 + h3) ∗ (h2eα) + ((h1 + h3)eα) ∗ h2

satisfies
‖h′2‖∞ ≤ (K2 −K) + 2(K + η)L ≤ 4KL

(recall also (3.11)). This is exactly (3.6) for j + 1. The other terms make
up h′3. We have

‖h1 ∗ (h3eα)‖1 ≤ ‖h1‖1‖h3‖1 ≤ ηK,
and the same estimate holds for ‖h3 ∗ (h1eα)‖1. Similarly

‖h3 ∗ (h3eα)‖1 ≤ ‖h3‖21 ≤ η2 < ηK.

To estimate ‖h2 ∗ (h2eα)‖1 we shall use averaging in α. An application of
Parseval’s formula yields∑

α∈Zp

‖h2 ∗ (h2eα)‖22 = ‖h2‖42 ≤ ‖h2‖4∞ ≤ L4.

Since we have at least m/(8K2) values of α to choose from, there is one such
that

‖h2 ∗ (h2eα)‖1 ≤ ‖h2 ∗ (h2eα)‖2 < 3KL2m−1/2.

So
h′3 := h1 ∗ (h3eα) + h3 ∗ (h1eα) + h3 ∗ (h3eα) + h2 ∗ (h2eα)

satisfies
‖h′3‖1 < 3ηK + 3KLm−1/2.
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By substituting the definition of η and L from (3.4), (3.6) and (3.7) and
using the estimate (3.3) for m (≥ M), a simple calculation shows (3.7) for
j + 1. This α will be our βj+1, and this ends the induction.

This process goes on as long as conditions (3.11) and (3.13) are satisfied.
Both inequalities of (3.11) lead to a bound for k as given by (3.1) in the
lemma, while (3.13) gives about twice that. The lower bound for |B| is the
case j = k of (3.3).

Proof of Lemma 3.2. By removing some elements from S if necessary,
without loss of generality we may assume that |S| = L. First we establish the
existence of sets of integers U, V ⊂ Zp such that |U |, |V | ≥ εL, U − V ⊂ A,
U ⊂ A, V ∩A = ∅ and 0 /∈ V .

Assume 0 ∈ T (this can be achieved by shifting S and T if necessary),
and write

rj = |(S + jd) ∩A|.

We have r0 ≥ L and there is a j ∈ Zp such that

rj ≥ (1− ε)L > rj+1,

otherwise p(1 − ε)L ≤ |A|L, contradicting our assumption |A| < p(1 − ε).
Write A0 = A ∪ {0}. Now if

(3.14) |(jd− T ) ∩A| < (1− ε)L,

then put
U = (S + jd) ∩A, V = (jd− T ) \A0.

We have

|U | = rj ≥ (1− ε)L,

|V | = |T | − |(jd− T ) ∩A0| > L− (1− ε)L− 1 ≥ εL− 1 ≥ 1
2
εL,

and
U − V ⊂ (S + jd)− (jd− T ) = S + T ⊂ A.

If (3.14) does not hold, then we put

U = (jd− T ) ∩A, V = (S + (j + 1)d) \A0.

We have |U | ≥ (1− ε)L by the negation of (3.14),

|V | = |S| − |(S + (j + 1)d) ∩A0| ≥ |S| − rj+1 − 1 > L− (1− ε)L− 1

= εL− 1 ≥ 1
2
εL,

and

U − V ⊂ (jd− T )− (S + (j + 1)d) = (S + T + d) ⊂ −A = A.
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We define K by
−K := min

x∈Ep
f(x),

and another function h by

h(x) =
1
|U |

∑
u∈U

e(ux)− 1
|V |

∑
v∈V

e(vx).

Recall that 0 /∈ V and also 0 /∈ U by U ⊂ A, hence
	
h(x) dµp = 0. We have

�
h(x)f(x) dµp = 1

by U ⊂ A, V ∩A = ∅, thus

(3.15)
�
h(x)(f(x) +K) dµp = 1.

Furthermore

|h(x)|2 = |U |−2
∑

u,u′∈U
e((u− u′)x) + |V |−2

∑
v,v′∈V

e((v − v′)x)

− (|U | |V |)−1
∑

u∈U,v∈V
(e((u− v)x) + e((v − u)x)).

Since u− v, v − u ∈ A for all u ∈ U and v ∈ V , we see that
�
|h(x)|2f(x) dµp ≤ 1 + 1− 2 = 0.

Also, clearly �
|h(x)|2 dµp ≤ |U |−1 + |V |−1 ≤ 4

εL
,

which implies �
|h(x)|2(f(x) +K) dµp ≤

4K
εL

.

By Cauchy’s inequality and (3.15) we have

1 =
�
h(x)(f(x) +K) dµp

≤
( �
|h(x)|2(f(x) +K) dµp

)1/2( �
(f(x) +K) dµp

)1/2

≤
(

4K
εL

)1/2

K1/2,

that is, K ≥ 1
2(εL)1/2 as claimed.

Proof of Lemma 3.3. Let

−K := min
x∈Ep

f(x).
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By Lemma 3.1, with k defined in the lemma, there are integers β1, . . . , βk
∈ Zp and a set B ⊂ Zp such that

B +
{ k∑
j=1

εjβj : εj ∈ {0, 1}
}
⊂ A,

the 2k sums in { k∑
j=1

εjβj : εj ∈ {0, 1}
}
⊂ Zp

are all distinct, and |B| ≥
√
n. Choose S := B,

T :=
{ k−1∑
j=1

εjβj

}
,

and d := βk. We have S + T + {0, d} ⊂ A and |S| > |T | = 2k−1, so an
application of Lemma 3.2 yields

K ≥ 2(k−6)/2 ≥ exp
(

log 2
2

log n
4 logK + c6

− 4
)
.

After taking the logarithm and rearranging this yields a quadratic inequality
for logK, and by a simple calculation we find the bound of the lemma.

4. Proof of Theorem 2.1. Every Littlewood cosine polynomial

Tq(2πt) =
q∑
j=0

aj cos(2πjt), aj ∈ {−1, 1},

can be written as

Tq(2πt) =
1
2

+Dq(2πt)− Uq(2πt),

where

Dq(2πt) :=
1
2

+
q∑
j=1

cos(2πjt)

is the qth Dirichlet kernel, and Uq(2πt) is of the form

Uq(2πt) = 2
∑
a∈A′

cos(2πat) =
∑
a∈A

e(at),

where A′ ⊂ Z′p and A := −A′ ∩A′ ⊂ Zp. A key observation is that Dq(2πt)
vanishes on Ep \ {0}. So if 1

8p ≤ |A| ≤
7
8p, then Lemma 3.3 gives the result

of the theorem (note that Uq(0) = |A| > 0). If |A| < 1
8p, then

Tq(0) =
1
2

+Dq(0)− Uq(0) = q + 1− 2|A| > q + 1− p

4
>
p

4
.
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If |A| > 7
8p, then Tq(2πt) can be written as

Tq(2πt) = −1
2
−Dq(2πt) + Vq(2πt),

where Dq(2πt) is the Dirichlet kernel as before, and

Vq(2πt) = 2
∑
a∈B′

cos(2πat) =
∑
a∈B

e(at),

with
B′ := Zq \A′ ⊂ Zq, B := −B′ ∪B′ ⊂ Zp,

and |B| < 1
8p. Observe that at t := 3

2p ∈ E
∗
p we have

−Dq(2πt) ≥
p

6
and |Vq(2πt)| ≤

p

8
,

hence

Tq(2πt) = −1/2−Dq(2πt) + Vq(2πt)

≥ −1
2

+
p

6
− p

8
≥ p

24
− 1

2
.

So, in fact, if |A| < 1
8p or |A| > 7

8p, then we have a much better lower bound
for the maximum of Tq on E∗p than the one stated in the theorem.

5. Maximum modulus of Barker polynomials. Let, as before, Ln
be the collection of all polynomials of degree n with each coefficient in
{−1, 1}. Let D and ∂D denote the closed unit disk and the unit circle of the
complex plane, respectively. For a polynomial

p(z) :=
n∑
k=0

akz
k

the kth acyclic autocorrelation coefficient is defined by

ck =
n−k∑
j=0

ajaj+k and c−k = ck.

A Barker polynomial p ∈ Ln has autocorrelation coefficients ck satisfying
|ck| ≤ 1, k = 1, . . . , n, which by parity gives ck = 0 if n − k is odd, and
|ck| = 1 if n− k is even. Since

p(z)p(1/z) = n+ 1 +
n∑

k=−n
k 6=0

ckz
k,

if p ∈ Ln is a Barker polynomial of even degree n, then
‖p‖L4(∂D) = ((n+ 1)2 + n)1/4,

while if p ∈ Ln is a Barker polynomial of odd degree n, then
‖p‖L4(∂D) = ((n+ 1)2 + n+ 1)1/4.
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It is widely believed that no Barker polynomials exist of degree greater than
12 but this seems a very difficult problem.

The following conjecture implies that the acyclic autocorrelation coeffi-
cient cannot even remain bounded for large n.

Merit Factor Problem of Golay. Find the polynomial in Ln that
has the smallest possible L4(∂D) norm on the unit circle. Show that there
exists a constant c > 0 so that for all n and p ∈ Ln we have

‖p‖L4(∂D) ≥ (1 + c)
√
n+ 1.

Even the following much weaker problem is open.

The Barker Polynomial Problem. Show that

‖p‖L4(∂D) > ((n+ 1)2 + n+ 1)1/4

for all p ∈ Ln with n > 12.

Note that this would imply the nonexistence of Barker polynomials for
n > 12. Also

‖p‖L4(∂D) >
√
n+ 1 + 1

implies
‖p‖L4(∂D) > ((n+ 1)2 + n+ 1)1/4.

In [Bo] P. Borwein writes “It is conjectured that no Barker polynomials
exist for n > 12. See [FSS] and [S90] for more about Barker polynomials and
the proof of the nonexistence of self-reciprocal Barker polynomials. In [TS]
and [T63] Turyn and Storer showed that no even degree Barker polynomials
exist for n > 12 (and indeed, as Schmidt [Sc] shows, none exist for any degree
between 12 and 1020). It can also be shown (see Turyn [T65]) that any odd
degree Barker polynomial of degree greater than 12 must have degree of the
form 4s2 − 1, where s is an odd composite number.”

In [BM] the authors amend an argument of Saffari showing that Barker
polynomials are flat. More precisely, if pn is a Barker polynomial of degree n,
then

α1 +O(1/n) =
|pn(z)|√

n
≤ α2 +O(1/n)

for each z ∈ ∂D, where α1 =
√

1− θ = 0.52477485 . . . and α2 =
√

1 + θ =
1.31324459 . . . , and

θ := sup
t>0

sin 2t
t

= 0.7246113537 . . . .

In a recent work, M. Mossinghoff [Mo] showed that if a Barker sequence
of length n > 13 exists, then either n = 189260468001034441522766781604
or n > 2 · 1030.



Maximum of Littlewood cosine polynomials 229

In this section we record the following observation about the maximum
modulus ‖p‖D of a Barker polynomial p ∈ Ln on the closed unit disk D.

Theorem 5.1. Let p ∈ Ln be a Barker polynomial. Then
max
z∈∂D

|p(z)| ≥
√
n+

√
1/3 and min

z∈∂D
|p(z)| ≤

√
n+ 2−

√
1/3.

We doubt that the constant
√

1/3 can be pushed above 1 easily.
To prove Theorem 5.1 we need the following result of Turyn and Storer

([TS], [T63]).

Lemma 5.2. Suppose

p(z) :=
n∑
k=0

akz
k

is a Barker polynomial of degree n. Let

p(z)p(1/z) = n+ 1 +
n∑

k=−n
k 6=0

ckz
k.

Then
ck + cn+1−k ≡ n+ 1 (mod 4)

and
akan−k = (−1)n−k.

If n+1 is even and n > 3, then n+1 = 4m2 for some positive integer m, and
cn+1−k = −ck for 0 < k < n+ 1. If n+ 1 is odd, then ck + cn+1−k = (−1)n/2

for each 0 < k < n+ 1.

We also need Szegő’s inequality (which is sometimes called the inequality
of van der Corput and Schaake) below. For a proof see [DeL, p. 97].

Lemma 5.3. We have
Q′(t)2 + n2Q(t)2 ≤ n2 max

τ∈[−π,π]
|Q(τ)|2

for every trigonometric polynomial of degree at most n. As a consequence,
n−2‖Q′‖2L2[−π,π] + ‖Q‖2L2[−π,π] ≤ max

τ∈[−π,π]
|Q(τ)|2.

Proof of Theorem 5.1. Let p ∈ Ln be a Barker polynomial and write
n+ 1 = 4m. Using the fact that the off-peak autocorrelations satisfy cn+1−k
= −ck, and that c2j = 0 for j ≥ 1, we deduce by Lemma 5.2 that

Q(t) := |p(eit)|2 − (n+ 1) = 2
n∑
k=1

ck cos(kt)

= 2
2m−1∑
k=1

ck(cos(kt)− cos((n− k)t))
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= 4 sin(2mt)
2m−1∑
k=1

ck sin((2m− k)t)

= 4 sin(2mt)
m∑
k=1

c2m−2k+1 sin((2k − 1)t).

The key observation is that while Lemma 5.3 implies that

(5.1) n−2‖Q′‖2L2[−π,π] + ‖Q‖2L2[−π,π]

= πn−2
( ∑

1≤2j+1≤n
4(2j + 1)2

)
+ π

( ∑
1≤2j+1≤n

4
)
≥ 8π

3
n

we also have

(5.2) Q(t) = −Q(t+ π), t ∈ R.
Now (5.1) and (5.2) ensure that there is a τ ∈ [−π, π] for which Q(τ) ≥
(4n/3)1/2 and Q(τ + π) ≤ −(4n/3)1/2, and the theorem follows.

We remark that the simple property (5.2) of Q allows us to conclude
a much better result than the one implied by an application of our main
result, Theorem 2.1. In addition, Theorem 2.1 could be used only under
some restrictions, for example, in the cases when n or n+ 2 is a prime.
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Parseval formula to improve the constant in Theorem 5.1.

References

[Bo] P. Borwein, Computational Excursions in Analysis and Number Theory, Sprin-
ger, New York, 2002.
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