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1. Introduction. Let P (n) stand for the largest prime factor of the
integer n ≥ 2 and set P (1) = 1. A well known result of I. M. Vinogradov [7]
asserts that, given any irrational number α, the sequence αpn, n = 1, 2, . . . ,
where pn stands for the nth prime, is uniformly distributed in [0, 1]. In
2005, Banks, Harman and Shparlinski [1] proved that for every irrational
number α, the sequence αP (n), n = 1, 2, . . . , is uniformly distributed mod 1.
They did so by using the well known Weyl criteria (see the book of Kuipers
and Niederreiter [5]) and thus by establishing that

(1.1) lim
x→∞

1
x

∑
n≤x

e(αP (n)) = 0,

where e(z) := exp{2πiz}.
Let M stand for the set of all complex-valued multiplicative functions

and let M̃ be the subset of those functions f ∈M such that |f(n)| ≤ 1 for
positive integers n. Daboussi (see Daboussi and Delange [2]) proved that
given f ∈ M̃ and any irrational number α,

lim
x→∞

sup
f∈fM

1
x

∑
n≤x

f(n)e(nα) = 0.

LetM1 stand for the subset of those functions f ∈M such that |f(n)|= 1
for all positive integers n. In this paper, we first generalize (1.1) by showing
that for any irrational number α and any function f ∈M1, we have

(1.2)
∑
n≤x

f(n)e(αP (n)) = o(x) (x→∞).

We also show that this general result further holds if one replaces e(αP (n))
by T (P (n)), where T is any function defined on primes satisfying |T (p)| = 1
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for all primes p and such that
∑

p≤x T (p) = o(π(x)), where π(x) stands for
the number of primes ≤ x.

We then move our interest to shifted primes by establishing that (1.2)
holds if one replaces P (n) by P (n− 1), provided f ∈ M1 satisfies an addi-
tional condition.

Finally, we examine the counting function

E(x, q, a) := #{p ≤ x : P (p− 1) ≡ a (mod q)}.

In [1], Banks, Harman and Shparlinski proved that

E(x, q, a)� li(x)
φ(q)

(log q ≤ (log x)1/3),

where the constant implicit in � is absolute,

li(x) :=
x�

2

dt

log t

and φ stands for the Euler function. They also mentioned that the matching
lower bound E(x, q, a)� li(x)/φ(q) should most likely hold as well, but
could not prove it. Here we prove their guess to be true.

In what follows, c, c1, c2, . . . always denote absolute real constants.

2. Main results

Theorem 1. Given an irrational number α and a function f ∈M1,

lim
x→∞

1
x

∑
n≤x

f(n)e(αP (n)) = 0,

where e(z) := exp{2πiz}.

Theorem 2. Let f ∈M1 and let ℘ stand for the set of all prime num-
bers. Let T : ℘ → C be such that |T (p)| = 1 for each p ∈ ℘ and such
that

∑
p≤x T (p) = o(π(x)), where π(x) stands for the number of primes not

exceeding x. Then

lim
x→∞

1
x

∑
n≤x

f(n)T (P (n)) = 0.

Note that one can show that Theorems 1 and 2 remain valid when re-
placing P (n) by Pk(n), the kth largest prime factor of n.

Theorem 3. Given an arbitrary fixed number A > 0, there exists an
absolute constant c > 0 such that, for all x ≥ 2,

E(x, q, a) ≥ c li(x)
φ(q)

((a, q) = 1, q ≤ (log x)A).
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Theorem 4. Let f ∈M1 and assume that

S(t) :=
∑
p

1−<(f(p)p−it)
p

converges for some t ∈ R. Then, given any irrational number α,

lim
x→∞

∑
n≤x

f(n) e(αP (n− 1)) = 0.

3. Preliminary results. The following two lemmas are essentially due
to Halász [4]. We state them as follows.

Lemma 1. Let f ∈ M with |f(n)| ≤ 1 for all n ∈ N. Assume that
the series S(a0) is convergent for some real number a0. Then there exists a
constant C0 ∈ C and a slowly oscillating function L0(u), with |L0(u)| = 1,
such that ∑

n≤x
f(n) = C0 L0(log x)x1+ia0 + o(x).

Remark. Observe that the constant C0 is nonzero if there exists at least
one integer r ≥ 0 for which f(2r) 6= −1.

Lemma 2. Let f ∈M with |f(n)| ≤ 1 for all n ∈ N. Then∑
n≤x

f(n) = o(x)

if S(b) diverges for every real number b or if f(2r) = −1 for r = 1, 2, . . . .

The next lemma, which may be of independent interest, plays a crucial
role in what follows.

Lemma 3. Let (a(n))n≥1 be a sequence of complex numbers of modulus 1
and set A(x) :=

∑
n≤x a(n). Also let τ ∈ R and set Aτ (x) :=

∑
n≤x a(n)niτ .

If A(x) = o(x), then Aτ (x) = o(x).

Remark. As a consequence of Lemma 3, it follows that if Aτ1(x) = o(x)
for some real number τ1, then Aτ (x) = o(x) for every real number τ .

Proof of Lemma 3. Since A(x) = o(x), there exist decreasing functions
ε(x) and δ(x), both tending to 0 as x→∞, such that

(3.1) |A(x+ y)−A(x)| ≤ δ(x)y,

uniformly for ε(x)x ≤ y ≤ x.
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Now observe that

Aτ (x+ y)−Aτ (x) = xiτ
∑

x<n≤x+y
a(n)eiτ log(n/x)

= xiτ (A(x+ y)−A(x)) +O

(
|τ |

∑
x<n≤x+y

log
n

x

)
.

Therefore,

(3.2) |Aτ (x+ y)−Aτ (x)| ≤ |A(x+ y)−A(x)|+ c1|τ |
y2

x
.

We shall now prove that

(3.3) lim sup
X→∞

|Aτ (X)|
X

= 0.

To do so, we first let M > 0 be an arbitrarily large integer and choose X
large enough so that we have both δ(X/M) < 1/M2 and ε(X/M) < 1/M2.
Finally let x = X/M . Since

Aτ (Mx) = Aτ (x) +
M∑
j=2

(Aτ (jx)−Aτ ((j − 1)x)),

it follows, in light of (3.1) and (3.2), that

|Aτ (Mx)| ≤ |Aτ (x)|+
M∑
j=2

|Aτ (jx)−Aτ ((j − 1)x)|

≤ x+
M−1∑
j=1

xδ(jx) + c1|τ |x
M−1∑
j=1

1
j
≤ x+ xMδ(x) + c2x|τ | logM,

from which it follows that
|Aτ (Mx)|
Mx

≤ 1
M

+ δ(x) + c2|τ |
logM
M

,

which in turn implies

lim sup
X→∞

|Aτ (X)|
X

≤ c3|τ |
logM
M

.

Since M can be taken arbitrarily large, (3.3) follows, thus completing the
proof of Lemma 3.

4. The proofs of Theorems 1 and 2. Let f ∈ M1, α an irrational
number and S(x) :=

∑
n≤x f(n). Assume for now that f is completely mul-

tiplicative. We shall consider separately the two cases

(i) lim
x→∞

S(x)
x

= 0, (ii)
S(x)
x

9 0 as x→∞.
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It is well known (see Tenenbaum [6]) that

(4.1) ψ(x, y) := #{n ≤ x : P (n) ≤ y} = (1 + o(1))xρ(u) (x→∞),

where ρ(u) stands for the Dickman function and u := (log x)/(log y) is fixed.
Therefore, it is clear that, using (4.1) for a fixed positive δ < 1/2,

(4.2) lim
x→∞

1
x

(#{n ≤ x : P (n) ≤ xδ}+ #{n ≤ x : P (n) > x1−δ})

= lim
x→∞

1
x

(ψ(x, xδ)+x−ψ(x, x1−δ)) = ρ(1/δ)+1−ρ(1/(1−δ))� δ.

So, let 0 < δ < 1/2 be fixed. For some prime q, xδ < q < x1−δ, define

Sq(x) :=
∑
n≤x

P (n)<q

f(n) and Dq =
∏

q≤p≤x
p.

Observe that for any n ≤ x, one has P (n) < q if and only if gcd(n,Dq) = 1.
Using the fact that f is completely multiplicative, we deduce that

(4.3) Sq(x) =
∑
d|Dq

µ(d)f(d)S(x/d).

Now consider the sum

Σ1 = Σ1(x) :=
∑

xδ<q<x1−δ

f(q)e(αq)Sq(x/q).

It follows from (4.2) that∣∣∣∑
n≤x

f(n)e(αP (n))−Σ1

∣∣∣ ≤ c4δx.
This last estimate implies that Theorem 1 will be proved (in this case)

if we can show that Σ1 = Σ1(x) tends to 0 as x→∞.
Now since S(x) = o(x), there exists a function ε1(x) which tends to 0 as

x→∞ and is such that |S(x)| ≤ ε1(x)x.
From (4.3) and the definition of Σ1, we have

|Σ1| ≤ x
∑

xδ<q<x1−δ

1
q

∑
d|Dq

dq<x1−δ2

ε1(xδ
2
)

d
+ x

∑
d|Dq

x1−δ2≤qd<x

1
qd

(4.4)

= xΣA +ΣB,
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say. Clearly,

ΣA ≤ ε1(xδ
2
)

∑
xδ<q<x1−δ

1
q

∏
q≤p<x

(
1 +

1
p

)
(4.5)

≤ c5ε1(xδ
2
)

∑
xδ<q<x1−δ

log x
q log q

≤ c6ε1(xδ
2
)
1
δ
.

In order to estimate ΣB, we proceed as follows. For a fixed prime q,
each divisor d in the sum lies in [z, xδ

2
z], where z = x1−δ2/q. Splitting this

interval into dyadic subintervals of the form [2jz, 2j+1z], we observe that∑
d|Dq

d∈]2jz,2j+1z[

1
d
≤ c7

∏
p<q

(
1− 1

p

)
≤ c8

log q
.

Since the maximum value of j in the above expression is c9δ2 log x, it follows
that

(4.6) ΣB ≤ c10δ
2

∑
xδ<q<x1−δ

log x
q log q

≤ c11δ
2 log x
δ log x

= c11δ.

Using (4.5) and (4.6) in (4.4), we obtain∣∣∣∣Σ1

x

∣∣∣∣ ≤ c11δ + c6
ε1(xδ

2
)

δ
,

which implies that

lim sup
x→∞

|Σ1(x)|
x

� δ.

Since δ can be chosen arbitrarily small, it follows that |Σ1(x)|/x → 0 as
x→∞, which completes the proof of Theorem 1 in case (i) when f is
assumed to be completely multiplicative, a fact that we only used to de-
duce (4.3).

To drop this last condition, we proceed as follows. We define f1 = f1,x∈M
by f1(pα) = f(pα) if p 6∈ [xδ, x1−δ] and f1(pα) = f(p)α otherwise. Set

S(1)(x) :=
∑
n≤x

f1(n),

and, for xδ < q < x1−δ, let

S(1)
q (x) :=

∑
d|Dq

µ(d)f(d)S(1)(x/d).
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In light of these definitions, it is easy to see that

|S(x)− S(1)(x)| ≤ x
∑

xδ<q<x1−δ

1
q2
� x1−δ

and ∣∣∣∑
n≤x

(f(n)− f1(n))e(αP (n))
∣∣∣� δx+ x1−δ,

so that the theorem is proved in case (i) without the restriction that f is
completely multiplicative.

It remains to consider case (ii). In this case, it follows from Lemma 2
that there exists a real number τ for which S(τ) converges. From Lemma 3
we have, as x→∞,

1
x

∑
n≤x

f(n)e(αP (n))→ 0 and
1
x

∑
n≤x

f(n)n−iτe(αP (n))→ 0.

In light of these observations, it is sufficient to consider the case τ = 0,
that is

(4.7) S(0) =
∑
p

1−<(f(p))
p

is convergent.

Let f(pr) = e(F (pr)) with −1/2 ≤ F (pr) ≤ 1/2. It is clear that (4.7)
holds if and only if

(4.8)
∑
p

F 2(p)
p

<∞.

Let Y be a fixed large number and set

AX,Y :=
∑

Y <p<X

F (p)
p

.

Further define the multiplicative functions fY (n) and gY (n) by

fY (pr) :=

{
f(pr) if p ≤ Y,
1 if p > Y,

gY (pr) :=

{
f(pr) if p > Y,

1 if p ≤ Y.
It is clear that f(n) = fY (n) · gY (n).

Further let
GY (n) :=

∑
pr‖n
p>Y

F (pr).

It follows from the Turán–Kubilius inequality that

(4.9)
∑
n≤x
|GY (n)−AX,Y |2 ≤ c12x

∑
p≥Y
r≥1

F 2(pr)
pr

= c12xB
2
Y ,
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say. From (4.8), it follows that BY → 0 as Y →∞. On the other hand, since
gY (n) = e(GY (n)), it is clear, in light of (4.9), that∑

n≤x
|gY (n)− e(AX,Y )|2 ≤ c13xB

2
Y .

Therefore,

(4.10)
∣∣∣∑
n≤x

f(n)e(αP (n))− e(−AX,Y )
∑
n≤x

fY (n)e(αP (n))
∣∣∣ ≤ c14xBY .

We shall now establish that

(4.11)
1
x

∑
n≤x

fY (n)e(αP (n))→ 0 (x→∞).

We further define the multiplicative function f̃Y (n) by

f̃Y (pr) :=

{
1 if p > Y 1/r,

fY (pr) otherwise.

First observe that

(4.12)
∣∣∣∑
n≤x

fY (n)e(αP (n))−
∑
n≤x

f̃Y (n)e(αP (n))
∣∣∣ ≤ ∑

pr≥Y
p≤Y

x

pr
≤ ε1(Y )x,

where ε1(Y )→ 0 as Y →∞.
Let hY (n) be the function defined implicitly by

f̃Y (n) =
∑
d|n

hY (d).

It is easy to see that

hY (p) =

{
f̃Y (p)− 1 if p ≤ Y,
0 if p > Y,

and that similarly hY (pr) = 0 if p > Y .
On the other hand, since hY (pr) = f̃Y (pr) − f̃Y (pr−1), it follows that

hY (pr) = 0 if pr−1 > Y .
From the definition of hY , it is clear that

(4.13)
∑
n≤x

f̃Y (n)e(αP (n)) =
∑
d≤x

hY (d)
∑
dm≤x

e(αP (dm)).

If hY (d) 6= 0, then pr ‖ d implies that p < Y and pr−1 ≤ Y , so that
pr ≤ Y 2. Consequently, d ≤ Y 2π(Y ) ≤ Y 2Y . Furthermore, hY (d) ≤ 2π(Y ).

For a fixed positive integer d, we have

(4.14)
∑

m≤x/d

e(αP (dm)) =
∑

m≤x/d

e(dP (m)) +O
( ∑

m≤x/d
P (m)≤P (d)

1
)
.
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Using the main result of Banks, Harman and Shparlinski [1], namely that
for any fixed irrational number α,

lim
x→∞

1
x

∑
n≤x

e(αP (n)) = 0,

we deduce, using (4.14) in (4.13), that

(4.15) lim
x→∞

1
x

∑
n≤x

f̃Y (n)e(αP (n)) = 0.

Hence, it follows from estimate (4.15), taking into account (4.12), that (4.11)
is proved. Finally, gathering (4.10) and (4.11), Theorem 1 is proved.

Theorem 2 can be established along the lines of the proof of Theorem 1
and its proof will therefore be omitted.

5. The proof of Theorem 3. Let 0 < η1 < η2 < 1/2. It is clear that

E(x,Q, a) ≥
∑

xη1<Q<xη2
Q≡a (mod q)

π(x;Q, 1)−
∑
Q<Q′

xη1<Q<xη2
Q≡a (mod q)

π(x;QQ′, 1)(5.1)

= Σ1 −Σ2,

say, where as usual π(x; b, a) := #{p ≤ x : p ≡ a (mod b)}. It follows from
the Bombieri–Vinogradov theorem that

(5.2) Σ1 = li(x)
∑

xη1<Q<xη2
Q≡a (mod q)

1
Q− 1

+O

(
x

(log x)A

)
,

assuming that xη2 ≤
√
x/(log x)2A+5, a condition which is equivalent to

(5.3)
1
2
− η2 ≥ (2A+ 5)

log log x
log x

.

Summing over Q allows us to write (5.2) as

(5.4) Σ1 =
(

log
η2

η1

)
li(x)
φ(q)

+O

(
x

(q log x)D

)
uniformly for q ≤ (log x)c, where D is any preassigned value.

In order to estimate Σ2, we use standard sieve techniques. Actually Σ2

represents the number of solutions of p− 1 = bQQ′ ≤ x, where b,Q,Q′ vary
as follows:

Q ≡ a (mod q), Q ∈ [xη1 , xη2 ], Q < Q′, b = 1, 2, . . . .

We first fix b and Q, and we assume that there is at least one pair of
numbers p,Q′ which is a solution of p − 1 = bQQ′ ≤ x, in which case we
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have b < x1−2η1 and bQ < x1−η1 . Let η1 be close to 1/2. Then

Eb,Q := #{p,Q′ : p− 1 = bQQ′ ≤ x, Q ≡ a (mod q)}(5.5)

≤ c15
x

log2 x φ(bQ)
.

Using the well known estimate
∑

b≤y 1/φ(b) ≤ c16 log y, it follows from (5.5)
that

Σ2 =
∑
b,Q

Eb,Q ≤ c15
x

log2 x
c16

∑
xη1<Q<xη2

log(x/Q2)
Q− 1

(5.6)

≤ c17
x

log x
1

φ(q)
(1− 2η1) log

η2

η1
.

Choosing η2 so that it satisfies (5.3) and η1 so that c17(1− 2η1) < 1/2, and
then gathering (5.4) and (5.6) in (5.1), we obtain

E(x, q, a) ≥ 1
2

(
log

η2

η1

)
li(x)
φ(q)

,

thus completing the proof of Theorem 3.

6. The proof of Theorem 4. Again using the analogue of Lemma 3,
namely in the form

lim
x→∞

1
x

∑
n≤x

f(n)niτe(αP (n− 1)) = 0 ⇔ lim
x→∞

1
x

∑
n≤x

f(n)e(αP (n− 1)) = 0,

we may assume that τ = 0, that is,

S(0) =
∑
p

1−<(f(p))
p

<∞.

Arguing as in the proof of case (ii) of Theorem 1, we reduce the problem to
proving that the expression

(6.1)
∑
n≤x

f̃Y (n)e(αP (n− 1)) =
∑
d≤x

hY (d)
∑

m≤x/d

e(αP (dm− 1))

is o(x) as x→∞.
First let us define

ψ(x, y; a, q) := #{n ≤ x : P (n) ≤ y, n ≡ a (mod q)}.

Since, in the first sum on the right hand side of (6.1), d runs over a finite
set of integers which does not change as x→∞, it is enough to prove that

(6.2) lim
X→∞

1
X

∑
m≤X

e(αP (dm− 1)) = 0.
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We have P (dm − 1) = q if dm − 1 = qν, P (ν) ≤ q, that is, qν + 1 ≡ 0
(mod d), ν ≡ `q (mod d), P (ν) ≤ q, ν ≤ x/q. This quantity is precisely
ψ(xd/q, q; `q, d).

It follows that∑
m≤X

e(αP (dm− 1)) =
∑
q<xd

e(αq)ψ
(
xd

q
, q; `q, d

)
.

Let ε > 0 be an arbitrary real number. It follows from (4.2) that

(6.3)
∑
m≤x

e(αP (dm− 1)) =
∑

xε<q<x1−ε

e(αq)ψ
(
xd

q
, q; `q, d

)
+Rx,

where |Rx| ≤ εx. It has been established by Granville [3] that, if gcd(a, d) = 1
and d1+ε ≤ y ≤ x, then

(6.4) ψ(x, y; a, d) ∼ 1
d
ψ(x, y) (x→∞).

Observing that

ψ

(
xd

q
, q

)
= (1 + o(1))ρ

(
log xd
log q

− 1
)
xd

q
(x→∞),

we deduce, by (6.4), that the right hand side of (6.3) is, as x→∞, equal to

xd
∑

xε<q<x1−ε

ρ

(
log xd
log q

− 1
)
e(αq)
q

+ o(1)xd
∑

xε<q<x1−ε

ρ

(
log xd
log q

− 1
)

1
q

+Rx

= S1(x) + S2(x) +Rx.

In order to prove (6.2), it remains to show that

(6.5) S1(x) = o(x) and S2(x) = o(x).

First we set

Jx :=
[

1
1− ε

− 1 +
log d
log x

,
1
ε
− 1 +

log d
log x

]
.

If q ∈ [xε, x1−ε], then (log xd)/(log q)− 1 ∈ Jx. On the other hand, note that
Jx ⊆ [1/(1− ε), 1/ε], and that in this interval, ρ is bounded, and therefore,

(6.6) S2(x)� o(1)xd
∑

xε<q<x1−ε

1
q
� o(1)x log

1
ε

= o(x) (x→∞),

which proves the second estimate in (6.5).
To estimate S1(x), we proceed as follows. First set

B(y) :=
∑

xε≤q<y

e(αq)
q

.
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By using the theorem of I. M. Vinogradov according to which

max
2xε≤y≤x

1
π(y)

∣∣∣ ∑
xε≤q<y

e(αq)
∣∣∣ = δ(x)→ 0 as x→∞,

we find immediately that

max
2xε≤y≤x

|B(y)| = δ1(x)→ 0 as x→∞.

On the other hand, since∑
xε≤q<y

1
q
≤ log

(
log y
ε log x

)
for xε < y ≤ 2xε,

it follows that

max
xε≤y≤x

|B(y)| = δ2(x)→ 0 as x→∞.

From the definitions of S1(x) and B(y), we have

S1(x) = xd

x1−ε�

xε

ρ

(
log xd
log u

− 1
)
dB(u)(6.7)

= xd ρ

(
log xd
log u

− 1
)
B(u)

∣∣∣∣x1−ε

xε

+ xd

x1−ε�

xε

B(u)ρ′
(

log xd
log u

− 1
)

log xd
u(log u)2

du.

Since both ρ(u) and ρ′(u) are bounded in Jx, it follows from (6.7) and the
above bounds on B(u) that

(6.8)
∣∣∣∣1xS1(x)

∣∣∣∣ ≤ do(1) + do(1)
x1−ε�

xε

log xd
u(log u)2

du (x→∞).

On the other hand,
(6.9)

x1−ε�

xε

1
u(log u)2

du =
(1−ε) log x�

ε log x

dv

v2
= −1

v

∣∣∣∣(1−ε) log x

ε log x

=
(

1
ε
− 1

1− ε

)
1

log x
.

Gathering (6.6), (6.8) and (6.9) completes the proof of (6.5), as required.
Since ε > 0 is arbitrary, it follows from (6.3) that

1
x

∑
m≤x

e(αP (dm− 1))→ 0 (x→∞)

for every d, thus proving (6.2) and thereby (6.1), which completes the proof
of Theorem 4.
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[4] G. Halász, Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen, Acta
Math. Acad. Sci. Hungar. 19 (1968), 365–403.

[5] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York,
1974.
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