On polynomials with flat squares

by

ARTŪRAS DUBICKAS and GRAŽVYDAS ŠEMETULSKIS (Vilnius)

1. Introduction. Let A be an infinite set of nonnegative integers. By squaring the infinite series $f(z) := \sum_{i \in A} z^i$ with 0, 1 coefficients, we obtain

$$f(z)^2 = \sum_{n=0}^{\infty} R(A, n) z^n,$$

where R(A, n) is the number of representations of n in the form $n = a_1 + a_2$ with $a_1, a_2 \in A$. An old conjecture of Erdős and Turán [6] asserts that for any such infinite set A and any nonnegative integer n_0 the coefficients R(A, n), $n \geq n_0$, cannot all lie in the interval [1, C] with some constant $C = C(A, n_0)$. This deep USD 500 problem [5] remains open, although some progress has been made in [1], [2], [7], [10]. It was proved, for instance, that the numbers $R(A, n), n \geq 0$, cannot all lie in the interval [1, 7] (see [1]). See also [4], [9], [11] for some constructions of A such that $R(A, n) \geq 1$ for all $n \geq 0$, but R(A, n) is "small" in terms of n. Nathanson [8] describes this Erdős–Turán problem as "one of the most famous and tantalizing unsolved problems in additive number theory".

Given any polynomial $p(z) = \sum_{j=0}^{d} a_j z^j$ with nonnegative coefficients, let us denote the largest quotient between pairs of its coefficients by $q(p) = \max_{0 \le i,j \le d} a_i/a_j$. In particular, we set $q(p) = +\infty$ if the polynomial p(z)is not the zero polynomial, but has at least one coefficient equal to zero. Clearly, $q(p) \ge 1$ with equality if and only if all the coefficients of p(z) are equal. We say that the polynomial p is "flat" if this quotient q(p) is "small". Recently, the first named author [3] considered the following polynomial version of the Erdős–Turán problem. Let p(z) be a polynomial of degree d with nonnegative real coefficients. In particular, it can be a Newman polynomial, i.e. a polynomial with coefficients 0, 1. As above for the series f(z), consider

²⁰¹⁰ Mathematics Subject Classification: 12E10, 11B37.

 $Key\ words\ and\ phrases:$ polynomial with nonnegative coefficients, Erdős–Turán problem, central binomial coefficients.

the square of p(z), namely,

$$p(z)^2 = r_0 + r_1 z + \dots + r_{2d} z^{2d}.$$

Then, for each positive integer $d \geq 1$, we are interested in the smallest positive number $\kappa(d)$ for which there is a polynomial p(z) of degree d with nonnegative real coefficients such that the coefficients r_0, r_1, \ldots, r_{2d} of $p(z)^2$ all lie in the interval $[1, \kappa(d)]$. Similarly, let $\kappa_{\rm rec}(d)$ be the smallest positive number such that all coefficients of the square $p(z)^2$ of a *reciprocal* polynomial p(z) of degree d (i.e. satisfying $p(z) = z^d p(1/z)$) with nonnegative real coefficients lie in the interval $[1, \kappa_{\rm rec}(d)]$. It is easy to see that the numbers $\kappa(d)$ and $\kappa_{\rm rec}(d)$ exist for every $d \in \mathbb{N}$. Indeed, by compactness, the infimum inf $q(p^2)$, where p runs through polynomials with nonnegative coefficients of degree d, is attained and is equal to $\kappa(d)$. Also, $\inf q(p^2)$, where p runs through reciprocal polynomials with nonnegative coefficients of degree d, is attained and is equal to $\kappa_{\rm rec}(d)$.

In [3] the first named author introduced the sequence $y_0 = 1$, $y_1 = 1/2$, $y_2 = 3/8, \ldots$, where each $y_n, n \ge 1$, is defined by the recurrence formula

(1)
$$2y_{2k}y_0 + 2y_{2k-1}y_1 + \dots + 2y_{k+1}y_{k-1} + y_k^2 = 1$$

for n even, i.e. $n = 2k, k \in \mathbb{N}$, and

(2)
$$2y_{2k+1}y_0 + 2y_{2k}y_1 + \dots + 2y_{k+2}y_{k-1} + 2y_{k+1}y_k = 1$$

for n odd, i.e. $n = 2k + 1, k \ge 0$. We define the following reciprocal polynomial:

(3)
$$p_d(z) := y_0 + y_1 z + y_2 z^2 + \dots + y_2 z^{d-2} + y_1 z^{d-1} + y_0 z^d.$$

Note that, by Theorem 2 below, $p_d(z)$ has positive coefficients. The quotients $q(p_d^2)$ between the largest and the smallest coefficients of $p_d(z)^2$ for $d = 1, \ldots, 12$ have been calculated in [3]:

$$q(p_1^2) = 2, \quad q(p_2^2) = 2.25, \quad q(p_3^2) = 2.5, \quad q(p_4^2) = \frac{169}{64} = 2.640625, \quad \dots,$$
$$q(p_{11}^2) = \frac{106405}{32768} = 3.24722290 \dots, \quad q(p_{12}^2) = \frac{3458321}{1048576} = 3.2981191 \dots$$
Clearly,

 $q(p_d^2) \ge \kappa_{\rm rec}(d) \ge \kappa(d)$

for each $d \ge 1$, because the polynomial $p_d(z)$ is reciprocal, by (3), and has positive coefficients, by Theorem 2. The calculations with small d show that (4) $\kappa(d) = \kappa_{\rm rec}(d) = q(p_d^2)$

for d = 1 and d = 2. Since from (1)–(3) it is not even clear whether $q(p_d^2)$ is bounded or unbounded as $d \to \infty$ the first named author asked in [3] if (4) holds for all d or not and if $\kappa(d)$, $q(p_d^2)$ are bounded or unbounded as $d \to \infty$.

In this paper, we are able to prove the second equality in (4):

THEOREM 1. We have $\kappa_{\text{rec}}(d) = q(p_d^2)$ for each $d \ge 1$.

This shows that the polynomial (3) is optimal among all reciprocal polynomials in the sense that it has the "flattest" square. The sequence of rational numbers y_n defined in (1), (2) can be determined explicitly in terms of central binomial coefficients:

THEOREM 2. We have $y_n = 2^{-2n} \binom{2n}{n}$ for each $n \ge 0$.

The next theorem shows that $q(p_d^2)$ is unbounded and answers a corresponding question raised in [3]:

THEOREM 3. We have

$$q(p_d^2) = 2(y_0^2 + y_1^2 + \dots + y_{(d-1)/2}^2)$$

for each odd positive integer d and

$$q(p_d^2) = 2(y_0^2 + y_1^2 + \dots + y_{d/2-1}^2) + y_{d/2}^2$$

for each even positive integer d. Here, $y_n = 2^{-2n} \binom{2n}{n}$ and $q(p_d^2) \sim (2/\pi) \log d$ as $d \to \infty$.

We say that a subset A of $\{0, 1, \ldots, d\}$ is symmetric if for any *i* in the range $0 \leq i \leq [d/2]$ the integers *i* and d-i either both lie in A or both do not lie in A. Here and below, $[\cdot]$ stands for the integral part of a number. Assume that $A + A = \{0, 1, \ldots, 2d\}$. By Theorems 1 and 3, we have $\kappa_{\rm rec}(d) \sim (2/\pi) \log d$ as $d \to \infty$. Applying this result to the reciprocal Newman polynomial $p(z) = \sum_{j \in A} z^j$ of degree d whose square has positive (integer) coefficients we obtain the following corollary:

COROLLARY 4. Let A be a symmetric subset of the set $\{0, 1, \ldots, d\}$ such that $A + A = \{0, 1, \ldots, 2d\}$. Then there is an element $a \in \{0, 1, \ldots, 2d\}$ which has at least c log d representations in the form $a = a_1 + a_2, a_1, a_2 \in A$. Here, c is an absolute positive constant.

We next prove Theorem 2, then, using it, Theorem 3 and, finally, using both, we establish Theorem 1.

2. Proof of Theorem 2. Consider the function

$$g(z) := y_0 + y_1 z + y_2 z^2 + \cdots$$

From (1) and (2), we deduce that

$$g(z)^2 = 1 + z + z^2 + z^3 + \dots = \frac{1}{1 - z}$$

On the other hand, let

$$g_2(z) := (1-z)^{-1/2} = \sum_{n=0}^{\infty} (-z)^n \binom{-1/2}{n}.$$

Note that

$$(-1)^n \binom{-1/2}{n} = \frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot (2n-1)}{2^n n!} = \frac{(2n)!}{2^{2n} n!^2} = 2^{-2n} \binom{2n}{n}.$$

Setting $t_n := 2^{-2n} \binom{2n}{n}$, we obtain

 $g_2(z) = t_0 + t_1 z + t_2 z^2 + \cdots$

But $g_2(z)^2 = g(z)^2 = 1/(1-z)$, so the sequence t_n , $n = 0, 1, \ldots$, satisfies the same recurrence formulas (1), (2). Since each y_n is uniquely determined by y_0, \ldots, y_{n-1} and $y_0 = t_0 = 1$, this implies $y_n = t_n = 2^{-2n} {2n \choose n}$ for each $n \ge 0$, as claimed. This completes the proof of Theorem 2.

Similarly, for each integer $k \ge 2$, the kth power of the series

$$g_k(z) := \sum_{n=0}^{\infty} (-1)^n \binom{-1/k}{n} z^n = (1-z)^{-1/k}$$

with positive coefficients $(-1)^n \binom{-1/k}{n}$ is equal to the series $g_k(z)^k = 1/(1-z)$ = $\sum_{n=0}^{\infty} z^n$ with coefficients 1, 1, 1, This shows that the Erdős–Turán problem for the *k*th power of the series with nonnegative real (instead of 0, 1) coefficients has a trivial answer: such a power can have all coefficients equal.

3. Proof of Theorem 3. Write

 $p_d(z)^2 = (y_0 + y_1 z + \dots + y_1 z^{d-1} + y_0 z^d)^2 = s_0 + s_1 z + \dots + s_d z^d + \dots + s_0 z^{2d}.$ By (1), (2), we have $s_0 = s_1 = \dots = s_{\lfloor d/2 \rfloor} = 1$. Set

$$y_i^* := y_{\min\{i,d-i\}} = \begin{cases} y_i & \text{for } 0 \le i \le [d/2], \\ y_{d-i} & \text{for } [d/2] + 1 \le i \le d, \end{cases}$$

and $y_i^* = y_i := 0$ for $i \notin \mathbb{Z}$. Then $p_d(z) = \sum_{i=0}^d y_i^* z^i$, so

(5)
$$s_{\ell} = \sum_{i=0}^{\ell} y_i^* y_{\ell-i}^* = 2 \sum_{i=0}^{\lfloor \ell/2 \rfloor} y_i^* y_{\ell-i}^* - (y_{\ell/2}^*)^2$$

for each integer ℓ satisfying $0 \leq \ell \leq d$. Also, as $p_d(z)$ is reciprocal, $s_\ell = s_{2d-\ell}$ for $d+1 \leq \ell \leq 2d$. We claim that

$$(6) 1 < s_\ell < s_d$$

for each ℓ in the range $[d/2] + 1 \leq \ell \leq d - 1$.

Note that $y_i^* = y_i$ for $i \leq \ell/2 \leq [d/2]$. Similarly, $y_{\ell-i}^* = y_{d-\ell+i}$ for $i \leq \ell - [d/2] - 1$ and $y_{\ell-i}^* = y_{\ell-i}$ for $i \geq \ell - [d/2]$. Hence, by (5),

(7)
$$s_{\ell} = 2 \sum_{i=0}^{\lfloor \ell/2 \rfloor} y_i y_{\ell-i}^* - y_{\ell/2}^2 = 2 \sum_{i=0}^{\ell - \lfloor d/2 \rfloor - 1} y_i y_{d-\ell+i} + 2 \sum_{i=\ell - \lfloor d/2 \rfloor}^{\lfloor \ell/2 \rfloor} y_i y_{\ell-i} - y_{\ell/2}^2.$$

250

Inserting $\ell = d$ into (5) we find that

(8)
$$s_d = 2\sum_{i=0}^{\lfloor d/2 \rfloor} y_i^2 - y_{d/2}^2 = 2\sum_{i=0}^{d-\lfloor d/2 \rfloor - 1} y_i^2 + y_{d/2}^2$$

By Theorem 2,

(9)
$$\frac{y_{s-1}}{y_s} = \frac{2^{2s}(s!)^2(2s-2)!}{2^{2s-2}(s-1)!^2(2s)!} = \frac{4s^2}{2s(2s-1)} = \frac{2s}{2s-1} > 1$$

for each $s \in \mathbb{N}$. Thus $y_i > y_{d-\ell+i}$, because $i < d-\ell+i$. Similarly, $y_i \ge y_{\ell-i}$, because $i \le \ell/2$. Thus, using

$$[\ell/2] \le [(d-1)/2] = d - [d/2] - 1,$$

from (7) and (8) we obtain

$$s_d - y_{d/2}^2 = 2 \sum_{i=0}^{d-\lfloor d/2 \rfloor - 1} y_i^2 > 2 \sum_{i=0}^{\ell-\lfloor d/2 \rfloor - 1} y_i y_{d-\ell+i} + 2 \sum_{i=\ell-\lfloor d/2 \rfloor}^{\lfloor \ell/2 \rfloor} y_i y_{\ell-i} = s_\ell + y_{\ell/2}^2.$$

Hence $s_d > s_\ell + y_{d/2}^2 + y_{\ell/2}^2 \ge s_\ell$, giving the second inequality in (6).

The proof of the first inequality in (6) is simpler. Fix an integer ℓ in the range $[d/2] + 1 \leq \ell \leq d$. Observe that, by (1), (2), $\sum_{i=0}^{\ell} y_i y_{\ell-i} = 1$. By (9), we find that $y_i \leq y_i^* = y_{\min\{i,d-i\}}$ and $y_{\ell-i} \leq y_{\ell-i}^*$ for $i \leq \ell \leq d$. So $y_i y_{\ell-i} \leq y_i^* y_{\ell-i}^*$ for each $i = 0, 1, \ldots, \ell$. Moreover, at least one inequality is strict, because $\ell > [d/2]$. So (5) yields

$$1 = \sum_{i=0}^{\ell} y_i y_{\ell-i} < \sum_{i=0}^{\ell} y_i^* y_{\ell-i}^* = s_{\ell}.$$

This completes the proof of (6).

Now, from (6) it follows that all s_j , where $j = 0, 1, \ldots, 2d$, belong to the interval $[s_0, s_d]$. Here $s_0 = 1$. It is easily seen that $s_d = 2(y_0^2 + y_1^2 + \cdots + y_{(d-1)/2}^2)$ for odd positive integer d and $s_d = 2(y_0^2 + y_1^2 + \cdots + y_{d/2-1}^2) + y_{d/2}^2$ for even positive integer d. This proves the formulas for $q(p_d^2) = s_d$ as stated in the theorem.

We next find an asymptotical formula for $q(p_d^2)$. Fix $\varepsilon > 0$. By Theorem 2 and Stirling's formula,

$$y_n = \frac{(2n)!}{2^{2n}n!^2} \sim \frac{(2n/e)^{2n}\sqrt{2\pi}2n}{2^{2n}(n/e)^{2n}2\pi n} = \frac{1}{\sqrt{\pi n}}$$

as $n \to \infty$. So there is a positive integer $d_0(\varepsilon)$ such that

(10)
$$\frac{1-\varepsilon}{\pi n} < y_n^2 < \frac{1+\varepsilon}{\pi n}$$

for each $n \ge d_0(\varepsilon)$. Thus, in both cases (even and odd d), we have

(11)
$$\left| q(p_d^2) - 2\sum_{n=d_0(\varepsilon)}^{[d/2]} y_n^2 \right| \le 2d_0(\varepsilon) + 1.$$

Using $\sum_{n=d_0(\varepsilon)}^{\lfloor d/2 \rfloor} (1/n) \sim \log d$ as $d \to \infty$ and (10), we deduce that $\begin{bmatrix} d/2 \end{bmatrix}$

$$\sum_{n=d_0(\varepsilon)} y_n^2 \in \left\lfloor \frac{(1-\varepsilon)^2}{\pi} \log d, \frac{(1+\varepsilon)^2}{\pi} \log d \right\rfloor$$

for $d \ge d_1(\varepsilon)$. Thus, by (11), $\frac{2(1-\varepsilon)^3}{\pi} \log d < q(p_d)^2 < \frac{2(1+\varepsilon)^3}{\pi} \log d$ for $d \ge d_2(\varepsilon)$. It follows that $q(p_d^2) \sim \frac{2}{\pi} \log d$ as $d \to \infty$.

4. Proof of Theorem 1. Let V_n be a subset of vectors (x_0, \ldots, x_{n-1}) in \mathbb{R}^n determined by the inequalities

$$x_{0}, x_{1}, \dots, x_{n-1} \ge 0,$$

$$x_{0}^{2} \ge 1,$$

$$2x_{0}x_{1} \ge 1,$$

$$2x_{0}x_{2} + x_{1}^{2} \ge 1,$$

$$2x_{0}x_{3} + 2x_{1}x_{2} \ge 1,$$

$$\vdots$$

$$\sum_{i=0}^{n-1} x_{i}x_{n-1-i} = 2x_{0}x_{n-1} + 2x_{1}x_{n-1} + \dots \ge 1$$

The key element in the proof of the theorem is the following:

LEMMA 5. Let $\mathbf{v} \in V_n$. Then $|\mathbf{v}|^2 \ge y_0^2 + \cdots + y_{n-1}^2$, where equality holds if and only if $\mathbf{v} = (y_0, \ldots, y_{n-1})$.

Proof. Suppose that $\mathbf{v} = (x_0, \ldots, x_{n-1}) \in V_n$. By Theorem 2, $y_n > 0$ for each $n \ge 0$. So, for every pair i, j satisfying $0 \le i < j \le n-1$, we have

$$\frac{x_i^2 y_j}{y_i} + \frac{x_j^2 y_i}{y_j} \ge 2x_i x_j,$$

where equality holds if and only if $x_j y_i = x_i y_j$. Fix an integer ℓ in [0, n-1]. Replacing each double product $2x_i x_{\ell-i}$ in this way and leaving $x_{\ell/2}^2$ as it is (if ℓ is even), we obtain

$$1 \leq \sum_{i=1}^{\ell} x_i x_{\ell-i} = 2x_0 x_\ell + 2x_1 x_{\ell-1} + \cdots$$
$$\leq \frac{x_0^2 y_\ell}{y_0} + \frac{x_\ell^2 y_0}{y_\ell} + \frac{x_1^2 y_{\ell-1}}{y_1} + \frac{x_{\ell-1}^2 y_1}{y_{\ell-1}} + \cdots = \sum_{i=0}^{\ell} \frac{x_i^2 y_{\ell-i}}{y_i}.$$

Here, the second inequality becomes equality if and only if $(x_0, \ldots, x_\ell) = \lambda_\ell(y_0, \ldots, y_\ell)$ with a scalar multiple $\lambda_\ell > 0$. For such a vector (x_0, \ldots, x_ℓ) ,

252

the first inequality,

$$1 \le \sum_{i=1}^{\ell} x_i x_{\ell-i} = \lambda_{\ell}^2 \sum_{i=1}^{\ell} y_i y_{\ell-i} = \lambda_{\ell}^2$$

(see (1), (2)), is equality if and only if $\lambda_{\ell} = 1$. Hence $1 = \sum_{i=0}^{\ell} x_i^2 y_{\ell-i}/y_i$ for $\ell = 0, 1, ..., n-1$ if and only if $\mathbf{v} = (x_0, ..., x_{n-1}) = (y_0, ..., y_{n-1}) \in V_n$.

Let μ_0, \ldots, μ_{n-1} be some positive constants to be chosen later. Multiplying the ℓ th inequality, $1 \leq \sum_{i=1}^{\ell} x_i x_{\ell-i}$, by μ_{ℓ} and adding them for $\ell = 0, 1, \ldots, n-1$, we find that

(12)
$$\sum_{\ell=0}^{n-1} \mu_{\ell} \leq \sum_{\ell=0}^{n-1} \mu_{\ell} \sum_{i=0}^{\ell} x_{i} x_{\ell-i} \leq \sum_{\ell=0}^{n-1} \mu_{\ell} \sum_{i=0}^{\ell} \frac{x_{i}^{2} y_{\ell-i}}{y_{i}} = \sum_{i=0}^{n-1} \frac{x_{i}^{2}}{y_{i}} \sum_{\ell=i}^{n-1} \mu_{\ell} y_{\ell-i}.$$

We next show that positive numbers μ_0, \ldots, μ_{n-1} can be chosen so that all coefficients $a_i := y_i^{-1} \sum_{\ell=i}^{n-1} \mu_\ell y_{\ell-i}$ for x_i^2 in the inequality (12), i.e. $\sum_{\ell=0}^{n-1} \mu_\ell \leq \sum_{i=0}^{n-1} a_i x_i^2$, are equal: $a_{n-1} = \cdots = a_0$, namely,

$$\frac{\mu_{n-1}y_0}{y_{n-1}} = \frac{\mu_{n-1}y_1}{y_{n-2}} + \frac{\mu_{n-2}y_0}{y_{n-2}} = \frac{\mu_{n-1}y_2}{y_{n-3}} + \frac{\mu_{n-2}y_1}{y_{n-3}} + \frac{\mu_{n-3}y_0}{y_{n-3}} = \cdots$$
$$= \frac{\mu_{n-1}y_{n-1}}{y_0} + \cdots + \frac{\mu_1y_1}{y_0} + \mu_0.$$

Indeed, set $\mu_{n-1} := 1$ and then, step by step left to right, determine $\mu_{n-2}, \mu_{n-3}, \ldots, \mu_0$. We claim that μ_{n-1}, \ldots, μ_0 are all positive. For a contradiction assume that $\mu_{n-1} = 1 > 0, \ldots, \mu_{n-i+1} > 0$, but $\mu_{n-i} \leq 0$ for some *i* satisfying $2 \leq i \leq n$. Since

$$\frac{\mu_{n-i}y_0}{y_{n-i}} = \sum_{j=1}^{i-1} \mu_{n-j} \left(\frac{y_{i-j-1}}{y_{n-i+1}} - \frac{y_{i-j}}{y_{n-i}} \right)$$

and $\mu_{n-1}, \ldots, \mu_{n-i+1} > 0$, this can happen only if some difference

$$\frac{y_{i-j-1}}{y_{n-i+1}} - \frac{y_{i-j}}{y_{n-i}}$$

is at most 0. Hence $y_{i-j-1}y_{n-i} \leq y_{n-i+1}y_{i-j}$ for some i, j satisfying $1 \leq j \leq i-1 \leq n-1$. However, by (9), $y_{i-j-1} > y_{i-j}$ and $y_{n-i} > y_{n-i+1}$, giving $y_{i-j-1}y_{n-i} > y_{n-i+1}y_{i-j}$, a contradiction.

Now, since all μ_i are positive and all a_i , i = 0, 1, ..., n-1, are equal, we must have

(13)
$$\sum_{\ell=0}^{n-1} \mu_{\ell} \leq \sum_{i=0}^{n-1} a_i x_i^2 = a_{n-1} \sum_{i=0}^{n-1} x_i^2 = \frac{\mu_{n-1} y_0}{y_{n-1}} \sum_{i=0}^{n-1} x_i^2.$$

As we already observed, for $(x_0, \ldots, x_{n-1}) = (y_0, \ldots, y_{n-1})$ (and only for this vector), we have equality in (12) and so in (13). Thus

$$\sum_{\ell=0}^{n-1} \mu_{\ell} = \frac{\mu_{n-1} y_0}{y_{n-1}} \sum_{i=0}^{n-1} y_i^2.$$

Hence, by (13), we find that

$$|\mathbf{v}|^2 = \sum_{i=0}^{n-1} x_i^2 \ge \frac{y_{n-1}}{\mu_{n-1}y_0} \sum_{\ell=0}^{n-1} \mu_\ell = \sum_{i=0}^{n-1} y_i^2$$

This proves the lemma.

For the proof of Theorem 1, fix $d \in \mathbb{N}$ and assume that $p(z) = x_0 + x_1 z + \cdots + x_1 z^{d-1} + x_0 z^d$ is a reciprocal polynomial of degree d with nonnegative coefficients such that the coefficients of its square $p(z)^2 = r_0 + r_1 z + \cdots + r_1 z^{2d-1} + r_0 z^{2d}$ are all greater than or equal to 1. Then

$$r_0 = x_0^2 \ge 1, \quad r_1 = 2x_0 x_1 \ge 1, \quad \dots, \quad r_{[d/2]} = \sum_{i=0}^{[d/2]} x_i x_{[d/2]-i} \ge 1,$$

and so $(x_0, \ldots, x_{\lfloor d/2 \rfloor}) \in V_{\lfloor d/2 \rfloor+1}$. The coefficient r_d for z^d in $p(z)^2$ is equal to

$$2(x_0^2 + \dots + x_{(d-1)/2}^2)$$

for d odd and to

$$2(x_0^2 + \dots + x_{d/2-1}^2) + x_{d/2}^2$$

for d even.

For d odd, by Lemma 5, we have $r_d = 2(x_0^2 + \cdots + x_{(d-1)/2}^2) \ge 2(y_0^2 + \cdots + y_{(d-1)/2}^2)$. Moreover, if $x_i \neq y_i$ for at least one $i \in \{0, \ldots, (d-1)/2\}$, then this inequality is strict. This implies that the polynomial $p(z)^2$ has at least one coefficient greater than $2(y_0^2 + \cdots + y_{(d-1)/2}^2)$, unless $x_0 = y_0, \ldots, x_{(d-1)/2} = y_{(d-1)/2}$. So $q(p^2) \ge q(p_d^2) = 2(y_0^2 + \cdots + y_{(d-1)/2}^2)$ for every reciprocal polynomial p with nonnegative coefficients. On the other hand, the example $p(z) = p_d(z)$ shows that all coefficients of $p_d(z)^2$ lie in the interval $[1, 2(y_0^2 + \cdots + y_{(d-1)/2}^2)]$ (see Theorem 2 and, more precisely, inequality (6)).

For d even, applying Lemma 5 to n = d/2 and to n = d/2 + 1, we find that

$$r_d = 2(x_0^2 + \dots + x_{d/2-1}^2) + x_{d/2}^2 = \sum_{i=0}^{d/2-1} x_i^2 + \sum_{i=0}^{d/2} x_i^2$$
$$\geq \sum_{i=0}^{d/2-1} y_i^2 + \sum_{i=0}^{d/2} y_i^2 = 2(y_0^2 + \dots + y_{d/2-1}^2) + y_{d/2}^2.$$

Consequently, $q(p^2) \ge q(p_d^2) = 2(y_0^2 + \dots + y_{d/2-1}^2) + y_{d/2}^2$ for every reciprocal polynomial p with nonnegative coefficients. The proof of Theorem 1 can now be concluded as above with the same example $p(z) = p_d(z)$.

Acknowledgements. The second named author acknowledges Summer Undergraduate Research Fellowship Award from the Lithuanian Science Council.

References

- P. Borwein, S. Choi and F. Chu, An old conjecture of Erdős-Turán on additive bases, Math. Comp. 75 (2006), 475–484.
- [2] G. A. Dirac, Note on a problem in additive number theory, J. London Math. Soc. 26 (1951), 312–313.
- [3] A. Dubickas, Additive bases of positive integers and related problems, Unif. Distrib. Theory 3 (2008), no. 2, 81–90.
- [4] P. Erdős, On a problem of Sidon in additive number theory, Acta Sci. Math. (Szeged) 15 (1954), 255–259.
- [5] —, Some old and new problems on additive and combinatorial number theory, in: Combinatorial Mathematics (New York, 1985), New York Acad. Sci., New York, 1989, 181–186.
- [6] P. Erdős and P. Turán, On a problem of Sidon in additive number theory, and on some related problems, J. London Math. Soc. 16 (1941), 212–215.
- G. Grekos, L. Haddad, C. Helou and J. Pihko, On the Erdős-Turán conjecture, J. Number Theory 102 (2003), 339–352.
- [8] M. B. Nathanson, Problems in additive number theory, III, in: A. Geroldinger and I. Z. Ruzsa, Combinatorial Number Theory and Additive Group Theory, Adv. Courses Math. CRM Barcelona, Birkhäuser, Basel, 2009, 279–297.
- [9] I. Z. Ruzsa, A just basis, Monatsh. Math. 109 (1990), 145–151.
- [10] C. Sándor, A note on a conjecture of Erdős-Turán, Integers 8 (2008), #A30, 4 pp.
- [11] M. Tang, A note on a result of Ruzsa, Bull. Austral. Math. Soc. 77 (2008), 91–98.

Artūras Dubickas Department of Mathematics and Informatics Vilnius University Naugarduko 24 Vilnius LT-03225, Lithuania and Vilnius University Institute of Mathematics and Informatics Akademijos 4 Vilnius LT-08663, Lithuania E-mail: arturas.dubickas@mif.vu.lt Gražvydas Šemetulskis Department of Mathematics and Informatics Vilnius University Naugarduko 24 Vilnius LT-03225, Lithuania E-mail: grazwydas@gmail.com

Received on 11.1.2010 and in revised form on 16.4.2010

(6259)