On polynomials with flat squares

by

Artūras Dubickas and Gražvydas Šemetulskis (Vilnius)

1. Introduction. Let A be an infinite set of nonnegative integers. By squaring the infinite series $f(z):=\sum_{i \in A} z^{i}$ with 0,1 coefficients, we obtain

$$
f(z)^{2}=\sum_{n=0}^{\infty} R(A, n) z^{n},
$$

where $R(A, n)$ is the number of representations of n in the form $n=a_{1}+a_{2}$ with $a_{1}, a_{2} \in A$. An old conjecture of Erdős and Turán [6] asserts that for any such infinite set A and any nonnegative integer n_{0} the coefficients $R(A, n)$, $n \geq n_{0}$, cannot all lie in the interval $[1, C]$ with some constant $C=C\left(A, n_{0}\right)$. This deep USD 500 problem [5] remains open, although some progress has been made in [1], [2], 7], [10]. It was proved, for instance, that the numbers $R(A, n), n \geq 0$, cannot all lie in the interval $[1,7]$ (see [1]). See also [4], 9], [11] for some constructions of A such that $R(A, n) \geq 1$ for all $n \geq 0$, but $R(A, n)$ is "small" in terms of n. Nathanson [8] describes this Erdo"s-Turán problem as "one of the most famous and tantalizing unsolved problems in additive number theory".

Given any polynomial $p(z)=\sum_{j=0}^{d} a_{j} z^{j}$ with nonnegative coefficients, let us denote the largest quotient between pairs of its coefficients by $q(p)=$ $\max _{0 \leq i, j \leq d} a_{i} / a_{j}$. In particular, we set $q(p)=+\infty$ if the polynomial $p(z)$ is not the zero polynomial, but has at least one coefficient equal to zero. Clearly, $q(p) \geq 1$ with equality if and only if all the coefficients of $p(z)$ are equal. We say that the polynomial p is "flat" if this quotient $q(p)$ is "small". Recently, the first named author [3] considered the following polynomial version of the Erdős-Turán problem. Let $p(z)$ be a polynomial of degree d with nonnegative real coefficients. In particular, it can be a Newman polynomial, i.e. a polynomial with coefficients 0,1 . As above for the series $f(z)$, consider

[^0]the square of $p(z)$, namely,
$$
p(z)^{2}=r_{0}+r_{1} z+\cdots+r_{2 d} z^{2 d}
$$

Then, for each positive integer $d \geq 1$, we are interested in the smallest positive number $\kappa(d)$ for which there is a polynomial $p(z)$ of degree d with nonnegative real coefficients such that the coefficients $r_{0}, r_{1}, \ldots, r_{2 d}$ of $p(z)^{2}$ all lie in the interval $[1, \kappa(d)]$. Similarly, let $\kappa_{\text {rec }}(d)$ be the smallest positive number such that all coefficients of the square $p(z)^{2}$ of a reciprocal polynomial $p(z)$ of degree d (i.e. satisfying $p(z)=z^{d} p(1 / z)$) with nonnegative real coefficients lie in the interval $\left[1, \kappa_{\text {rec }}(d)\right]$. It is easy to see that the numbers $\kappa(d)$ and $\kappa_{\text {rec }}(d)$ exist for every $d \in \mathbb{N}$. Indeed, by compactness, the infimum inf $q\left(p^{2}\right)$, where p runs through polynomials with nonnegative coefficients of degree d, is attained and is equal to $\kappa(d)$. Also, $\inf q\left(p^{2}\right)$, where p runs through reciprocal polynomials with nonnegative coefficients of degree d, is attained and is equal to $\kappa_{\text {rec }}(d)$.

In [3] the first named author introduced the sequence $y_{0}=1, y_{1}=1 / 2$, $y_{2}=3 / 8, \ldots$, where each $y_{n}, n \geq 1$, is defined by the recurrence formula

$$
\begin{equation*}
2 y_{2 k} y_{0}+2 y_{2 k-1} y_{1}+\cdots+2 y_{k+1} y_{k-1}+y_{k}^{2}=1 \tag{1}
\end{equation*}
$$

for n even, i.e. $n=2 k, k \in \mathbb{N}$, and

$$
\begin{equation*}
2 y_{2 k+1} y_{0}+2 y_{2 k} y_{1}+\cdots+2 y_{k+2} y_{k-1}+2 y_{k+1} y_{k}=1 \tag{2}
\end{equation*}
$$

for n odd, i.e. $n=2 k+1, k \geq 0$. We define the following reciprocal polynomial:

$$
\begin{equation*}
p_{d}(z):=y_{0}+y_{1} z+y_{2} z^{2}+\cdots+y_{2} z^{d-2}+y_{1} z^{d-1}+y_{0} z^{d} \tag{3}
\end{equation*}
$$

Note that, by Theorem 2 below, $p_{d}(z)$ has positive coefficients. The quotients $q\left(p_{d}^{2}\right)$ between the largest and the smallest coefficients of $p_{d}(z)^{2}$ for $d=$ $1, \ldots, 12$ have been calculated in [3]:

$$
\begin{aligned}
q\left(p_{1}^{2}\right) & =2, \quad q\left(p_{2}^{2}\right)=2.25, \quad q\left(p_{3}^{2}\right)=2.5, \quad q\left(p_{4}^{2}\right)=\frac{169}{64}=2.640625, \ldots \\
q\left(p_{11}^{2}\right) & =\frac{106405}{32768}=3.24722290 \ldots, \quad q\left(p_{12}^{2}\right)=\frac{3458321}{1048576}=3.2981191 \ldots
\end{aligned}
$$

Clearly,

$$
q\left(p_{d}^{2}\right) \geq \kappa_{\mathrm{rec}}(d) \geq \kappa(d)
$$

for each $d \geq 1$, because the polynomial $p_{d}(z)$ is reciprocal, by (3), and has positive coefficients, by Theorem 2, The calculations with small d show that

$$
\begin{equation*}
\kappa(d)=\kappa_{\mathrm{rec}}(d)=q\left(p_{d}^{2}\right) \tag{4}
\end{equation*}
$$

for $d=1$ and $d=2$. Since from (1)-(3) it is not even clear whether $q\left(p_{d}^{2}\right)$ is bounded or unbounded as $d \rightarrow \infty$ the first named author asked in [3] if (4) holds for all d or not and if $\kappa(d), q\left(p_{d}^{2}\right)$ are bounded or unbounded as $d \rightarrow \infty$.

In this paper, we are able to prove the second equality in (4):

Theorem 1. We have $\kappa_{\mathrm{rec}}(d)=q\left(p_{d}^{2}\right)$ for each $d \geq 1$.
This shows that the polynomial (3) is optimal among all reciprocal polynomials in the sense that it has the "flattest" square. The sequence of rational numbers y_{n} defined in (1), (2) can be determined explicitly in terms of central binomial coefficients:

Theorem 2. We have $y_{n}=2^{-2 n}\binom{2 n}{n}$ for each $n \geq 0$.
The next theorem shows that $q\left(p_{d}^{2}\right)$ is unbounded and answers a corresponding question raised in [3]:

Theorem 3. We have

$$
q\left(p_{d}^{2}\right)=2\left(y_{0}^{2}+y_{1}^{2}+\cdots+y_{(d-1) / 2}^{2}\right)
$$

for each odd positive integer d and

$$
q\left(p_{d}^{2}\right)=2\left(y_{0}^{2}+y_{1}^{2}+\cdots+y_{d / 2-1}^{2}\right)+y_{d / 2}^{2}
$$

for each even positive integer d. Here, $y_{n}=2^{-2 n}\binom{2 n}{n}$ and $q\left(p_{d}^{2}\right) \sim(2 / \pi) \log d$ as $d \rightarrow \infty$.

We say that a subset A of $\{0,1, \ldots, d\}$ is symmetric if for any i in the range $0 \leq i \leq[d / 2]$ the integers i and $d-i$ either both lie in A or both do not lie in A. Here and below, [•] stands for the integral part of a number. Assume that $A+A=\{0,1, \ldots, 2 d\}$. By Theorems 1 and 3 , we have $\kappa_{\text {rec }}(d) \sim(2 / \pi) \log d$ as $d \rightarrow \infty$. Applying this result to the reciprocal Newman polynomial $p(z)=\sum_{j \in A} z^{j}$ of degree d whose square has positive (integer) coefficients we obtain the following corollary:

Corollary 4. Let A be a symmetric subset of the set $\{0,1, \ldots, d\}$ such that $A+A=\{0,1, \ldots, 2 d\}$. Then there is an element $a \in\{0,1, \ldots, 2 d\}$ which has at least $c \log d$ representations in the form $a=a_{1}+a_{2}, a_{1}, a_{2} \in A$. Here, c is an absolute positive constant.

We next prove Theorem 2, then, using it, Theorem 3 and, finally, using both, we establish Theorem 1 .

2. Proof of Theorem 2, Consider the function

$$
g(z):=y_{0}+y_{1} z+y_{2} z^{2}+\cdots
$$

From (1) and (2), we deduce that

$$
g(z)^{2}=1+z+z^{2}+z^{3}+\cdots=\frac{1}{1-z} .
$$

On the other hand, let

$$
g_{2}(z):=(1-z)^{-1 / 2}=\sum_{n=0}^{\infty}(-z)^{n}\binom{-1 / 2}{n}
$$

Note that

$$
(-1)^{n}\binom{-1 / 2}{n}=\frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n-1)}{2^{n} n!}=\frac{(2 n)!}{2^{2 n} n!^{2}}=2^{-2 n}\binom{2 n}{n}
$$

Setting $t_{n}:=2^{-2 n}\binom{2 n}{n}$, we obtain

$$
g_{2}(z)=t_{0}+t_{1} z+t_{2} z^{2}+\cdots
$$

But $g_{2}(z)^{2}=g(z)^{2}=1 /(1-z)$, so the sequence $t_{n}, n=0,1, \ldots$, satisfies the same recurrence formulas (1), (2). Since each y_{n} is uniquely determined by y_{0}, \ldots, y_{n-1} and $y_{0}=t_{0}=1$, this implies $y_{n}=t_{n}=2^{-2 n}\binom{2 n}{n}$ for each $n \geq 0$, as claimed. This completes the proof of Theorem 2 .

Similarly, for each integer $k \geq 2$, the k th power of the series

$$
g_{k}(z):=\sum_{n=0}^{\infty}(-1)^{n}\binom{-1 / k}{n} z^{n}=(1-z)^{-1 / k}
$$

with positive coefficients $(-1)^{n}\binom{-1 / k}{n}$ is equal to the series $g_{k}(z)^{k}=1 /(1-z)$ $=\sum_{n=0}^{\infty} z^{n}$ with coefficients $1,1,1, \ldots$ This shows that the Erdős-Turán problem for the k th power of the series with nonnegative real (instead of $0,1)$ coefficients has a trivial answer: such a power can have all coefficients equal.

3. Proof of Theorem 3, Write

$p_{d}(z)^{2}=\left(y_{0}+y_{1} z+\cdots+y_{1} z^{d-1}+y_{0} z^{d}\right)^{2}=s_{0}+s_{1} z+\cdots+s_{d} z^{d}+\cdots+s_{0} z^{2 d}$. By (1), (2), we have $s_{0}=s_{1}=\cdots=s_{[d / 2]}=1$. Set

$$
y_{i}^{*}:=y_{\min \{i, d-i\}}= \begin{cases}y_{i} & \text { for } 0 \leq i \leq[d / 2] \\ y_{d-i} & \text { for }[d / 2]+1 \leq i \leq d\end{cases}
$$

and $y_{i}^{*}=y_{i}:=0$ for $i \notin \mathbb{Z}$. Then $p_{d}(z)=\sum_{i=0}^{d} y_{i}^{*} z^{i}$, so

$$
\begin{equation*}
s_{\ell}=\sum_{i=0}^{\ell} y_{i}^{*} y_{\ell-i}^{*}=2 \sum_{i=0}^{[\ell / 2]} y_{i}^{*} y_{\ell-i}^{*}-\left(y_{\ell / 2}^{*}\right)^{2} \tag{5}
\end{equation*}
$$

for each integer ℓ satisfying $0 \leq \ell \leq d$. Also, as $p_{d}(z)$ is reciprocal, $s_{\ell}=s_{2 d-\ell}$ for $d+1 \leq \ell \leq 2 d$. We claim that

$$
\begin{equation*}
1<s_{\ell}<s_{d} \tag{6}
\end{equation*}
$$

for each ℓ in the range $[d / 2]+1 \leq \ell \leq d-1$.
Note that $y_{i}^{*}=y_{i}$ for $i \leq \ell / 2 \leq[d / 2]$. Similarly, $y_{\ell-i}^{*}=y_{d-\ell+i}$ for $i \leq \ell-[d / 2]-1$ and $y_{\ell-i}^{*}=y_{\ell-i}$ for $i \geq \ell-[d / 2]$. Hence, by (5),

$$
\begin{equation*}
s_{\ell}=2 \sum_{i=0}^{[\ell / 2]} y_{i} y_{\ell-i}^{*}-y_{\ell / 2}^{2}=2 \sum_{i=0}^{\ell-[d / 2]-1} y_{i} y_{d-\ell+i}+2 \sum_{i=\ell-[d / 2]}^{[\ell / 2]} y_{i} y_{\ell-i}-y_{\ell / 2}^{2} \tag{7}
\end{equation*}
$$

Inserting $\ell=d$ into (5) we find that

$$
\begin{equation*}
s_{d}=2 \sum_{i=0}^{[d / 2]} y_{i}^{2}-y_{d / 2}^{2}=2 \sum_{i=0}^{d-[d / 2]-1} y_{i}^{2}+y_{d / 2}^{2} \tag{8}
\end{equation*}
$$

By Theorem 2,

$$
\begin{equation*}
\frac{y_{s-1}}{y_{s}}=\frac{2^{2 s}(s!)^{2}(2 s-2)!}{2^{2 s-2}(s-1)!^{2}(2 s)!}=\frac{4 s^{2}}{2 s(2 s-1)}=\frac{2 s}{2 s-1}>1 \tag{9}
\end{equation*}
$$

for each $s \in \mathbb{N}$. Thus $y_{i}>y_{d-\ell+i}$, because $i<d-\ell+i$. Similarly, $y_{i} \geq y_{\ell-i}$, because $i \leq \ell / 2$. Thus, using

$$
[\ell / 2] \leq[(d-1) / 2]=d-[d / 2]-1
$$

from (7) and (8) we obtain
$s_{d}-y_{d / 2}^{2}=2 \sum_{i=0}^{d-[d / 2]-1} y_{i}^{2}>2 \sum_{i=0}^{\ell-[d / 2]-1} y_{i} y_{d-\ell+i}+2 \sum_{i=\ell-[d / 2]}^{[\ell / 2]} y_{i} y_{\ell-i}=s_{\ell}+y_{\ell / 2}^{2}$.
Hence $s_{d}>s_{\ell}+y_{d / 2}^{2}+y_{\ell / 2}^{2} \geq s_{\ell}$, giving the second inequality in (6).
The proof of the first inequality in (6) is simpler. Fix an integer ℓ in the range $[d / 2]+1 \leq \ell \leq d$. Observe that, by (1), (22), $\sum_{i=0}^{\ell} y_{i} y_{\ell-i}=1$. By (9), we find that $y_{i} \leq y_{i}^{*}=y_{\min \{i, d-i\}}$ and $y_{\ell-i} \leq y_{\ell-i}^{*}$ for $i \leq \ell \leq d$. So $y_{i} y_{\ell-i} \leq y_{i}^{*} y_{\ell-i}^{*}$ for each $i=0,1, \ldots, \ell$. Moreover, at least one inequality is strict, because $\ell>[d / 2]$. So (5) yields

$$
1=\sum_{i=0}^{\ell} y_{i} y_{\ell-i}<\sum_{i=0}^{\ell} y_{i}^{*} y_{\ell-i}^{*}=s_{\ell}
$$

This completes the proof of (6).
Now, from (6) it follows that all s_{j}, where $j=0,1, \ldots, 2 d$, belong to the interval $\left[s_{0}, s_{d}\right]$. Here $s_{0}=1$. It is easily seen that $s_{d}=2\left(y_{0}^{2}+y_{1}^{2}+\cdots+\right.$ $\left.y_{(d-1) / 2}^{2}\right)$ for odd positive integer d and $s_{d}=2\left(y_{0}^{2}+y_{1}^{2}+\cdots+y_{d / 2-1}^{2}\right)+y_{d / 2}^{2}$ for even positive integer d. This proves the formulas for $q\left(p_{d}^{2}\right)=s_{d}$ as stated in the theorem.

We next find an asymptotical formula for $q\left(p_{d}^{2}\right)$. Fix $\varepsilon>0$. By Theorem 2 and Stirling's formula,

$$
y_{n}=\frac{(2 n)!}{2^{2 n} n!^{2}} \sim \frac{(2 n / e)^{2 n} \sqrt{2 \pi 2 n}}{2^{2 n}(n / e)^{2 n} 2 \pi n}=\frac{1}{\sqrt{\pi n}}
$$

as $n \rightarrow \infty$. So there is a positive integer $d_{0}(\varepsilon)$ such that

$$
\begin{equation*}
\frac{1-\varepsilon}{\pi n}<y_{n}^{2}<\frac{1+\varepsilon}{\pi n} \tag{10}
\end{equation*}
$$

for each $n \geq d_{0}(\varepsilon)$. Thus, in both cases (even and odd d), we have

$$
\begin{equation*}
\left|q\left(p_{d}^{2}\right)-2 \sum_{n=d_{0}(\varepsilon)}^{[d / 2]} y_{n}^{2}\right| \leq 2 d_{0}(\varepsilon)+1 \tag{11}
\end{equation*}
$$

Using $\sum_{n=d_{0}(\varepsilon)}^{[d / 2]}(1 / n) \sim \log d$ as $d \rightarrow \infty$ and 10 , we deduce that

$$
\sum_{n=d_{0}(\varepsilon)}^{[d / 2]} y_{n}^{2} \in\left[\frac{(1-\varepsilon)^{2}}{\pi} \log d, \frac{(1+\varepsilon)^{2}}{\pi} \log d\right]
$$

for $d \geq d_{1}(\varepsilon)$. Thus, by (11),

$$
\frac{2(1-\varepsilon)^{3}}{\pi} \log d<q\left(p_{d}\right)^{2}<\frac{2(1+\varepsilon)^{3}}{\pi} \log d
$$

for $d \geq d_{2}(\varepsilon)$. It follows that $q\left(p_{d}^{2}\right) \sim \frac{2}{\pi} \log d$ as $d \rightarrow \infty$.
4. Proof of Theorem 1. Let V_{n} be a subset of vectors $\left(x_{0}, \ldots, x_{n-1}\right)$ in \mathbb{R}^{n} determined by the inequalities

$$
\begin{gathered}
x_{0}, x_{1}, \ldots, x_{n-1} \geq 0 \\
x_{0}^{2} \geq 1 \\
2 x_{0} x_{1} \geq 1 \\
2 x_{0} x_{2}+x_{1}^{2} \geq 1 \\
2 x_{0} x_{3}+2 x_{1} x_{2} \geq 1
\end{gathered}
$$

$$
\sum_{i=0}^{n-1} x_{i} x_{n-1-i}=2 x_{0} x_{n-1}+2 x_{1} x_{n-1}+\cdots \geq 1
$$

The key element in the proof of the theorem is the following:
Lemma 5. Let $\mathbf{v} \in V_{n}$. Then $|\mathbf{v}|^{2} \geq y_{0}^{2}+\cdots+y_{n-1}^{2}$, where equality holds if and only if $\mathbf{v}=\left(y_{0}, \ldots, y_{n-1}\right)$.

Proof. Suppose that $\mathbf{v}=\left(x_{0}, \ldots, x_{n-1}\right) \in V_{n}$. By Theorem 2, $y_{n}>0$ for each $n \geq 0$. So, for every pair i, j satisfying $0 \leq i<j \leq n-1$, we have

$$
\frac{x_{i}^{2} y_{j}}{y_{i}}+\frac{x_{j}^{2} y_{i}}{y_{j}} \geq 2 x_{i} x_{j}
$$

where equality holds if and only if $x_{j} y_{i}=x_{i} y_{j}$. Fix an integer ℓ in $[0, n-1]$. Replacing each double product $2 x_{i} x_{\ell-i}$ in this way and leaving $x_{\ell / 2}^{2}$ as it is (if ℓ is even), we obtain

$$
\begin{aligned}
1 & \leq \sum_{i=1}^{\ell} x_{i} x_{\ell-i}=2 x_{0} x_{\ell}+2 x_{1} x_{\ell-1}+\cdots \\
& \leq \frac{x_{0}^{2} y_{\ell}}{y_{0}}+\frac{x_{\ell}^{2} y_{0}}{y_{\ell}}+\frac{x_{1}^{2} y_{\ell-1}}{y_{1}}+\frac{x_{\ell-1}^{2} y_{1}}{y_{\ell-1}}+\cdots=\sum_{i=0}^{\ell} \frac{x_{i}^{2} y_{\ell-i}}{y_{i}}
\end{aligned}
$$

Here, the second inequality becomes equality if and only if $\left(x_{0}, \ldots, x_{\ell}\right)=$ $\lambda_{\ell}\left(y_{0}, \ldots, y_{\ell}\right)$ with a scalar multiple $\lambda_{\ell}>0$. For such a vector $\left(x_{0}, \ldots, x_{\ell}\right)$,
the first inequality,

$$
1 \leq \sum_{i=1}^{\ell} x_{i} x_{\ell-i}=\lambda_{\ell}^{2} \sum_{i=1}^{\ell} y_{i} y_{\ell-i}=\lambda_{\ell}^{2}
$$

(see (1), (2)), is equality if and only if $\lambda_{\ell}=1$. Hence $1=\sum_{i=0}^{\ell} x_{i}^{2} y_{\ell-i} / y_{i}$ for $\ell=0,1, \ldots, n-1$ if and only if $\mathbf{v}=\left(x_{0}, \ldots, x_{n-1}\right)=\left(y_{0}, \ldots, y_{n-1}\right) \in V_{n}$.

Let $\mu_{0}, \ldots, \mu_{n-1}$ be some positive constants to be chosen later. Multiplying the ℓ th inequality, $1 \leq \sum_{i=1}^{\ell} x_{i} x_{\ell-i}$, by μ_{ℓ} and adding them for $\ell=0,1, \ldots, n-1$, we find that

$$
\begin{equation*}
\sum_{\ell=0}^{n-1} \mu_{\ell} \leq \sum_{\ell=0}^{n-1} \mu_{\ell} \sum_{i=0}^{\ell} x_{i} x_{\ell-i} \leq \sum_{\ell=0}^{n-1} \mu_{\ell} \sum_{i=0}^{\ell} \frac{x_{i}^{2} y_{\ell-i}}{y_{i}}=\sum_{i=0}^{n-1} \frac{x_{i}^{2}}{y_{i}} \sum_{\ell=i}^{n-1} \mu_{\ell} y_{\ell-i} \tag{12}
\end{equation*}
$$

We next show that positive numbers $\mu_{0}, \ldots, \mu_{n-1}$ can be chosen so that all coefficients $a_{i}:=y_{i}^{-1} \sum_{\ell=i}^{n-1} \mu_{\ell} y_{\ell-i}$ for x_{i}^{2} in the inequality 12, i.e. $\sum_{\ell=0}^{n-1} \mu_{\ell} \leq \sum_{i=0}^{n-1} a_{i} x_{i}^{2}$, are equal: $a_{n-1}=\cdots=a_{0}$, namely,

$$
\begin{aligned}
\frac{\mu_{n-1} y_{0}}{y_{n-1}} & =\frac{\mu_{n-1} y_{1}}{y_{n-2}}+\frac{\mu_{n-2} y_{0}}{y_{n-2}}=\frac{\mu_{n-1} y_{2}}{y_{n-3}}+\frac{\mu_{n-2} y_{1}}{y_{n-3}}+\frac{\mu_{n-3} y_{0}}{y_{n-3}}=\cdots \\
& =\frac{\mu_{n-1} y_{n-1}}{y_{0}}+\cdots+\frac{\mu_{1} y_{1}}{y_{0}}+\mu_{0}
\end{aligned}
$$

Indeed, set $\mu_{n-1}:=1$ and then, step by step left to right, determine $\mu_{n-2}, \mu_{n-3}, \ldots, \mu_{0}$. We claim that $\mu_{n-1}, \ldots, \mu_{0}$ are all positive. For a contradiction assume that $\mu_{n-1}=1>0, \ldots, \mu_{n-i+1}>0$, but $\mu_{n-i} \leq 0$ for some i satisfying $2 \leq i \leq n$. Since

$$
\frac{\mu_{n-i} y_{0}}{y_{n-i}}=\sum_{j=1}^{i-1} \mu_{n-j}\left(\frac{y_{i-j-1}}{y_{n-i+1}}-\frac{y_{i-j}}{y_{n-i}}\right)
$$

and $\mu_{n-1}, \ldots, \mu_{n-i+1}>0$, this can happen only if some difference

$$
\frac{y_{i-j-1}}{y_{n-i+1}}-\frac{y_{i-j}}{y_{n-i}}
$$

is at most 0 . Hence $y_{i-j-1} y_{n-i} \leq y_{n-i+1} y_{i-j}$ for some i, j satisfying $1 \leq j \leq$ $i-1 \leq n-1$. However, by (9), $y_{i-j-1}>y_{i-j}$ and $y_{n-i}>y_{n-i+1}$, giving $y_{i-j-1} y_{n-i}>y_{n-i+1} y_{i-j}$, a contradiction.

Now, since all μ_{i} are positive and all $a_{i}, i=0,1, \ldots, n-1$, are equal, we must have

$$
\begin{equation*}
\sum_{\ell=0}^{n-1} \mu_{\ell} \leq \sum_{i=0}^{n-1} a_{i} x_{i}^{2}=a_{n-1} \sum_{i=0}^{n-1} x_{i}^{2}=\frac{\mu_{n-1} y_{0}}{y_{n-1}} \sum_{i=0}^{n-1} x_{i}^{2} \tag{13}
\end{equation*}
$$

As we already observed, for $\left(x_{0}, \ldots, x_{n-1}\right)=\left(y_{0}, \ldots, y_{n-1}\right)$ (and only for this vector), we have equality in (12) and so in (13). Thus

$$
\sum_{\ell=0}^{n-1} \mu_{\ell}=\frac{\mu_{n-1} y_{0}}{y_{n-1}} \sum_{i=0}^{n-1} y_{i}^{2}
$$

Hence, by (13), we find that

$$
|\mathbf{v}|^{2}=\sum_{i=0}^{n-1} x_{i}^{2} \geq \frac{y_{n-1}}{\mu_{n-1} y_{0}} \sum_{\ell=0}^{n-1} \mu_{\ell}=\sum_{i=0}^{n-1} y_{i}^{2}
$$

This proves the lemma.
For the proof of Theorem 1 , fix $d \in \mathbb{N}$ and assume that $p(z)=x_{0}+x_{1} z+$ $\cdots+x_{1} z^{d-1}+x_{0} z^{d}$ is a reciprocal polynomial of degree d with nonnegative coefficients such that the coefficients of its square $p(z)^{2}=r_{0}+r_{1} z+\cdots+$ $r_{1} z^{2 d-1}+r_{0} z^{2 d}$ are all greater than or equal to 1 . Then

$$
r_{0}=x_{0}^{2} \geq 1, \quad r_{1}=2 x_{0} x_{1} \geq 1, \quad \ldots, \quad r_{[d / 2]}=\sum_{i=0}^{[d / 2]} x_{i} x_{[d / 2]-i} \geq 1
$$

and so $\left(x_{0}, \ldots, x_{[d / 2]}\right) \in V_{[d / 2]+1}$. The coefficient r_{d} for z^{d} in $p(z)^{2}$ is equal to

$$
2\left(x_{0}^{2}+\cdots+x_{(d-1) / 2}^{2}\right)
$$

for d odd and to

$$
2\left(x_{0}^{2}+\cdots+x_{d / 2-1}^{2}\right)+x_{d / 2}^{2}
$$

for d even.
For d odd, by Lemma 5, we have $r_{d}=2\left(x_{0}^{2}+\cdots+x_{(d-1) / 2}^{2}\right) \geq 2\left(y_{0}^{2}+\right.$ $\left.\cdots+y_{(d-1) / 2}^{2}\right)$. Moreover, if $x_{i} \neq y_{i}$ for at least one $i \in\{0, \ldots,(d-1) / 2\}$, then this inequality is strict. This implies that the polynomial $p(z)^{2}$ has at least one coefficient greater than $2\left(y_{0}^{2}+\cdots+y_{(d-1) / 2}^{2}\right)$, unless $x_{0}=$ $y_{0}, \ldots, x_{(d-1) / 2}=y_{(d-1) / 2}$. So $q\left(p^{2}\right) \geq q\left(p_{d}^{2}\right)=2\left(y_{0}^{2}+\cdots+y_{(d-1) / 2}^{2}\right)$ for every reciprocal polynomial p with nonnegative coefficients. On the other hand, the example $p(z)=p_{d}(z)$ shows that all coefficients of $p_{d}(z)^{2}$ lie in the interval $\left[1,2\left(y_{0}^{2}+\cdots+y_{(d-1) / 2}^{2}\right)\right]$ (see Theorem 2 and, more precisely, inequality (6).

For d even, applying Lemma 5 to $n=d / 2$ and to $n=d / 2+1$, we find that

$$
\begin{aligned}
r_{d} & =2\left(x_{0}^{2}+\cdots+x_{d / 2-1}^{2}\right)+x_{d / 2}^{2}=\sum_{i=0}^{d / 2-1} x_{i}^{2}+\sum_{i=0}^{d / 2} x_{i}^{2} \\
& \geq \sum_{i=0}^{d / 2-1} y_{i}^{2}+\sum_{i=0}^{d / 2} y_{i}^{2}=2\left(y_{0}^{2}+\cdots+y_{d / 2-1}^{2}\right)+y_{d / 2}^{2}
\end{aligned}
$$

Consequently, $q\left(p^{2}\right) \geq q\left(p_{d}^{2}\right)=2\left(y_{0}^{2}+\cdots+y_{d / 2-1}^{2}\right)+y_{d / 2}^{2}$ for every reciprocal polynomial p with nonnegative coefficients. The proof of Theorem 1 can now be concluded as above with the same example $p(z)=p_{d}(z)$.

Acknowledgements. The second named author acknowledges Summer Undergraduate Research Fellowship Award from the Lithuanian Science Council.

References

[1] P. Borwein, S. Choi and F. Chu, An old conjecture of Erdős-Turán on additive bases, Math. Comp. 75 (2006), 475-484.
[2] G. A. Dirac, Note on a problem in additive number theory, J. London Math. Soc. 26 (1951), 312-313.
[3] A. Dubickas, Additive bases of positive integers and related problems, Unif. Distrib. Theory 3 (2008), no. 2, 81-90.
[4] P. Erdős, On a problem of Sidon in additive number theory, Acta Sci. Math. (Szeged) 15 (1954), 255-259.
[5] -, Some old and new problems on additive and combinatorial number theory, in: Combinatorial Mathematics (New York, 1985), New York Acad. Sci., New York, 1989, 181-186.
[6] P. Erdős and P. Turán, On a problem of Sidon in additive number theory, and on some related problems, J. London Math. Soc. 16 (1941), 212-215.
[7] G. Grekos, L. Haddad, C. Helou and J. Pihko, On the Erdös-Turán conjecture, J. Number Theory 102 (2003), 339-352.
[8] M. B. Nathanson, Problems in additive number theory, III, in: A. Geroldinger and I. Z. Ruzsa, Combinatorial Number Theory and Additive Group Theory, Adv. Courses Math. CRM Barcelona, Birkhäuser, Basel, 2009, 279-297.
[9] I. Z. Ruzsa, A just basis, Monatsh. Math. 109 (1990), 145-151.
[10] C. Sándor, A note on a conjecture of Erdös-Turán, Integers 8 (2008), \#A30, 4 pp.
[11] M. Tang, A note on a result of Ruzsa, Bull. Austral. Math. Soc. 77 (2008), 91-98.

Artūras Dubickas
Department of Mathematics
and Informatics
Vilnius University
Naugarduko 24
Vilnius LT-03225, Lithuania
and
Vilnius University Institute of Mathematics
and Informatics
Akademijos 4
Vilnius LT-08663, Lithuania
E-mail: arturas.dubickas@mif.vu.lt

Received on 11.1.2010
and in revised form on 16.4.2010

[^0]: 2010 Mathematics Subject Classification: 12E10, 11B37.
 Key words and phrases: polynomial with nonnegative coefficients, Erdős-Turán problem, central binomial coefficients.

