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On polynomials with flat squares
by

ARTURAS DUBICKAS and GRAZVYDAS SEMETULSKIS (Vilnius)

1. Introduction. Let A be an infinite set of nonnegative integers. By
squaring the infinite series f(z) := > ;.4 2" with 0,1 coeflicients, we obtain

22 =3 R(A,m)=",
n=0

where R(A,n) is the number of representations of 7 in the form n = a; + as
with a1, as € A. An old conjecture of Erdds and Turén [6] asserts that for any
such infinite set A and any nonnegative integer ng the coefficients R(A,n),
n > ng, cannot all lie in the interval [1, C] with some constant C' = C(A, no).
This deep USD 500 problem [5] remains open, although some progress has
been made in [I], [2], [7], [L0]. It was proved, for instance, that the numbers
R(A,n), n >0, cannot all lie in the interval [1,7] (see [1]). See also [4], [9],
[11] for some constructions of A such that R(A,n) > 1 for all n > 0, but
R(A,n) is “small” in terms of n. Nathanson [§] describes this Erdés—Turdn
problem as “one of the most famous and tantalizing unsolved problems in
additive number theory”.

Given any polynomial p(z) = Z?:O ajz) with nonnegative coefficients,
let us denote the largest quotient between pairs of its coefficients by ¢(p) =
maxo<; j<d @;/aj. In particular, we set ¢(p) = +oo if the polynomial p(z)
is not the zero polynomial, but has at least one coefficient equal to zero.
Clearly, q(p) > 1 with equality if and only if all the coefficients of p(z) are
equal. We say that the polynomial p is “flat” if this quotient ¢(p) is “small”.
Recently, the first named author [3] considered the following polynomial ver-
sion of the Erdés—Turdn problem. Let p(z) be a polynomial of degree d with
nonnegative real coefficients. In particular, it can be a Newman polynomial,
i.e. a polynomial with coefficients 0, 1. As above for the series f(z), consider
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the square of p(z), namely,

p(2)2 = 1o+ 1124 -+ 19927

Then, for each positive integer d > 1, we are interested in the smallest pos-
itive number k(d) for which there is a polynomial p(z) of degree d with
nonnegative real coefficients such that the coefficients 7, 71, . . ., 724 of p(z)?
all lie in the interval [1, x(d)]. Similarly, let krec(d) be the smallest positive
number such that all coefficients of the square p(z2)? of a reciprocal polyno-
mial p(z) of degree d (i.e. satisfying p(z) = 2%p(1/2)) with nonnegative real
coefficients lie in the interval [1, kpec(d)]. It is easy to see that the numbers
k(d) and krec(d) exist for every d € N. Indeed, by compactness, the infimum
inf q(p?), where p runs through polynomials with nonnegative coefficients
of degree d, is attained and is equal to x(d). Also, inf ¢(p?), where p runs
through reciprocal polynomials with nonnegative coefficients of degree d, is
attained and is equal to Kyec(d).

In [3] the first named author introduced the sequence yo =1, y1 = 1/2,
y2 = 3/8, ..., where each y,, n > 1, is defined by the recurrence formula

(1) 2000 + 2Y2k—1y1 + + 2k 1Ye—1 + Ui = 1

for n even, i.e. n = 2k, k € N, and

(2) 2yok+1Y0 + 2y2ky1 + - + 2Ypr2Yk—1 + 2Ykt1yk = 1

for n odd, i.e. n =2k + 1, k > 0. We define the following reciprocal polyno-
mial:

(3) Pa(2) == yo + 12 + 122" + - + 42272 + g2 + yo2?.

Note that, by Theorembelow, pa(z) has positive coefficients. The quotients
q(p3) between the largest and the smallest coefficients of pg(z)? for d =
1,...,12 have been calculated in [3]:

169
ap}) =2, q(p3) =225, q(p3) =25, q(pi) = —— =2.640625, ...,

64
106405 3458321
2y = 7 394722290 . .. 2)="""""—32981191....
A1) = Sozgg — 324722290 alpi) = Japeezg = 3298119

Clearly,
4(P3) = Firec(d) > K(d)

for each d > 1, because the polynomial py(z) is reciprocal, by , and has
positive coefficients, by Theorem [2] The calculations with small d show that

(4) K(d) = Frec(d) = Q(p?l)
for d =1 and d = 2. Since from f it is not even clear whether ¢(p3)
is bounded or unbounded as d — oo the first named author asked in [3]
if (4) holds for all d or not and if x(d), g(p3) are bounded or unbounded as
d — oo.

In this paper, we are able to prove the second equality in (4)):
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THEOREM 1. We have kivec(d) = q(p?) for each d > 1.

This shows that the polynomial is optimal among all reciprocal poly-
nomials in the sense that it has the “flattest” square. The sequence of ra-
tional numbers ¥, defined in , can be determined explicitly in terms
of central binomial coefficients:

THEOREM 2. We have y, = 272" (2:) for each n > 0.

The next theorem shows that g(p3) is unbounded and answers a corre-
sponding question raised in [3]:

THEOREM 3. We have

4(p) = 2095 + vi + -+ Y1y )
for each odd positive integer d and

9(p3) = 2(Y5 +¥7 + - + Yija 1) + Vi

for each even positive integer d. Here, y, = 272" (27?) and q(p3) ~ (2/)logd
as d — 0.

We say that a subset A of {0,1,...,d} is symmetric if for any ¢ in the
range 0 < i < [d/2] the integers i and d — i either both lie in A or both
do not lie in A. Here and below, [-] stands for the integral part of a num-
ber. Assume that A + A = {0,1,...,2d}. By Theorems |1| and [3] we have
Krec(d) ~ (2/m)logd as d — oo. Applying this result to the reciprocal New-
man polynomial p(z) = >,y 2J of degree d whose square has positive
(integer) coefficients we obtain the following corollary:

COROLLARY 4. Let A be a symmetric subset of the set {0,1,...,d} such
that A+ A = {0,1,...,2d}. Then there is an element a € {0,1,...,2d}
which has at least clog d representations in the form a = a1 +as, a1, as € A.
Here, ¢ is an absolute positive constant.

We next prove Theorem [2| then, using it, Theorem [3] and, finally, using
both, we establish Theorem

2. Proof of Theorem [2. Consider the function
9(2) = yo+ypz+y’ 4+
From and , we deduce that
1

g2 =14+z2+22+23 4+ = o

On the other hand, let

w(e)i= (=272 = S (1),

n
n=0
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Note that
/—1/2\  1-3-5-...-(2n—1) @2n)!  __, (2n
(-1) = = =2 .
n 2np) 22np|2 n

Setting t,, := 2~ ( ) we obtain

92(2) =to+tiz +t22% + -+
But g2(2)? = g(2)? = 1/(1 — z) so the sequence t,, n = 0,1,..., satisfies
the same recurrence formulas (|1} . Since each y,, is uniquely determmed
by %0, ..,Yn_1 and yo = to = 1, this implies y,, = t, = 272" (2") for each
n > 0, as claimed. This completes the proof of Theorem [2]

Similarly, for each integer k > 2, the kth power of the series

> 1/k
N 1\ n_ (1_ \L/k
ale) =30 (T )=
n=0
with positive coefficients (—1)" (fb/k) is equal to the series g (2)*=1/(1 — 2)
= > 27" with coefficients 1,1,1,.... This shows that the Erdés-Turdn
problem for the kth power of the series with nonnegative real (instead of
0,1) coefficients has a trivial answer: such a power can have all coefficients

equal.

3. Proof of Theorem [3l Write
pa(2)? = (o+yiz+- - +y128 T yzd)? = so+s124+ - -+ 5020+ -+ 502%
By , , we have sp = s1 =+ = s[g/9) = 1. Set
yr = Ymin{i,d—i} = { . for0 = i< [d/21’
yg—i for [d/2]+1<i<d,
and y; = y; := 0 for ¢ ¢ Z. Then py(z) = Zf 0 Uiz, so
[£/2]

¢
(5) se=> Y QZyzye i~ i)
=0

for each integer ¢ satisfying 0 < ¢ < d. Also, as pq(z) is reciprocal, s; = S9q4_¢
for d+1 < /¢ < 2d. We claim that
(6) 1< s < 84
for each ¢ in the range [d/2]+1 < /¢ <d—1.
Note that y; = y; for i < £/2 < [d/2]. Similarly, y;_, = yq—¢4s for
i <l—1[d/2] -1 and y;_; = ye—; for i > £ — [d/2]. Hence, by ,
[¢/2] ¢—[d/2]-1 [¢/2]

() $e=2> ii—Yin=2 Y, YYarrit2 D Yilei—Yi-
i=0 i=0 i=0—[d/2]

2
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Inserting ¢ = d into we find that

/2] d—[d/2]-1
(8) SA=2) Y Yip=2 Y Yty
i=0 i=0
By Theorem
225(s1)2(25 — 2)! 452 2s

© = - -
Us 22572(s — 1)12(2s)!  2s(2s—1) 2s—1

for each s € N. Thus y; > y4_¢y4, because ¢ < d — ¢ + 4. Similarly, y; > ye—;,
because ¢ < £/2. Thus, using

€2 < [(d—1)/2] = d— [d/2] - 1,
from and we obtain

>1

d—[d/2)-1 0—[d/2)-1 [¢/2]
Sa—Yaj = 2 Z yi > 2 Z YilYd—e+i + 2 Z YiYe—i = S0+ Ui o
i=0 i=0 i=0—[d/2]

Hence sqg > sp + yczl/2 + yg/Q > sy, giving the second inequality in @

The proof of the first inequality in @ is simpler. Fix an integer ¢ in the
range [d/2] +1 < ¢ < d. Observe that, by , , Zf:o yiye—; = 1. By
@, we find that y; < ¥ = Yminfs,a—iy and ye—; < yp_; for i < £ < d. So
Yiye—i < y;y;_; for each i = 0,1,...,£. Moreover, at least one inequality is
strict, because ¢ > [d/2]. So (5] yields

J4 l
1= yie—i < > _Yivii = se.
=0 i=0

This completes the proof of @

Now, from @ it follows that all s;, where j = 0,1,...,2d, belong to the
interval [so, sq]. Here s = 1. It is easily seen that sq = 2(y2 + 92 + -+ +
y(Qd_l)/z) for odd positive integer d and sq = 2(y3 +y? + -+ y?l/Q_l) + 3/021/2
for even positive integer d. This proves the formulas for g(p3) = s4 as stated
in the theorem.

We next find an asymptotical formula for q(p?l). Fixe > 0. By Theorem
and Stirling’s formula,

~(2n)! (2n/e)*"V2m2n 1
Yn = a2 ™ 22n(n/e)2n2mn /T
as n — 00. So there is a positive integer dy(g) such that
1—-¢ 5 1+4e
< <

(10) n

for each n > dy(¢). Thus, in both cases (even and odd d), we have
[d/2]

(1) e =2 D" 2| < 2doe) + 1.

n=do(¢)
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Using Zglﬁl]o(a) (1/n) ~logd as d — oo and , we deduce that

[d/2] 2 2
1-— 1
E %21 c [(6) log d, ﬂ log d]
s T
n=d0(€)
for d > dy(g). Thus, by (11)),
2(1 —¢)3 2(1 +¢)3
Qlogd< q(pd)2 < (W—i_e)logd

for d > da(e). It follows that q(p3) ~ 2logd as d — oco.

4. Proof of Theorem Let V,, be a subset of vectors (xq,...,ZTn—1)
in R™ determined by the inequalities

Ly L1yewyn—1 Z 0,
xg > 1,
21;0‘7:1 > ]-7
23301:2 +$% > ]-7

2xow3 + 2x102 > 1,

n—1
thil‘nflfi = 2x0Tp—1 + 2212p—1 + - 2> 1.
i=0
The key element in the proof of the theorem is the following:
LEMMA 5. Letv € V,,. Then |v|> > y2 +---+y2_,, where equality holds
if and only if v.= (yo,...,Yn—1)-
Proof. Suppose that v = (zg,...,z,—1) € V,,. By Theorem [2} y,, > 0 for
each n > 0. So, for every pair %, j satisfying 0 <7 < j <n — 1, we have
2. 2y
M + ]7% 2 2xi$ja
Yi Yj
where equality holds if and only if z;y; = z;y;. Fix an integer ¢ in [0,n — 1].
Replacing each double product 2x;x,_; in this way and leaving x? /9 28 it is
(if £ is even), we obtain
l
1<) mimg; = 2womp + 21201 + -+

i=1
2 2 2 2 (o
€T xT x _ Ty_1Y1 T:Yp—g
< 0y13+ gyo+ 1Y¢ 1, 2t +"':Z iYe—i
Yo Ye 1 Ye—1 i—o i
Here, the second inequality becomes equality if and only if (zq,...,xp) =

Ae(Yo, - - -, ye) with a scalar multiple Ay > 0. For such a vector (xq,...,xy),
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the first inequality,

l ¢
V<Y wiwe i = A7 yiye—i = N
=1 i=1

(see , (2)), is equality if and only if A\, = 1. Hence 1 = Zf:o x2ye_;/y; for
¢=0,1,...,n—1if and only if v = (zg,...,2n-1) = Wo,---,Yn—1) € Vp.

Let wo, ..., un—1 be some positive constants to be chosen later. Mul-
tiplying the fth inequality, 1 < Zle xix¢—;, by pe and adding them for
{=0,1,...,n—1, Weﬁndthat

2 n—1
7 i Ye—
(12) Zuz < Zuzzxm i < Zu Z " t = Z " > peyei
7 7
l=i
We next show that posmve numbers 0y -« -5 n—1 CaN be chosen so that
all coefficients a; = y; ! ZZ;‘I weye—; for x? in the inequality , ie.
ZZL;OI e < Z?’;Ol a;z?, are equal: a,_1 = - -+ = ap, namely,
Hn-1Y0 _ Hn-1Y1 4 Hn—2Y0 _ Hn—-1Y2 4 Hn—2Y1 1 Hn—3Y0 _
Yn—1 Yn—2 Yn—2 Yn—3 Yn—3 Yn—3
_ Pn-1Yn—1 +e H1Y1 + wo.
Yo Yo
Indeed, set p,—1 := 1 and then, step by step left to right, determine
n—2, hn—3, - - -, fbo- We claim that u,_1,...,ug are all positive. For a con-

tradiction assume that pp,—1 =1 > 0,..., up—iy1 > 0, but p,—; < 0 for
some ¢ satisfying 2 < i < n. Since

Yo Y 1 Yi—j
Hn—i ZM”](Z] _ZJ’)

Yn—i = Yn—i+1 Yn—i
and fn—1,..., tn—i+1 > 0, this can happen only if some difference
Yi—j-1  Yi—j

Yn—i+1 Yn—i
is at most 0. Hence y;—j_1yn—i < Yn—i+1Yi—; for some 7, j satisfying 1 < j <
i —1 < n — 1. However, by @, Yiej—1 > Yi—j and Yp—; > Yp—_it1, giving
Yiej—1Yn—i > Yn—i+1¥i—j, a contradiction.

Now, since all p; are positive and all a;, 1 =0,1,...,n— 1, are equal, we
must have
-1
1Y0
(13) ZW<Z%$ = Qp_ 1230 'uZ 1y Zw?
T =0
As we already observed, for (a;o, e ,l’n—1) = (yg, .yYn—1) (and only for

this vector), we have equality in and so in . Thus

ZN _Mn 1?/02 2

ynlzo
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Hence, by , we find that

v[? = Z tacl Zu—zyl

Mn 1yo

This proves the lemma.

For the proof of Theorem[] fix d € N and assume that p(z) = zo+z12+

4 21297+ 2924 is a reciprocal polynomial of degree d with nonnegative

coefficients such that the coefficients of its square p(2)? = rg + riz + -+ +
12241 4 1224 are all greater than or equal to 1. Then

[d/2]
ro=a5>1, r=2wex1>1, ..., Ty = Z Ti%(g/9—i = 1
i=0
and so (o, ..., %[q/2]) € Vigsa+1- The coefficient ry for 24 in p(2)? is equal

to
20z + - + 21y 0)
for d odd and to
et + -+ 2gy2-1) + g
for d even.
For d odd, by Lemma [5, we have 14 = 2(x3 + --- + x%d_l)/Q) > 2(y3 +

cF y(2d—1)/2)' Moreover, if x; # y; for at least one i € {0,...,(d —1)/2},
then this inequality is strict. This implies that the polynomial p(z)? has
at least one coefficient greater than 2(y3 + --- + y(zdil) /2), unless xy =

Yos- -2 T(a-1)/2 = Ya-1)/2- S0 a(p?) = q(0h) = 2043 + - + yly_yy) for
every reciprocal polynomial p with nonnegative coefficients. On the other
hand, the example p(z) = pg(z) shows that all coefficients of py(z)? lie in
the interval [1,2(y2 + -+ + y(2 4-1)/2)] (see Theorem [2 and, more precisely,
inequality @ .

For d even, applying Lemma |5/ to n = d/2 and to n = d/2 + 1, we find
that

d/2—1 /2
ra=2@g+ - ahy ) FaGy= Y 4+ > @]
=0 ;

dj2—1 /2
> >+ v =2+ +Yan ) Vi

Consequently, ¢(p?) > q(p3) = 2(y3 + - -—i—yg/Q_l) +y3/2 for every reciprocal
polynomial p with nonnegative coefficients. The proof of Theorem [I|can now
be concluded as above with the same example p(z) = p4(2).
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