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On polynomials with flat squares

by

Artūras Dubickas and Gražvydas Šemetulskis (Vilnius)

1. Introduction. Let A be an infinite set of nonnegative integers. By
squaring the infinite series f(z) :=

∑
i∈A z

i with 0, 1 coefficients, we obtain

f(z)2 =
∞∑
n=0

R(A,n)zn,

where R(A,n) is the number of representations of n in the form n = a1 +a2

with a1, a2 ∈ A. An old conjecture of Erdős and Turán [6] asserts that for any
such infinite set A and any nonnegative integer n0 the coefficients R(A,n),
n ≥ n0, cannot all lie in the interval [1, C] with some constant C = C(A,n0).
This deep USD 500 problem [5] remains open, although some progress has
been made in [1], [2], [7], [10]. It was proved, for instance, that the numbers
R(A,n), n ≥ 0, cannot all lie in the interval [1, 7] (see [1]). See also [4], [9],
[11] for some constructions of A such that R(A,n) ≥ 1 for all n ≥ 0, but
R(A,n) is “small” in terms of n. Nathanson [8] describes this Erdős–Turán
problem as “one of the most famous and tantalizing unsolved problems in
additive number theory”.

Given any polynomial p(z) =
∑d

j=0 ajz
j with nonnegative coefficients,

let us denote the largest quotient between pairs of its coefficients by q(p) =
max0≤i,j≤d ai/aj . In particular, we set q(p) = +∞ if the polynomial p(z)
is not the zero polynomial, but has at least one coefficient equal to zero.
Clearly, q(p) ≥ 1 with equality if and only if all the coefficients of p(z) are
equal. We say that the polynomial p is “flat” if this quotient q(p) is “small”.
Recently, the first named author [3] considered the following polynomial ver-
sion of the Erdős–Turán problem. Let p(z) be a polynomial of degree d with
nonnegative real coefficients. In particular, it can be a Newman polynomial,
i.e. a polynomial with coefficients 0, 1. As above for the series f(z), consider
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the square of p(z), namely,

p(z)2 = r0 + r1z + · · ·+ r2dz
2d.

Then, for each positive integer d ≥ 1, we are interested in the smallest pos-
itive number κ(d) for which there is a polynomial p(z) of degree d with
nonnegative real coefficients such that the coefficients r0, r1, . . . , r2d of p(z)2

all lie in the interval [1, κ(d)]. Similarly, let κrec(d) be the smallest positive
number such that all coefficients of the square p(z)2 of a reciprocal polyno-
mial p(z) of degree d (i.e. satisfying p(z) = zdp(1/z)) with nonnegative real
coefficients lie in the interval [1, κrec(d)]. It is easy to see that the numbers
κ(d) and κrec(d) exist for every d ∈ N. Indeed, by compactness, the infimum
inf q(p2), where p runs through polynomials with nonnegative coefficients
of degree d, is attained and is equal to κ(d). Also, inf q(p2), where p runs
through reciprocal polynomials with nonnegative coefficients of degree d, is
attained and is equal to κrec(d).

In [3] the first named author introduced the sequence y0 = 1, y1 = 1/2,
y2 = 3/8, . . . , where each yn, n ≥ 1, is defined by the recurrence formula

(1) 2y2ky0 + 2y2k−1y1 + · · ·+ 2yk+1yk−1 + y2
k = 1

for n even, i.e. n = 2k, k ∈ N, and

(2) 2y2k+1y0 + 2y2ky1 + · · ·+ 2yk+2yk−1 + 2yk+1yk = 1

for n odd, i.e. n = 2k+ 1, k ≥ 0. We define the following reciprocal polyno-
mial:

(3) pd(z) := y0 + y1z + y2z
2 + · · ·+ y2z

d−2 + y1z
d−1 + y0z

d.

Note that, by Theorem 2 below, pd(z) has positive coefficients. The quotients
q(p2

d) between the largest and the smallest coefficients of pd(z)2 for d =
1, . . . , 12 have been calculated in [3]:

q(p2
1) = 2, q(p2

2) = 2.25, q(p2
3) = 2.5, q(p2

4) =
169
64

= 2.640625, . . . ,

q(p2
11) =

106405
32768

= 3.24722290 . . . , q(p2
12) =

3458321
1048576

= 3.2981191 . . . .

Clearly,
q(p2

d) ≥ κrec(d) ≥ κ(d)

for each d ≥ 1, because the polynomial pd(z) is reciprocal, by (3), and has
positive coefficients, by Theorem 2. The calculations with small d show that
(4) κ(d) = κrec(d) = q(p2

d)
for d = 1 and d = 2. Since from (1)–(3) it is not even clear whether q(p2

d)
is bounded or unbounded as d → ∞ the first named author asked in [3]
if (4) holds for all d or not and if κ(d), q(p2

d) are bounded or unbounded as
d→∞.

In this paper, we are able to prove the second equality in (4):
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Theorem 1. We have κrec(d) = q(p2
d) for each d ≥ 1.

This shows that the polynomial (3) is optimal among all reciprocal poly-
nomials in the sense that it has the “flattest” square. The sequence of ra-
tional numbers yn defined in (1), (2) can be determined explicitly in terms
of central binomial coefficients:

Theorem 2. We have yn = 2−2n
(
2n
n

)
for each n ≥ 0.

The next theorem shows that q(p2
d) is unbounded and answers a corre-

sponding question raised in [3]:

Theorem 3. We have

q(p2
d) = 2(y2

0 + y2
1 + · · ·+ y2

(d−1)/2)

for each odd positive integer d and

q(p2
d) = 2(y2

0 + y2
1 + · · ·+ y2

d/2−1) + y2
d/2

for each even positive integer d. Here, yn = 2−2n
(
2n
n

)
and q(p2

d) ∼ (2/π) log d
as d→∞.

We say that a subset A of {0, 1, . . . , d} is symmetric if for any i in the
range 0 ≤ i ≤ [d/2] the integers i and d − i either both lie in A or both
do not lie in A. Here and below, [·] stands for the integral part of a num-
ber. Assume that A + A = {0, 1, . . . , 2d}. By Theorems 1 and 3, we have
κrec(d) ∼ (2/π) log d as d→∞. Applying this result to the reciprocal New-
man polynomial p(z) =

∑
j∈A z

j of degree d whose square has positive
(integer) coefficients we obtain the following corollary:

Corollary 4. Let A be a symmetric subset of the set {0, 1, . . . , d} such
that A + A = {0, 1, . . . , 2d}. Then there is an element a ∈ {0, 1, . . . , 2d}
which has at least c log d representations in the form a = a1 +a2, a1, a2 ∈ A.
Here, c is an absolute positive constant.

We next prove Theorem 2, then, using it, Theorem 3 and, finally, using
both, we establish Theorem 1.

2. Proof of Theorem 2. Consider the function

g(z) := y0 + y1z + y2z
2 + · · · .

From (1) and (2), we deduce that

g(z)2 = 1 + z + z2 + z3 + · · · = 1
1− z

.

On the other hand, let

g2(z) := (1− z)−1/2 =
∞∑
n=0

(−z)n
(
−1/2
n

)
.
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Note that

(−1)n
(
−1/2
n

)
=

1 · 3 · 5 · . . . · (2n− 1)
2nn!

=
(2n)!

22nn!2
= 2−2n

(
2n
n

)
.

Setting tn := 2−2n
(
2n
n

)
, we obtain

g2(z) = t0 + t1z + t2z
2 + · · · .

But g2(z)2 = g(z)2 = 1/(1 − z), so the sequence tn, n = 0, 1, . . . , satisfies
the same recurrence formulas (1), (2). Since each yn is uniquely determined
by y0, . . . , yn−1 and y0 = t0 = 1, this implies yn = tn = 2−2n

(
2n
n

)
for each

n ≥ 0, as claimed. This completes the proof of Theorem 2.

Similarly, for each integer k ≥ 2, the kth power of the series

gk(z) :=
∞∑
n=0

(−1)n
(
−1/k
n

)
zn = (1− z)−1/k

with positive coefficients (−1)n
(−1/k

n

)
is equal to the series gk(z)k=1/(1− z)

=
∑∞

n=0 z
n with coefficients 1, 1, 1, . . . . This shows that the Erdős–Turán

problem for the kth power of the series with nonnegative real (instead of
0, 1) coefficients has a trivial answer: such a power can have all coefficients
equal.

3. Proof of Theorem 3. Write

pd(z)2 = (y0 +y1z+ · · ·+y1z
d−1 +y0z

d)2 = s0 +s1z+ · · ·+sdz
d+ · · ·+s0z

2d.

By (1), (2), we have s0 = s1 = · · · = s[d/2] = 1. Set

y∗i := ymin{i,d−i} =
{
yi for 0 ≤ i ≤ [d/2],
yd−i for [d/2] + 1 ≤ i ≤ d,

and y∗i = yi := 0 for i /∈ Z. Then pd(z) =
∑d

i=0 y
∗
i z
i, so

(5) s` =
∑̀
i=0

y∗i y
∗
`−i = 2

[`/2]∑
i=0

y∗i y
∗
`−i − (y∗`/2)2

for each integer ` satisfying 0 ≤ ` ≤ d. Also, as pd(z) is reciprocal, s` = s2d−`
for d+ 1 ≤ ` ≤ 2d. We claim that

(6) 1 < s` < sd

for each ` in the range [d/2] + 1 ≤ ` ≤ d− 1.
Note that y∗i = yi for i ≤ `/2 ≤ [d/2]. Similarly, y∗`−i = yd−`+i for

i ≤ `− [d/2]− 1 and y∗`−i = y`−i for i ≥ `− [d/2]. Hence, by (5),

(7) s` = 2
[`/2]∑
i=0

yiy
∗
`−i−y2

`/2 = 2
`−[d/2]−1∑

i=0

yiyd−`+i+2
[`/2]∑

i=`−[d/2]

yiy`−i−y2
`/2.
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Inserting ` = d into (5) we find that

(8) sd = 2
[d/2]∑
i=0

y2
i − y2

d/2 = 2
d−[d/2]−1∑

i=0

y2
i + y2

d/2.

By Theorem 2,

(9)
ys−1

ys
=

22s(s!)2(2s− 2)!
22s−2(s− 1)!2(2s)!

=
4s2

2s(2s− 1)
=

2s
2s− 1

> 1

for each s ∈ N. Thus yi > yd−`+i, because i < d− `+ i. Similarly, yi ≥ y`−i,
because i ≤ `/2. Thus, using

[`/2] ≤ [(d− 1)/2] = d− [d/2]− 1,
from (7) and (8) we obtain

sd− y2
d/2 = 2

d−[d/2]−1∑
i=0

y2
i > 2

`−[d/2]−1∑
i=0

yiyd−`+i + 2
[`/2]∑

i=`−[d/2]

yiy`−i = s` + y2
`/2.

Hence sd > s` + y2
d/2 + y2

`/2 ≥ s`, giving the second inequality in (6).
The proof of the first inequality in (6) is simpler. Fix an integer ` in the

range [d/2] + 1 ≤ ` ≤ d. Observe that, by (1), (2),
∑`

i=0 yiy`−i = 1. By
(9), we find that yi ≤ y∗i = ymin{i,d−i} and y`−i ≤ y∗`−i for i ≤ ` ≤ d. So
yiy`−i ≤ y∗i y

∗
`−i for each i = 0, 1, . . . , `. Moreover, at least one inequality is

strict, because ` > [d/2]. So (5) yields

1 =
∑̀
i=0

yiy`−i <
∑̀
i=0

y∗i y
∗
`−i = s`.

This completes the proof of (6).
Now, from (6) it follows that all sj , where j = 0, 1, . . . , 2d, belong to the

interval [s0, sd]. Here s0 = 1. It is easily seen that sd = 2(y2
0 + y2

1 + · · · +
y2
(d−1)/2) for odd positive integer d and sd = 2(y2

0 + y2
1 + · · ·+ y2

d/2−1) + y2
d/2

for even positive integer d. This proves the formulas for q(p2
d) = sd as stated

in the theorem.
We next find an asymptotical formula for q(p2

d). Fix ε > 0. By Theorem 2
and Stirling’s formula,

yn =
(2n)!

22nn!2
∼ (2n/e)2n

√
2π2n

22n(n/e)2n2πn
=

1√
πn

as n→∞. So there is a positive integer d0(ε) such that

(10)
1− ε
πn

< y2
n <

1 + ε

πn
for each n ≥ d0(ε). Thus, in both cases (even and odd d), we have

(11)
∣∣∣q(p2

d)− 2
[d/2]∑

n=d0(ε)

y2
n

∣∣∣ ≤ 2d0(ε) + 1.
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Using
∑[d/2]

n=d0(ε) (1/n) ∼ log d as d→∞ and (10), we deduce that
[d/2]∑

n=d0(ε)

y2
n ∈

[
(1− ε)2

π
log d,

(1 + ε)2

π
log d

]
for d ≥ d1(ε). Thus, by (11),

2(1− ε)3

π
log d < q(pd)2 <

2(1 + ε)3

π
log d

for d ≥ d2(ε). It follows that q(p2
d) ∼

2
π log d as d→∞.

4. Proof of Theorem 1. Let Vn be a subset of vectors (x0, . . . , xn−1)
in Rn determined by the inequalities

x0, x1, . . . , xn−1 ≥ 0,

x2
0 ≥ 1,

2x0x1 ≥ 1,

2x0x2 + x2
1 ≥ 1,

2x0x3 + 2x1x2 ≥ 1,
...

n−1∑
i=0

xixn−1−i = 2x0xn−1 + 2x1xn−1 + · · · ≥ 1.

The key element in the proof of the theorem is the following:

Lemma 5. Let v ∈ Vn. Then |v|2 ≥ y2
0 + · · ·+ y2

n−1, where equality holds
if and only if v = (y0, . . . , yn−1).

Proof. Suppose that v = (x0, . . . , xn−1) ∈ Vn. By Theorem 2, yn > 0 for
each n ≥ 0. So, for every pair i, j satisfying 0 ≤ i < j ≤ n− 1, we have

x2
i yj
yi

+
x2
jyi

yj
≥ 2xixj ,

where equality holds if and only if xjyi = xiyj . Fix an integer ` in [0, n− 1].
Replacing each double product 2xix`−i in this way and leaving x2

`/2 as it is
(if ` is even), we obtain

1 ≤
∑̀
i=1

xix`−i = 2x0x` + 2x1x`−1 + · · ·

≤ x2
0y`
y0

+
x2
`y0

y`
+
x2

1y`−1

y1
+
x2
`−1y1

y`−1
+ · · · =

∑̀
i=0

x2
i y`−i
yi

.

Here, the second inequality becomes equality if and only if (x0, . . . , x`) =
λ`(y0, . . . , y`) with a scalar multiple λ` > 0. For such a vector (x0, . . . , x`),
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the first inequality,

1 ≤
∑̀
i=1

xix`−i = λ2
`

∑̀
i=1

yiy`−i = λ2
`

(see (1), (2)), is equality if and only if λ` = 1. Hence 1 =
∑`

i=0 x
2
i y`−i/yi for

` = 0, 1, . . . , n− 1 if and only if v = (x0, . . . , xn−1) = (y0, . . . , yn−1) ∈ Vn.
Let µ0, . . . , µn−1 be some positive constants to be chosen later. Mul-

tiplying the `th inequality, 1 ≤
∑`

i=1 xix`−i, by µ` and adding them for
` = 0, 1, . . . , n− 1, we find that

(12)
n−1∑
`=0

µ` ≤
n−1∑
`=0

µ`
∑̀
i=0

xix`−i ≤
n−1∑
`=0

µ`
∑̀
i=0

x2
i y`−i
yi

=
n−1∑
i=0

x2
i

yi

n−1∑
`=i

µ`y`−i.

We next show that positive numbers µ0, . . . , µn−1 can be chosen so that
all coefficients ai := y−1

i

∑n−1
`=i µ`y`−i for x2

i in the inequality (12), i.e.∑n−1
`=0 µ` ≤

∑n−1
i=0 aix

2
i , are equal: an−1 = · · · = a0, namely,

µn−1y0

yn−1
=
µn−1y1

yn−2
+
µn−2y0

yn−2
=
µn−1y2

yn−3
+
µn−2y1

yn−3
+
µn−3y0

yn−3
= · · ·

=
µn−1yn−1

y0
+ · · ·+ µ1y1

y0
+ µ0.

Indeed, set µn−1 := 1 and then, step by step left to right, determine
µn−2, µn−3, . . . , µ0. We claim that µn−1, . . . , µ0 are all positive. For a con-
tradiction assume that µn−1 = 1 > 0, . . . , µn−i+1 > 0, but µn−i ≤ 0 for
some i satisfying 2 ≤ i ≤ n. Since

µn−iy0

yn−i
=

i−1∑
j=1

µn−j

(
yi−j−1

yn−i+1
− yi−j
yn−i

)
and µn−1, . . . , µn−i+1 > 0, this can happen only if some difference

yi−j−1

yn−i+1
− yi−j
yn−i

is at most 0. Hence yi−j−1yn−i ≤ yn−i+1yi−j for some i, j satisfying 1 ≤ j ≤
i − 1 ≤ n − 1. However, by (9), yi−j−1 > yi−j and yn−i > yn−i+1, giving
yi−j−1yn−i > yn−i+1yi−j , a contradiction.

Now, since all µi are positive and all ai, i = 0, 1, . . . , n− 1, are equal, we
must have

(13)
n−1∑
`=0

µ` ≤
n−1∑
i=0

aix
2
i = an−1

n−1∑
i=0

x2
i =

µn−1y0

yn−1

n−1∑
i=0

x2
i .

As we already observed, for (x0, . . . , xn−1) = (y0, . . . , yn−1) (and only for
this vector), we have equality in (12) and so in (13). Thus

n−1∑
`=0

µ` =
µn−1y0

yn−1

n−1∑
i=0

y2
i .
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Hence, by (13), we find that

|v|2 =
n−1∑
i=0

x2
i ≥

yn−1

µn−1y0

n−1∑
`=0

µ` =
n−1∑
i=0

y2
i .

This proves the lemma.

For the proof of Theorem 1, fix d ∈ N and assume that p(z) = x0 +x1z+
· · ·+ x1z

d−1 + x0z
d is a reciprocal polynomial of degree d with nonnegative

coefficients such that the coefficients of its square p(z)2 = r0 + r1z + · · · +
r1z

2d−1 + r0z
2d are all greater than or equal to 1. Then

r0 = x2
0 ≥ 1, r1 = 2x0x1 ≥ 1, . . . , r[d/2] =

[d/2]∑
i=0

xix[d/2]−i ≥ 1,

and so (x0, . . . , x[d/2]) ∈ V[d/2]+1. The coefficient rd for zd in p(z)2 is equal
to

2(x2
0 + · · ·+ x2

(d−1)/2)

for d odd and to
2(x2

0 + · · ·+ x2
d/2−1) + x2

d/2

for d even.
For d odd, by Lemma 5, we have rd = 2(x2

0 + · · · + x2
(d−1)/2) ≥ 2(y2

0 +
· · · + y2

(d−1)/2). Moreover, if xi 6= yi for at least one i ∈ {0, . . . , (d − 1)/2},
then this inequality is strict. This implies that the polynomial p(z)2 has
at least one coefficient greater than 2(y2

0 + · · · + y2
(d−1)/2), unless x0 =

y0, . . . , x(d−1)/2 = y(d−1)/2. So q(p2) ≥ q(p2
d) = 2(y2

0 + · · · + y2
(d−1)/2) for

every reciprocal polynomial p with nonnegative coefficients. On the other
hand, the example p(z) = pd(z) shows that all coefficients of pd(z)2 lie in
the interval [1, 2(y2

0 + · · · + y2
(d−1)/2)] (see Theorem 2 and, more precisely,

inequality (6)).
For d even, applying Lemma 5 to n = d/2 and to n = d/2 + 1, we find

that

rd = 2(x2
0 + · · ·+ x2

d/2−1) + x2
d/2 =

d/2−1∑
i=0

x2
i +

d/2∑
i=0

x2
i

≥
d/2−1∑
i=0

y2
i +

d/2∑
i=0

y2
i = 2(y2

0 + · · ·+ y2
d/2−1) + y2

d/2.

Consequently, q(p2) ≥ q(p2
d) = 2(y2

0 + · · ·+y2
d/2−1)+y2

d/2 for every reciprocal
polynomial p with nonnegative coefficients. The proof of Theorem 1 can now
be concluded as above with the same example p(z) = pd(z).
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[6] P. Erdős and P. Turán, On a problem of Sidon in additive number theory, and on
some related problems, J. London Math. Soc. 16 (1941), 212–215.

[7] G. Grekos, L. Haddad, C. Helou and J. Pihko, On the Erdős–Turán conjecture,
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