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1. Introduction. Let K be a number field and let RK be its ring of
integers. The index of a number field K is defined as

ind(K) = gcd{ind(α) |α ∈ RK , K = Q(α)}
where ind(α) = [RK : Z[α]] denotes the index of the element α.

The problem of determining necessary and sufficient conditions in order
that two number fields of the same degree have the same index remains open.
Usually, this problem is attacked locally; namely, for each prime p one defines
indp(K) as the maximal exponent sp(K) for which psp(K) | ind(K), and looks
for conditions on two number fields K,K ′ such that indp(K) = indp(K ′).

Dedekind [1] characterized when indp(K) 6= 0 in terms of the form of the
factorization of the ideal (p) in RK . On the other hand, Ore [6] conjectured
and Engstrom [3] proved that the factorization type of (p) in RK is not
sufficient, in general, for deciding what is the actual value of indp(K).

There remain a number of particular cases in which indp(K) can indeed
be decided in terms of the factorization type of (p) in RK : for instance,
Engstrom himself [3] proved that this happens when p splits completely in
K, and later Śliwa [7] generalized this result to the case when p is unramified
in K. Moreover, Nart [5] showed that the mere factorization of (p) in RK
completely determines indp(K) when p splits into an unrestricted number
of primes of degree 1 and a limited number of totally ramified primes.

An important remark in Nart’s paper [5] is that one can determine
indp(K) by studying the Qp-algebra K ⊗Qp. In fact, it can be shown that
indp(K) is nothing else than the index, Ip(K⊗Qp), of K⊗Qp, i.e., the max-
imal power of p which divides ind(α) = [RK⊗Zp : Zp[α]] for all α ∈ RK⊗Zp
(see [5] and [2, Section 2]).

Now, the Qp-algebra K⊗Qp decomposes as a direct sum of fields, K⊗Qp
∼= L(1)⊕ . . .⊕L(n), where the L(i)’s are the completions of K at the primes
lying over p. It is rather easy to see that the index of K⊗Qp depends only on
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the isomorphism classes [L(i)] of the fields in its decomposition, so it is natu-
ral to adopt the notation [K⊗Qp] = n1[L(1)]+. . .+ns[L(s)], where ni denotes
the multiplicity of the class [L(i)] in the decomposition of K⊗Qp. Moreover,
if K/Q is Galois, then the decomposition of K ⊗Qp takes the simpler form
[K ⊗Qp] = n[L] for some integer n and some Galois extension L of Qp.

In a previous paper [2], we described a method for explicitly computing
Ip(n[L]) for all n and all tamely ramified extensions of Qp.

The main object of this paper is to study under which conditions on two
local fields L,L′, tamely ramified over Qp, one can say that

Ip(n[L]) = Ip(n[L′]) for all n ∈ N.(1)

We shall use the approach introduced in [2], where, in particular, we
found that (1) is true for all pairs L,L′ of totally and tamely ramified ex-
tensions of the same degree e. Much more generally, we shall show that, for
any two tamely ramified extensions L and L′ of Qp, (1) holds if the defining
equations of L and L′ are related by an arithmetical condition (Theorem 2).
If, moreover, L and L′ are Galois over Qp, this arithmetical condition is
equivalent to the following: the Galois groups Gal(L/Qp) and Gal(L′/Qp)
are isomorphic (Theorem 1). Finally, these results can be reinterpreted in the
case of global fields. Let K and K ′ be Galois extensions of Q, tamely rami-
fied at a prime p, in which the factorization of p has the same form; if K and
K ′ have isomorphic decomposition groups over p, then indp(K) = indp(K ′)
(Corollary 3).

We remark that the condition Gal(L/Qp) ∼= Gal(L′/Qp) seems indeed
a necessary one. In fact, already in the simplest case when the two Galois
groups are the two non-isomorphic groups of order 4, we have given an
example (see [2, Section 5]) showing that (1) is no longer true (for a more
general discussion, see the comments at the end of the paper).

Moreover, it turns out that if Gal(L/Qp) and Gal(L′/Qp) are isomorphic
groups, then there exists an isomorphism ϕ : Gal(L/Qp) → Gal(L′/Qp)
which satisfies the further condition ϕ(H) = H ′, where H and H ′ are the
inertia groups of L and L′, respectively (Remark 4). Since we use this special
isomorphism in the proof of Theorem 1, we doubt whether the condition
Gal(L/Qp) ∼= Gal(L′/Qp) remains sufficient, in the general case with wild
ramification, in order that (1) holds.

2. Notation and preliminaries. Throughout the paper, p will be a
fixed prime number, and e, f will be positive integers with (e, p) = 1. Also,
we shall let q be the integer pf and we shall choose ζ = ζq−1 to be a fixed
primitive (q− 1)th root of unity. If m is a non-zero integer and r is a prime
number, we shall use the notation νr(m) to denote the largest power of r
dividing m.
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Let Qp be a given algebraic closure of Qp. We denote by |x| the p-adic
valuation of Qp, normalized so that |p| = 1. We shall denote by F the unique
unramified extension of Qp of degree f contained in Qp and by L(e, f) the
set of all (tamely ramified) extensions L of Qp (L ⊂ Qp) with inertial degree
f and ramification index e.

By classical theory (see for instance [4]), each field L ∈ L(e, f) is a totally
and tamely ramified extension of F ; moreover, we can write L = F (π),
where π is a root of the polynomial Xe − ζap for some a ∈ Z. Conversely,
for any integer a the field F [X]/(Xe− ζap) is a tamely and totally ramified
extension of F of degree e, and hence determines an element L ∈ L(e, f) up
to isomorphism (see also Remark 1 below).

We shall write L = La if L can be obtained by adjoining to F a root of
Xe − ζap.

Let ΣLa be the set of embeddings λ : La → Qp. Since F ⊂ La is normal
over Qp, any such λ restricts to an automorphism of F , hence λ(ζ) = ζp

i

for some 0 ≤ i < f . Therefore λ must satisfy

(λ(π))e = λ(πe) = ζap
i
p = ζa(pi−1)πe.

Let ξ be a primitive e(q − 1)th root of unity such that ξe = ζ. It follows
that for any Qp-isomorphism λ : La → Qp there exist indices i, j such
that {

λ(ζ) = ζp
i
,

λ(π) = ξa(pi−1)+j(q−1)π.
(2)

Since L = Qp(ζ, π), equations (2) completely determine the embedding λ.
Calling λjia the embedding defined by (2), we have ΣLa = {λjia | 0 ≤ j < e,
0 ≤ i < f}.

Proposition 1. The field La is a normal extension of Qp if and only
if e | (a(p− 1), q − 1).

Proof. Suppose that La is normal over Qp. Then La is also normal over
F , Gal(La/F ) = 〈σ〉, where σ(π) = ξq−1π. It follows that ξq−1, a primitive
eth root of unity, belongs to F and hence e | q−1. Further, from (2), we find
that λ0,1

a (π) = ξa(p−1)π ∈ La, hence e | a(p− 1).
Conversely, if e | (a(p−1), q−1), one sees immediately that λjia (La) ⊆ La

for all i, j.

Remark 1. Since we have fixed the primitive (q − 1)th root of unity ζ,
the description of the embeddings of La given above shows that La and La′
are Qp-isomorphic if and only if a′ ≡ api (mod (q−1, e)) for some 0 ≤ i < f .
If, moreover, La and La′ are normal over Qp, then they are isomorphic if
and only if a′ ≡ a (mod e).
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Definition 1. Suppose that La is normal over Qp. We define Ga =
Gal(La/Qp), H = Gal(La/F ), K = Gal(F/Qp). Moreover, since both H and
K are cyclic, we shall write H = 〈σ〉 and K = 〈τ〉, where σ(π) = ζ (q−1)/eπ
and τ(ζ) = ζp (here and in the following we identify ζ1/e with ξ). Finally,
we denote by τ the extension of τ to La such that τ(π) = ζa(p−1)/eπ.

Proposition 2. The group Ga has the following presentation:

Ga = 〈σ, τ | σe = 1, τ f = σa, τστ−1 = σp〉.
Proof. It is trivial to check that Ga is generated by σ and τ and that

σe = 1. By induction on i one easily proves that

τ i(π) = ζ
a(p−1)
e

(1+p+...+pi−1)π,

whence τ f (π) = ζa(q−1)/eπ. Since τ f (ζ) = ζ, this yields τ f = σa.
From the equation τ−1(τ(π)) = π we obtain

τ−1(π) = ζ−
a(p−1)
e

pf−1
π

and hence

τστ−1(π) = τσ(ζ−
a(p−1)
e

pf−1
π) = τ(ζ−

a(p−1)
e

pf−1+ q−1
e π)

= ζ−
a(p−1)
e

q+ q−1
e
p+a(p−1)

e π = σp(π).

Since H is a normal subgroup of Ga, we get τστ−1 = σp. Finally, it is
trivial to see that the relations just given completely determine the structure
of Ga.

Corollary 1. Ga is abelian if and only if e | p − 1. If Ga is abelian,
then

Ga ∼= Z/d1Z× Z/d2Z, where d1 =
fe

(f, e, a)
, d2 = (f, e, a).

Proof. The condition for abelianity is clear from Proposition 2. If Ga is
abelian and has two generators, then Ga can be written as a direct product
Ga ∼= Z/d1Z× Z/d2Z, where d1 is the exponent of Ga and d1d2 = ord(Ga).
In our case the exponent of Ga is

exp(Ga) = lcm{ord(σ), ord(τ)} = lcm
{
e,

fe

(e, a)

}
=

fe

(f, e, a)
.

3. Arithmetical conditions for the equivalence of fields. In the
previous section we have seen how we can associate to every integer a an
element La ∈ L(e, f) (up to isomorphism). Now we introduce an equivalence
relation ∼ on the set of integers which will be used in the next section, where
we shall show that Ip(n[La]) depends only on the equivalence class of a.
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Definition 2. We shall say that two integers a and a′ are (e, f)-equiv-
alent , or simply equivalent , (and we shall write a ∼ a′) if and only if

(
q − 1
p− 1

, e, a

)
=
(
q − 1
p− 1

, e, a′
)
.(3)

Remark 2. Condition (3) says that a ∼ a′ if and only if a and a′ gen-
erate the same ideal in Z/dZ, where d =

( q−1
p−1 , e

)
, i.e. if and only if there

exists an integer k with (k, d) = 1 such that

a′ ≡ ka (modd).(4)

Now, this is equivalent to saying that there exists a solution k ∈ Z of (4)
which satisfies the stronger condition (k, dm) = 1 for any fixed integer m. In
fact, the natural projection Z/dmZ→ Z/dZ restricts to a surjective homo-
morphism (Z/dmZ)∗ → (Z/dZ)∗; hence any solution of (4) with (k, d) = 1
can be lifted to a solution with (k, dm) = 1.

In particular we deduce that a ∼ a′ if and only if there exists (s, t, k) ∈ Z3

with (k, e) = 1 such that

a′ + s
q − 1
p− 1

+ te = ka.(5)

Definition 3. We shall say that La, La′ ∈ L(e, f) are equivalent , and
we shall write La ∼ La′ , if a ∼ a′.

We remark that although the integer a determines the field L = La
only up to isomorphism, the definition just given is consistent. In fact, by
Remark 1, if two fields La, La′ ∈ L(e, f) are Qp-isomorphic, then they are
also equivalent.

Lemma 1. Let La/Qp be a normal extension and let a ∼ a′. Then also
La′/Qp is normal.

Proof. By Proposition 1, La/Qp is normal if and only if e | (a(p−1), q−1)
and by (4) this condition is equivalent to e | (a′(p− 1), q − 1).

If a ∼ a′ and La, La′ are normal extensions of Qp, then condition (3)
can be expressed also in a different way. We shall need the following simple
lemma, which we state without proof.

Lemma 2. Let f0 | f and let r be a prime dividing pf0 − 1. Then

νr

(
q − 1
pf0 − 1

)
=




νr(f/f0) + νr(pf0 + 1)− 1 if r = 2, pf0 ≡ 3 (mod 4)

and 2 | (f/f0),
νr(f/f0) otherwise.

Proposition 3. Let La, La′ ∈ L(e, f) be normal over Qp. The following
are equivalent :
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(i) La ∼ La′ ;

(ii)





(2mf, e, a) = (2mf, e, a′), where m = ν2(p+ 1)− 1
if p ≡ 3 (mod 4) and 2 | f ;

(f, e, a) = (f, e, a′) otherwise.

Proof. We shall prove the proposition by showing that, for all primes r
dividing e,

νr

(
q − 1
p− 1

, e, a

)
= νr

(
q − 1
p− 1

, e, a′
)

(6)

⇔
{
νr(2mf, e, a) = νr(2mf, e, a′) if p ≡ 3 (mod 4) and 2 | f ;
νr(f, e, a) = νr(f, e, a′) otherwise.

(7)

If r - p− 1, then, by Proposition 1, νr(e) ≤ νr(a) and νr(e) ≤ νr(a′), hence
both (6) and (7) are satisfied.

If r | p− 1, we apply Lemma 2 with f0 = 1 to obtain




νr(2mf) = νr

(
q − 1
p− 1

)
if p ≡ 3 (mod 4) and 2 | f ;

νr(f) = νr

(
q − 1
p− 1

)
otherwise.

Assume again that La, La′ are normal extensions of Qp. We are now
ready to interpret the arithmetical equivalence (3) in terms of the Galois
groups of La and La′ over Qp.

We shall write Ga = 〈σ, τ〉 as in Proposition 2 and, similarly,

Ga′ = 〈σ′, τ ′ |σ′e = 1, τ ′f = σ′a
′
, τ ′σ′τ ′−1 = σ′p〉.

Theorem 1. Two normal extensions La, La′ ∈ L(e, f) are equivalent if
and only if their Galois groups Ga and Ga′ are isomorphic.

Proof. Suppose that (3) holds, and let (k, s) be as in equation (5). We
explicitly construct an isomorphism ϕ : Ga → Ga′ as follows. Set

ϕ(σ) = σ′k, ϕ(τ) = σ′sτ ′.

We can extend ϕ to Ga by multiplicativity, since it is easy to verify that

ϕ(σe) = 1, ϕ(τ f ) = σ′ak = ϕ(σa), ϕ(τστ−1) = σ′pk = ϕ(σp).

Moreover, Ga′ = 〈ϕ(σ), ϕ(τ)〉 and, since Ga and Ga′ have the same order,
Ga ∼= Ga′ .

Conversely, suppose Ga ∼= Ga′ . Let m = ν2(p+1)−1 as in Proposition 3.
We shall show that, for each prime r, this implies

{
νr(2mf, e, a) = νr(2mf, e, a′) if p ≡ 3 (mod 4) and 2 | f ;
νr(f, e, a) = νr(f, e, a′) otherwise.

(8)
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Clearly, it suffices to consider only those primes r dividing e. If r - p − 1,
then, by Proposition 1, νr(a) ≥ νr(e) and νr(a′) ≥ νr(e), so condition (8) is
automatically satisfied.

Let r | p − 1, and consider first the case when r = 2, p ≡ 3 (mod 4) and
2 | f . We construct a 2-Sylow subgroup of Ga as follows. Let e = 2ν2(e)e2,
f = 2ν2(f)f2 and a = 2ν2(a)a2. Let also b2 be an integer such that a2b2 ≡ 1
(mod 2ν2(e)). Define

σ2 = σe2 and τ2 = τ f2b2e2 ,

and let S2,a = 〈σ2, τ2〉. We have

(9) σ2ν2(e)

2 = 1, τ 2ν2(f)

2 = τ fb2e2 = σ2ν2(a)a2b2e2 = σ2ν2(a)

2 , τ2σ2τ
−1
2 = σk2 ,

where k = pf2b2e2 . Note that, since f2b2e2 is odd, k ≡ 3 (mod 4) and
ν2(pf2b2e2 +1) = ν2(p+1). From (9) it follows that S2,a is a 2-Sylow subgroup
of Ga.

Now remember that, by Proposition 1, ν2(e) ≤ ν2(a) + ν2(p − 1) =
ν2(a) + 1, whence

τ2ν2(f)

2 =
{
σ2ν2(e)−1

2 if ν2(a) = ν2(e)− 1,
1 if ν2(a) ≥ ν2(e).

If ν2(2mf) ≤ ν2(e)−1, then condition (8) is obviously satisfied, hence we may
suppose ν2(2mf) ≥ ν2(e). We now count the elements of S2,a of exponent
2ν2(f). Let g = σx2τ

y
2 ∈ S2,a, where 0 ≤ x < 2ν2(e) and 0 ≤ y < 2ν2(f). We

have

(σx2τ
y
2 )2ν2(f)

= σ
x{1+ky+...+ky(2ν2(f)−1)}
2 τ2ν2(f)y

2 .

If y is even, the number of solutions of (σx2τ
y
2 )2ν2(f)

= 1 does not depend
on a. If y is odd, then

ν2(1 + ky + . . .+ ky(2ν2(f)−1)) = ν2

(
ky2ν2(f) − 1
ky − 1

)
= ν2(2mf),

by Lemma 2. Since we have assumed ν2(2mf) ≥ ν2(e), this implies that, for
y odd and for all x,

(σx2τ
y
2 )2ν2(f)

{ 6= 1 if ν2(a) = ν2(e)− 1,
= 1 if ν2(a) ≥ ν2(e).

(10)

Consider the analogous 2-Sylow subgroup S2,a′ of Ga′ and the analogue
of condition (10) for elements of S2,a′ . If Ga ∼= Ga′ , then S2,a ∼= S2,a′ and
therefore S2,a and S2,a′ have the same number of elements of exponent 2ν2(f).
It follows that either ν2(a) = ν2(a′) = ν2(e)−1 or min{ν2(a), ν2(a′)} ≥ ν2(e).
In both cases condition (8) is satisfied.

For the remaining cases, we shall consider the maximal r-power dividing
the order of elements of Ga, νr(Ga)=maxg∈Ga νr(ord(g)). Let g=σxτ y∈Ga,
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where 0 ≤ x < e and 0 ≤ y < f . Assume first that y 6= 0, and let (y, f) = f0,
y = f0z, where (z, f/f0) = 1. The least power of g that belongs to the sub-
group generated by σ is gf/f0. By simple calculations as above, we get

gf/f0 = σ
x qz−1
pf0z−1

+az

and hence

ord(g) =
f

f0
· e(

x
qz − 1
pf0z − 1

+ az, e

) .

Lemma 3. Let f0 < f be fixed. Then the maximum value of ord(g) is
equal to

f

f0
· e(

q − 1
pf0 − 1

, a, e

) .

Proof. Since (z, f/f0) = 1, we have (pf0z − 1, q − 1) = pf0 − 1. Now
pf0z − 1 | qz − 1 = (q − 1) q

z−1
q−1 , whence

pf0z − 1
pf0 − 1

∣∣∣∣
qz − 1
q − 1

or, equivalently,
q − 1
pf0 − 1

∣∣∣∣
qz − 1
pf0z − 1

.

Therefore, (
q − 1
pf0 − 1

, a, e

) ∣∣∣∣
(
x
qz − 1
pf0z − 1

+ az, e

)

for all x and all z.
On the other hand, let z = 1 and choose x such that, for all primes r

dividing e,

x ≡





1 (mod r) if νr

(
q − 1
pf0 − 1

)
< νr(a),

0 (mod r) if νr

(
q − 1
pf0 − 1

)
≥ νr(a).

With this choice we have, for r | e,

νr

(
x
q − 1
pf0 − 1

+ a, e

)
= min

{
νr

(
q − 1
pf0 − 1

)
, νr(a), νr(e)

}

and the lemma follows.

Consider the maximal r-power dividing the order of g. By Lemma 2, and
taking into account that we have already excluded the case r = 2, p ≡ 3
(mod 4) and 2 | f , Lemma 3 translates into

max
y 6=0

νr(ord(σxτ y)) = max
f0<f

{
νr

(
f

f0

)
+ νr(e)− νr

(
q − 1
pf0 − 1

, e, a

)}

= max
f0<f

{
νr(e), νr

(
f

f0

)
, νr

(
f

f0

)
+ νr(e)− νr(a)

}
.
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Clearly, this maximum is reached for f0 = 1. Since, moreover, if y = 0 then
ord(σx) | e, we get

νr(Ga) = max{νr(e), νr(f), νr(f) + νr(e)− νr(a)}.
Considering the analogous equation for νr(Ga′), we have
{
νr(Ga)=νr(Ga′)=max{νr(e), νr(f)}⇔νr(a), νr(a′)≥min{νr(f), νr(e)},
νr(Ga)=νr(Ga′)>max{νr(e), νr(f)}⇔νr(a)=νr(a′)<min{νr(f), νr(e)}.

In any case, condition (8) is satisfied.

Remark 3. We note that in the abelian case, when p ≡ 3 (mod 4) and
2 | f we have (2mf, e, a) = (f, e, a). In fact, since e | p − 1, we have ν2(e) ≤
1 ≤ ν2(f) < ν2(2mf).

Remark 4. For Galois groups of normal extensions of Qp one could
also consider the following equivalence relation, more restrictive than pure
isomorphism.

Let G and G′ be the Galois groups of two normal extensions of Qp. Let
G ⊇ G0 ⊃ G1 ⊃ . . . ⊃ Gh = {1} and G′ ⊇ G′0 ⊃ G′1 ⊃ . . . ⊃ G′h′ = {1}
be the chains of the ramification groups of G and G′, respectively. Then we
call G and G′ strongly isomorphic if h = h′ and there exists an isomorphism
ϕ : G→ G′ such that ϕ(Gi) = G′i for all i = 0, . . . , h.

The explicit isomorphism constructed in the proof of Theorem 1 shows
that, in the case of tamely ramified Galois extensions of Qp, two Galois
groups are isomorphic if and only if they are strongly isomorphic.

In the proof of Theorem 1, we have constructed from a solution (s, k) of
the congruence

a′ + s
q − 1
p− 1

≡ ka (mod e)(11)

an isomorphism ϕ = ϕ(s,k) : G→ G′ such that

ϕ(σjτ i) = σ′kj+s
pi−1
p−1 τ ′i.

More generally, if a ∼ a′, from a solution (s, k) of (11) we can construct a
map ϕ = ϕ(s,k) : ΣLa → ΣLa′ by mimicking the case of normal extensions;
namely, we define

ϕ(λjia ) = λ
kj+s p

i−1
p−1 ,i

a′ .(12)

Proposition 4. If a ∼ a′ are related by (11), then the map ϕ(s,k) is
one-to-one.

Proof. It is enough to observe that the map Z/eZ → Z/eZ given by
j 7→ kj+s(pi−1)/(p−1) is one-to-one, and this is true because (k, e) = 1.
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4. Invariance of the index under equivalence of fields. We shall
now apply the results of the previous sections to obtain a sufficient local
condition in order that two number fields have the same index (Theorem 2).
When the number fields are Galois over Q, we shall reinterpret this condition
in terms of their Galois groups (Corollary 3). Finally, at the end of the paper
we shall briefly discuss the necessity of our local condition in order that the
conclusion of Theorem 2 holds true.

We first recall briefly how the p-component of the index of a number
field K can be described in terms of the completions of K at the primes
lying over p.

Let L be a finite extension of Qp and denote by OL the integral closure
of Zp in L. Let α, β be integral generators of L and denote by fα and fβ
their minimal polynomials over Zp. We let disc(α) be the discriminant of fα,
Res(α, β) be the resultant of fα and fβ and ind(α) = [OL : Zp[α]]. Finally, we
put discp(α) = |disc(α)|, indp(α) = |ind(α)| and Resp(α, β) = |Res(fα, fβ)|
(here |0| =∞).

Definition 4. Let L(1), . . . , L(n) be finite extensions of Qp. For α =
(α(1), . . . , α(n)) ∈ OL(1) ⊕ . . .⊕OL(n) , where α(i) is a generator of L(i) for all
i, we define

Ip(α) =
{ ∑

1≤i<j≤n
Resp(α(i), α(j)) +

n∑

i=1

indp(α(i))
}
.

We also put Ip(α) =∞ when some of the α(i) is not a generator.

It is immediate to verify that the set of values of Ip(α) depends only on
the isomorphism class of the fields L(i).

Consider the set E of isomorphism classes [L] of finite extensions of Qp in
Qp. For each [L] ∈ E , denote by OL the ring of integers of any field in [L]. Let
E be the free abelian monoid generated by E . For Γ = [L(1)]+ . . .+[L(n)] ∈ E
we define

Ip(Γ ) = min
α∈O

L(1)⊕...⊕OL(n)

Ip(α).

In the particular case when Γ = n[L] we can also write

Ip(n[L]) = min
A⊂OL
|A|=n

Ip(A).(13)

In fact, in this case an n-tuple of nOL is an ordered subset of cardinality n
of OL and

Ip({α(1), . . . , α(n)}) =
n∑

i=1

indp(α(i)) +
∑

1≤i<j≤n
Resp(α(i), α(j))(14)

is clearly symmetric in the α(i).
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We associate to each number field K a unique element of E ,

[K ⊗Qp] = n1[L1] + . . .+ ns[Ls],

where ni is the multiplicity of the isomorphism class [Li] in the decomposi-
tion of K ⊗Qp.

With this notation we have

Proposition 5 (Nart). For every number field K,

indp(K) = Ip([K ⊗Qp]).
Proof. See [5, Thm. 1].

Corollary 2. Let K be a Galois number field , and let L be the com-
pletion of K at any prime over p. Then there exists n ∈ N such that

indp(K) = Ip(n[L]).

Proof. It is enough to observe that the completions of K at the primes
lying over p are all isomorphic; hence [K⊗Qp] = n[L], where n is the number
of distinct primes of OK over p, and Proposition 5 applies.

We can now state our main result on the index of local fields.

Theorem 2. Let L,L′ ∈ L(e, f). If L ∼ L′, then Ip(n[L]) = Ip(n[L′])
for each n > 0.

We remark that, if either e or f is equal to 1, then (5) is trivially satisfied
for all a, a′. Hence, in particular, Theorem 2 includes the analogous result
proved in [2] for the case of totally ramified extensions.

Proof. Let a, a′ be such that L = La and L′ = La′ , and let π ∈ L, π′ ∈ L′
be roots of the polynomials Xe− ζap,Xe − ζa′p, respectively. Since L ∼ L′,
then a ∼ a′ and (5) holds.

In the following we fix once and for all a solution (s, t, k) ∈ Z3 of (5)
with (k, e(q − 1)) = 1.

We recall that each element α ∈ OL can be written uniquely as a series
α =

∑∞
h=0 αhπ

h, where either αh = 0 or αh = ζxh for some xh ∈ Z. If
H = H(α) is the set of indices h for which αh 6= 0, we shall also write
α =

∑
h∈H ζ

xhπh.
We give some preliminary lemmas.

Lemma 4. The map ψ : OL → OL′ defined by

ψ
(∑

h∈H
ζxhπh

)
=
∑

h∈H
ζkxh+thπ′h

is one-to-one.

Proof. We can write ψ(α) =
∑∞

h=0 ψh(αh)π′h, where ψh(0) = 0 and
ψh(ζxh) = ζkxh+th for all h ≥ 0, xh ∈ Z. Since (k, q − 1) = 1, all maps
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ψ̃h : Z/(q − 1)Z → Z/(q − 1)Z defined by ψ̃h(x) = kx + th are one-to-one,
and the lemma follows immediately.

Lemma 5. Let λ1, λ2 ∈ ΣLa , and let α(1), α(2) ∈ OLa . Then for ϕ =
ϕ(s,k) we have

|λ1(α(1))− λ2(α(2))| = |ϕ(λ1)(ψ(α(1)))− ϕ(λ2)(ψ(α(2)))|.
In particular , α and ψ(α) have the same degree over Qp for all α ∈ La.

Proof. For i = 1, 2, let α(i) =
∑∞

h=0 α
(i)
h π

h. We have

λ1(α(1))− λ2(α(2)) =
∞∑

h=0

(λ1(α(1)
h πh)− λ2(α(2)

h πh)),

ϕ(λ1)(ψ(α(1)))− ϕ(λ2)(ψ(α(2)))

=
∞∑

h=0

(ϕ(λ1)(ψh(α(1)
h )πh)− ϕ(λ2)(ψh(α(2)

h )πh)).

By [2, Lemma 3], either λ1(α(1)
h πh)−λ2(α(2)

h πh) is equal to zero or its p-adic

valuation is equal to h/e, and the same is true for ϕ(λ1)(ψh(α(1)
h )πh) −

ϕ(λ2)(ψh(α(2)
h )πh). Hence it suffices to prove that

(15) λ1(ζx
(1)
h πh) = λ2(ζx

(2)
h πh)

⇔ ϕ(λ1)(ψ(ζx
(1)
h πh)) = ϕ(λ2)(ψ(ζx

(2)
h πh)).

Let λ1 = λi1j1a , λ2 = λi2j2a . An explicit computation gives that the left-hand
side of (15) holds if and only if j1, j2, i1, i2, x

(1)
h , x

(2)
h satisfy

(16) e(x(1)
h pi1 − x(2)

h pi2) + ah(pi1 − pi2) + (j1 − j2)h(q − 1)

≡ 0 (mod e(q − 1))

and the right-hand side of (15) holds if and only if j1, j2, i1, i2, x
(1)
h , x

(2)
h

satisfy

(17) e[(kx(1)
h + ht)pi1 − (kx(2)

h + ht)pi2 ] + a′h(pi1 − pi2)

+
[
k(j1 − j2) + s

pi1 − pi2
p− 1

]
h(q − 1) ≡ 0 (mod e(q − 1)).

Finally, it is easy to check that, multiplying (16) by k and using (5), we
obtain (17). Since (k, e(q − 1)) = 1, equations (16) and (17) are equivalent.

As to the last statement, it is sufficient to note that (15) implies that
λ1(α) = λ2(α) if and only if ϕ(λ1)(ψ(α)) = ϕ(λ2)(ψ(α)).

Lemma 6. Let A ⊂ OL be finite. Then Ip(A) = Ip(ψ(A)).
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Proof. Let A = {α(1), . . . , α(n)}. By Lemma 5, A contains a non-genera-
tor of La if and only if ψ(A) contains a non-generator of La′ . Then it suffices
to consider the case when the α(i) are all generators. We have

Ip(A) = Ip({α(1), . . . , α(n)}) =
n∑

i=1

indp(α(i)) +
∑

1≤i<j≤n
Resp(α(i), α(j)).

We recall that

indp(α) =
|disc(α)| − (e− 1)

2
=
e
∑

λ∈ΣLa |λ(α)− α| − (e− 1)

2
(18)

and
Resp(α(i), α(j)) =

∑

λ1,λ2∈ΣLa

|λ1(α(i))− λ2(α(j))|.(19)

By Lemma 5, we have indp(α(i)) = indp(ψ(α(i))), Resp(α(i), α(j)) =
Resp(ψ(α(i)), ψ(α(j))) and the lemma follows.

We are now ready to conclude the proof of the theorem. Take the min-
imum of Ip(A) as A varies over all subsets of OL with n elements. By (13)
and Lemma 6 we get

Ip(n[L]) = min
A⊂OL
|A|=n

Ip(A) = min
A′⊂O′L
|A′|=n

Ip(A′) = Ip(n[L′]).

The next corollary gives an application of Theorem 2 to the case of global
fields.

Corollary 3. Let n, e, f ∈ N and suppose that p - e. Let K,K ′ be Ga-
lois extensions of Q of degree nef . Assume that : (i) pRK and pRK′ have
the same factorization type (P1 . . . Pn)e; (ii) the decomposition groups of the
primes over p in OK and OK′ are isomorphic. Then

indp(K) = indp(K ′).

Proof. Under our hypotheses, we have [K ⊗Qp] = n[L] and [K ′⊗Qp] =
n[L′] for some L,L′ ∈ L(e, f). Now, L and L′ are normal over Qp and
Gal(L/Qp) (resp. Gal(L′/Qp)) is isomorphic to the decomposition group of
any prime of OK (resp. OK′) over p. Hence L ∼ L′ and Theorem 2 applies.

We have given in [2] a recursive algorithm for computing Ip(n[L]) when
L is tamely ramified over Qp. By Theorem 2, the value of Ip(n[La]) depends
only on the equivalence class of a, but unfortunately we do not have an
expression in closed terms for the function Ip(n[La]) = Ip(n; e, f, [a]) (where
[a] denotes the equivalence class of a).

We are not able to prove that if La 6∼ La′ , then there exists an integer n
such that Ip(n[La]) 6= Ip(n[La′ ]); however, we remark that the actual com-
putation of Ip(n[L]) with our algorithm requires, essentially, the knowledge
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of Ip(mE [E]) for all subfields E of La of type E = Qp(ζxπh) and suitable
integers mE < n depending on E, and that the lattice of these subfields
depends on the equivalence class of a.

In fact, let S(L) be the set of subfields E of L of type E = Qp(ζxπh),
where h ≥ 0 and 0 ≤ x < q − 1. We have the following

Proposition 6. There exists a one-to-one map between S(La) and
S(La′) which preserves the ramification index and the inertial degree if and
only if La ∼ La′.

Proof. If La ∼ La′ , then the map ψ : S(La) → S(La′) defined by
ψ(Qp(ζxπh)) = Qp(ψ(ζxπh)) is one-to-one and preserves the degree, by
Lemmas 4 and 5.

Moreover, the ramification index of both Qp(ζxπh) and Qp(ψ(ζxπh)) is
e/(h, e), and therefore also their inertial degrees coincide.

On the other hand, let
(
e, q−1

p−1

)
= d and let m be any divisor of d. A

field Qp(ζxπh) in S(La) is totally ramified over Qp of degree m if and only
if (e, h) = e/m and x is a solution of xm + ah′ ≡ 0

(
mod q−1

p−1

)
, where

h′ = hm/e. Now, the last congruence is solvable if and only if m | a and
therefore S(La) contains a totally ramified subextension of degree m if and
only if a is a multiple of m. It follows that if La and La′ are not equivalent,
then there is no degree-preserving bijection between the totally ramified
extensions of Qp contained in S(La) and S(La′).

In view of the last proposition, we can interpret the example of non-
equivalent fields given in [2], where p = 3 and La = L0, La′ = L1 are
elements of L(2, 2), as follows: L0 has two totally ramified subextensions
of degree 2, L1 has no such subextension, and we get different values for
I3(n[L0]) and I3(n[L1]) as soon as the algorithm requires to investigate the
existence of such subfields.

More generally, if La 6∼ La′ , our algorithm says that, for n sufficiently
large, the two indices must be computed quite differently, and it seems very
unlikely to us that they can nevertheless be the same for all n.

Acknowledgements. We wish to thank the referee for his/her helpful
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