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The genera representing a positive integer

by

Pierre Kaplan (Nancy) and Kenneth S. Williams (Ottawa)

1. Introduction. A nonsquare integer d with d ≡ 0 or 1 (mod 4) is
called a discriminant . Let H(d) denote the group of strict equivalence classes
of primitive, integral, binary quadratic forms (a, b, c) = ax2 + bxy + cy2 of
discriminant b2−4ac = d under Gaussian composition. Only positive-definite
forms are used if d < 0. H(d) is a finite abelian group called the form class
group. The order |H(d)| of H(d) is called the form class number and is
denoted by h(d). The class of the form (a, b, c) is denoted by [a, b, c]. The
conductor of the discriminant d is the largest positive integer f such that
d/f2 is a discriminant. The fundamental discriminant associated with d
is ∆ = d/f2. Let G(d) denote the genus group of H(d), that is, G(d) =
H(d)/H2(d). The order |G(d)| of G(d) is a power of 2 so that there exists a
nonnegative integer t(d) such that

|G(d)| = 2t(d).(1)

The quantity 2t(d) is the number of classes in H(d) whose order divides 2,
that is, the number of ambiguous classes in H(d). The value of t(d) is given
by [1, §153, pp. 409–413; §151, pp. 400–407], [2, p. 277]

t(d) =




ω(d) if d ≡ 0 (mod 32),
ω(d)− 2 if d ≡ 4 (mod 16),
ω(d)− 1 otherwise,

(2)

where ω(d) denotes the number of distinct prime factors of d. We do not use
the explicit value of t(d) in any of the proofs in this paper but we do make
use of it in the examples in Section 4.

Let n denote a positive integer. We say that n is represented by the
form (a, b, c) if there exist integers x and y such that n = ax2 + bxy + cy2.
The representation is said to be proper if (x, y) = 1. If n is represented by
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(a, b, c) then n is represented by (a1, b1, c1) for any (a1, b1, c1) ∈ [a, b, c] so
we say that n is represented by the class [a, b, c]. Further, we say that n is
represented by the genus G of G(d) if n is represented by at least one class
in G. We let

G(n, d) = {G ∈ G(d) | n is represented by G}, g(n, d) = |G(n, d)|,(3)

so that

g(n, d) = number of genera of discriminant d representing n.(4)

Gauss’s original definition of genera was by means of generic characters
(see for example [1, §§121–122, pp. 313–319]), and was done in such a way
that if n is prime to d and is represented by some class of discriminant d
then n is represented by exactly one genus of discriminant d. A main result
of genus theory (see [1, §158, pp. 432–433]) is that the genera defined as
we did above and the genera defined through generic characters coincide, so
that we have

Lemma 1. If n is represented by a class of discriminant d and (n, d) = 1
then g(n, d) = 1.

We have two aims in this paper. First we show that G(n, d) is always a
coset of a subgroup of G(d) and then we give an explicit formula for g(n, d)
without the restriction (n, d) = 1. Before stating our result, we give some
more notation.

It is convenient to define the positive integers M , Q and U as follows:

M = M(n, d) is the largest integer such that M 2 |n, M | f,(5)

U = U(n, d) =
∏

p|d, p-f
pvp(n),(6)

Q = Q(n, d) = U(n/M2, d/M2) =
∏

p|d/M2, p-f/M
pvp(n/M2),(7)

where pvp(k) denotes the largest power of the prime p dividing the nonzero
integer k. A prime p is said to be a null prime with respect to n and d if

vp(n) ≡ 1 (mod 2), vp(n) < 2vp(f).(8)

The set of all null primes with respect to n and d is denoted by Null(n, d).
If Null(n, d) 6= ∅ it is shown in [2, Proposition 4.1] for d < 0 that n is not
represented by any form of discriminant d. The proof is exactly the same
for d > 0. It is also shown in [2, Lemma 4.1(a)] for d < 0 that if Null(n, d)
= ∅ then

(n/M2, f/M) = 1(9)
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and
(n/M2Q, d/M2) = 1.(10)

Again the proof is independent of the sign of d.
Let m be a positive integer dividing f and let K be a class in H(d).

The following assertions can be deduced from [1, §§150–151, pp. 397–407],
[2, Lemma 6.1], and [3, Theorem 1] in the equivalent language of ideals.

(i) K contains a form (a, b, c) with (a,m) = 1, m | b and m2 | c;
(ii) the mapping θm : H(d)→ H(d/m2) given by

θm([a, b, c]) = [a, b/m, c/m2]

is a surjective homomorphism.

As θm(H2(d)) ⊆ H2(d/m2), the surjective homomorphism

θm : H(d)→ H(d/m2)

induces a surjective homomorphism

θ̃m : G(d)→ G(d/m2)(11)

by
θ̃m(KH2(d)) = θm(K)H2(d/m2).(12)

We prove

Theorem. Suppose that the positive integer n is represented by the
genus G ∈ G(d). Then the set G(n, d) of genera of discriminant d which
represent n is given by

G(n, d) = G ker θ̃M

and the number g(n, d) of genera representing n by

g(n, d) = 2t(d)−t(d/M2),

where M is defined in (5), θ̃M in (11) and (12), t(d) in (1) (see also (2)).

The Theorem is proved in Section 3 after some lemmas are proved in
Section 2. Three examples illustrating the Theorem are given in Section 4.

2. Some lemmas. We begin by proving the following result which is
central to everything that we do.

Lemma 2. Let G ∈ G(d). The positive integer n is represented by G if
and only if n/M2 is represented by θ̃M (G).

Proof. Suppose that n is represented by the genus G ∈ G(d). Then there
exists a class K ∈ G which represents n. By property (i) above, the class K
contains a form (a, b, c) with

(a,M) = 1, M | b, M2 | c.(13)
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As (a, b, c) represents n, there exist integers x and y such that

n = ax2 + bxy + cy2.(14)

Completing the square in (14), we obtain

4an = (2ax+ by)2 − dy2.(15)

As M2 |n and M2 | d (by (5)), we see from (15) that M | 2ax+ by. As M | b
we have M | 2ax. As (a,M) = 1 we deduce that M | 2x. If M is odd we have
M |x. If M is even we have M1 |x, where M1 = M/2. Then, from

4(n/M2) = a(x/M1)2 + 2(b/M)(x/M1)y + 4(c/M2)y2,

we deduce that 2 | a(x/M1)2. As 2 |M and (a,M) = 1 we have (a, 2) = 1 so
that 2 |x/M1. Thus M |x. Hence in both cases we have M |x and so

n/M2 = a(x/M)2 + (b/M)(x/M)y + (c/M2)y2,

showing that n/M2 is represented by

[a, b/M, c/M2] = θM ([a, b, c]) ∈ θ̃M ([a, b, c]H2(d)) = θ̃M (G).

Now suppose that n/M2 is represented by the class L of the genus
θ̃M (G) ∈ G(d/M2). Let K1 ∈ H(d) be such that G = K1H

2(d), so that

LH2(d/M2) = θ̃M (G) = θM (K1)H2(d/M2).

Thus there exists L1 ∈ H(d/M2) such that L = θM (K1)L2
1. As θM : H(d)→

H(d/M2) is surjective there exists K2 ∈ H(d) such that θM (K2) = L1 so
that setting K = K1K

2
2 we have L = θM (K). By property (i) we can choose

K = [a, b, c] with (a,M) = 1, M | b, M 2 | c so that

L = θM (K) = θM ([a, b, c]) = [a, b/M, c/M2].

As L represents n/M2 there exist integers x and y such that n/M 2 = ax2 +
(b/M)xy + (c/M2)y2 so that n = aX2 + bXy + cy2 with X = xM . Thus n
is represented by [a, b, c] = K and so by the genus G.

Lemma 3. G(n, d) = θ̃−1
M (G(n/M2, d/M2)).

Proof. Let G∈G(n, d). Then G∈G(d) represents n. Hence, by Lemma 2,
n/M2 is represented by θ̃M (G) ∈ G(d/M2). Thus θ̃M (G) ∈ G(n/M2, d/M2)
so that G ∈ θ̃−1

M (G(n/M2, d/M2)). We have shown that

G(n, d) ⊆ θ̃−1
M (G(n/M2, d/M2)).(16)

Now suppose that G ∈ θ̃−1
M (G(n/M2, d/M2)), so that G ∈ G(d) and

θ̃M (G) ∈ G(n/M2, d/M2). Hence θ̃M (G) ∈ G(d/M2) represents n/M2. By
Lemma 2 we deduce that n is represented by G. Hence G ∈ G(n, d), proving
that

θ̃−1
M (G(n/M2, d/M2)) ⊆ G(n, d).(17)

The required result follows from (16) and (17).



Genera representing a positive integer 357

Lemma 4. Let p be a prime with p | d, p - f . Then there exists a unique
class of H(d) representing p.

Proof. We first show that there is a class of H(d) representing p. If
p is odd, as p | d and p - f , we have p ‖∆ and p ‖ d. If d ≡ 0 (mod 4)
then [p, 0,−d/(4p)] ∈ H(d) represents p. If d ≡ 1 (mod 4), then the class
[p, p, (p2 − d)/(4p)] ∈ H(d) represents p. If p = 2, as 2 | d and 2 - f , we have
2 |∆ so that 4 |∆ and ∆/4 ≡ 2 or 3 (mod 4). If ∆/4 ≡ 2 (mod 4) then
d ≡ 8 (mod 16) and [2, 0,−d/8] ∈ H(d) represents 2. If ∆/4 ≡ 3 (mod 4)
then d ≡ 12 (mod 16) and [2, 2, (4− d)/8] ∈ H(d) represents 2.

We now show that the class of H(d) representing p is unique. Let K be
a class representing p. As p is a prime any such representation of p by K
is proper so we have K = [p, b, c] with b2 − 4pc = d. If p is odd and d ≡ 0
(mod 4) then b ≡ 0 (mod 2p) so that K = [p, 0,−d/(4p)]. If p is odd and
d ≡ 1 (mod 4) then b ≡ p (mod 2p) so that K = [p, p, (p2− d)/(4p)]. If p = 2
and d ≡ 8 (mod 16) then b ≡ 0 (mod 4) so that K = [2, 0,−d/8]. If p = 2
and d ≡ 12 (mod 16) then b ≡ 2 (mod 4) so that K = [2, 2, (4− d)/8].

As an immediate consequence of Lemma 4 we have

Corollary 1. Let p be a prime with p | d, p - f . Then there exists a
unique genus of G(d) representing p.

We denote the unique genus representing p by 〈p〉. As each prime p
dividing U (see (6)) satisfies p | d, p - f , we can define 〈U〉 ∈ G(d) by

〈U〉 =
∏

pα ‖U
〈p〉α.

The mapping on G(d) given by G 7→ 〈U〉G is a bijection.

Lemma 5. Let n be a positive integer and let G ∈ G(d). Then n is
represented by G if and only if n/U is represented by 〈U〉G.

Proof. Let p be a prime dividing d and n but not f . We show that
〈p〉G ∈ G(d) represents n/p if and only if G ∈ G(d) represents n. The
assertion of the lemma then follows by repeatedly applying this result to all
the primes p dividing U .

Suppose that G represents n. As p |n we have n = pn1 for some inte-
ger n1. Thus the genus 〈p〉G represents pn = p2n1. Let K be a class in the
genus 〈p〉G which represents p2n1. It is easy to show that K contains a form
(a, bp, cp), where p divides neither a nor c (see [2, Lemma 7.1]). Thus there
exist integers x and y such that

n1p
2 = ax2 + bpxy + cpy2.

Clearly p |x. Then p2 |n1p
2−ax2−bpxy = cpy2 so that as p - c we have p | y.

Hence
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n1 = a(x/p)2 + bp(x/p)(y/p) + cp(y/p)2

so that n/p is represented by [a, bp, cp] ∈ 〈p〉G.
Suppose now that 〈p〉G represents n/p = n1. As 〈p〉 represents p, we see

that 〈p〉2G represents pn1 = n. But G2
1 = principal genus for any genus G1

so that 〈p〉2G = G represents n.

3. Proof of Theorem. As n is represented by some form of discrimi-
nant d, we see by Lemma 2 that n/M 2 is represented by some form of dis-
criminant d/M2 and then by Lemma 5 that n/(M 2Q) is represented by some
form of discriminant d/M 2. Also as n is represented by some form of discrim-
inant d, we have Null(n, d) = ∅. Hence, by (10), we have (n/(M 2Q), d/M2) =
1. Thus, by Lemma 1, we deduce that g(n/(M 2Q), d/M2) = 1 so that

G(n/(M2Q), d/M2) = {G0}(18)

for some genus G0 ∈ G(d/M2). Let G1 = 〈Q〉G0 ∈ G(d/M2). Clearly
〈Q〉G1 = 〈Q〉2G0 = G0. Thus n/(M2Q) is represented by 〈Q〉G1. Hence,
by Lemma 5, we deduce that n/M 2 is represented by G1 ∈ G(d/M2).
Thus G1 ∈ G(n/M2, d/M2). Suppose G2 (6= G1) ∈ G(n/M2, d/M2). Then
G2 ∈ G(d/M2) represents n/M2. Hence, by Lemma 5, n/(M2Q) is repre-
sented by 〈Q〉G2 ∈ G(d/M2), that is 〈Q〉G2 ∈ G(n/(M2Q), d/M2). Hence,
by (18), we have 〈Q〉G2 = G0 so that G2 = 〈Q〉G0 = G1, a contradiction.
Hence

G(n/M2, d/M2) = {G1}.
Then, by Lemma 3, we have

G(n, d) = θ̃−1
M (G(n/M2, d/M2)) = θ̃−1

M ({G1}).
As θ̃M : G(d)→ G(d/M2) is a surjective homomorphism, there exists G′ ∈
G(d) such that θM (G′) = G1. Hence

G(n, d) = θ̃−1
M ({G1}) = G′ ker θ̃M

is a coset of the subgroup ker θ̃M of G(d). Since G ∈ G(n, d) we have
G(n, d) = G ker θ̃M as asserted.

Finally,

g(n, d) = |G(n, d)| = |G ker θ̃M | = |ker θ̃M | =
|G(d)|
|G(d/M2)| = 2t(d)−t(d/M2).

As a special case of the Theorem, we have

Corollary 2. If the largest square dividing both n and f 2 is 1 then
g(n, d) = 1.

Thus, in particular, if d is fundamental or (n, f) = 1 we have g(n, d) = 1.
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4. Examples. We give three examples to illustrate the Theorem.

Example 1. We take n = 8 and d = −288 = −25 · 32 ≡ 0 (mod 32).
Here

ω(d) = 2, ∆ = −8, f = 6, M = 2, t(d) = ω(d) = 2,

and

d/M2 = −72 = −23 · 32 ≡ 8 (mod 16), t(d/M2) = ω(d/M2)− 1 = 1.

There are 2t(d) = 22 = 4 genera of discriminant −288. We have

G(−288) = {I,A,B,AB} ' Z2 × Z2,

where

I = {[1, 0, 72]}, A = {[4, 4, 19]}, B = {[8, 0, 9]}, AB = {[8, 8, 11]},
and

A2 = B2 = (AB)2 = I.

There are 2t(d/M
2) = 21 = 2 genera of discriminant −72. We have

G(−72) = {I1, A1} ' Z2,

where
I1 = {[1, 0, 18]}, A1 = {[2, 0, 9]}, A2

1 = I1.

The surjective homomorphism θ̃2 : G(−288)→ G(−72) is such that

θ̃2(I) = θ̃2(A) = I1, θ̃2(B) = θ̃2(AB) = A1,

so that ker θ̃2 = {I,A}. As B represents 8 (8 = 8 · 12 + 9 · 02) we have by
the Theorem

G(8,−288) = B ker θ̃2 = {B,AB}.
Hence g(8,−288) = 2.

Example 2. We take n = 640 = 27 · 5 and d = −1984 = −26 · 31 ≡ 0
(mod 32). In this case we have

ω(d) = 2, ∆ = −31, f = 8, M = 8, t(d) = ω(d) = 2,

and
d/M2 = −31 ≡ 1 (mod 4), t(d/M 2) = ω(d/M2)− 1 = 0.

There are 2t(d) = 22 = 4 genera of discriminant −1984. We have

G(−1984) = {I,A,B,AB} ' Z2 × Z2,

where

I = {[1, 0, 496], [20,±4, 25]},
A = {[4, 4, 125], [5,±4, 100]},
B = {[16, 0, 31], [7,±2, 71]},

AB = {[16, 16, 35], [19,±12, 28]}.
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As 2t(d/M
2) = 20 = 1 there is just one genus of discriminant −31. We have

G(−31) = {I1},
where

I1 = {[1, 1, 8]}.
The surjective homomorphism θ̃8 : G(−1984)→ G(−31) is such that θ̃8(G)
= I1 for all G ∈ G(−1984) so that ker θ̃8 = {I,A,B,AB}. As I represents
640 (640 = 122 + 496 · 12) we have by the Theorem

G(640,−1984) = I ker θ̃8 = {I,A,B,AB}.
Hence g(640,−1984) = 4.

Example 3. We take n = 32 = 25 and d = 960 = 26 ·3 ·5 ≡ 0 (mod 32).
Here we have

ω(d) = 3, ∆ = 60, f = 4, M = 4, t(d) = ω(d) = 3,

and

d/M2 = 60 = 22 · 3 · 5 ≡ 12 (mod 16), t(d/M 2) = ω(d/M2)− 1 = 2.

There are 2t(d) = 23 = 8 genera of discriminant 960. We have

G(960) = {I,A,B,C,AB,AC,BC,ABC} ' Z2 × Z2 × Z2,

where
I = {[1, 0,−240]}, A = {[−3, 0, 80]},
B = {[−1, 0, 240]}, C = {[4, 4,−59]},

AB = {[3, 0,−80]}, AC = {[−7, 6, 33]},
BC = {[−4, 4, 59]}, ABC = {[7, 6,−33]}.

As 2t(d/M
2) = 22 = 4 there are four genera of discriminant 60. We have

G(60) = {I1, A1, B1, A1B1},
where

I1 = {[1, 0,−15]}, A1 = {[−3, 0, 5]},
B1 = {[−1, 0, 15]}, A1B1 = {[3, 0,−5]}.

The surjective homomorphism θ̃4 : G(960)→ G(60) is given by

θ̃4(A) = A1, θ̃4(B) = B1, θ̃4(C) = I1,

so that ker θ̃4 = {I, C}. As A represents 32 (32 = −3 · 42 + 80 · 12) we have
by the Theorem

G(32, 960) = A ker θ̃4 = {A,AC}.
Hence g(32, 960) = 2.
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Département de Mathématiques
Université de Nancy I
54506 Vandœuvre-lès-Nancy, France
E-mail: pierre.kaplan@wanadoo.fr

Centre for Research in Algebra and Number Theory
School of Mathematics and Statistics

Carleton University
Ottawa, Ontario K1S 5B6, Canada
E-mail: williams@math.carleton.ca

Received on 12.1.2001
and in revised form on 23.7.2001 (3949)


