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1. Introduction. Let F be an algebraic function field over a finite field
Fq. The number N of rational places of F is bounded by the Hasse–Weil
bound

|N − (q + 1)| ≤ 2gq1/2,

where g is the genus of F . For q a square, F is said to be a maximal function
field if N reaches the Hasse–Weil upper bound, i.e. N = q+ 1 + 2gq1/2. If F
is a maximal function field over Fq, then all subfields Fq ( E ⊂ F are also
maximal over Fq (see [La]). Maximal function fields are also of interest in
coding theory ([T-V], [St], [N-X]).

Let X be a Deligne–Lusztig curve of Ree type defined over Fq, q = 32s+1,
s ≥ 1, and F be its function field. Then F/Fq is isomorphic to Fq(x, y1, y2)
defined by

yq1 − y1 = xq0(xq − x),(1.1)

yq2 − y2 = x2q0(xq − x),(1.2)

where q0 = 3s. The function field F has the following properties which
uniquely determine it ([H-P]):

• F/Fq has genus g = 3
2q0(q − 1)(q + q0 + 1).

• The automorphisms in G = Aut(FFq/Fq) are Fq-rational and G is a
Ree group of order q3(q − 1)(q3 + 1).
• F/Fq has q3 + 1 Fq-rational places on which G acts as a permutation

group.

From now on F will denote Fq(x, y1, y2) defined by (1.1), (1.2) and G its
automorphism group Aut(F/Fq). F is itself optimal (it has as many Fq-
rational places as possible) and any constant field extension FFqm , m ≡
6 mod 12, is maximal ([P]). Let H ≤ G be a subgroup of G. We denote by
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FH its fixed subfield

FH = {z ∈ F | σz = z for all z ∈ H}.
In this paper we construct a large family of subfields Fq (E =FH ⊆F

using many subgroups H ≤ G and we determine their genera. Every such
subfield E is maximal over any constant field extension FFqm , m ≡
6 mod 12.

This work is inspired by a recent paper of Garcia, Stichtenoth, and
Xing ([G-S-X]), where the subfields of the Hermitian function fields (which
are also function fields of Deligne–Lusztig curves associated to the groups
PSU(3, q)) are constructed. The case of Deligne–Lusztig curves of Suzuki
type is considered by Giulietti, Korchmáros, and Torres in [G-K-T]. Here
we note that, together with Ree type studied here, these three families of
curves constitute all the curves which are known as Deligne–Lusztig curves.

This paper is organized as follows. In Section 2 we recall the properties
of Ree groups that will be needed later. Section 3 deals with the ramification
structure of the places of F in the extension F/FG. The maximal subgroups
of G are known (see [L-N]). In Section 4 we consider various subgroups H of
maximal subgroups of G and we compute the genera of their fixed subfields
FH . In our computations, we use the properties of Ree groups viewing them
as permutation groups acting on the rational places of F in their usual
2-transitive representation.

2. Properties of Ree groups. In this section, we collect some ba-
sic properties of Ree groups. For that purpose, let G denote a Ree group
Ree(q) = 2G2(q), q = 3q2

0, q0 = 3s, s ≥ 1; it is known that the group G is
simple of order q3(q− 1)(q3 + 1). Since the integer q3(q− 1)(q3 + 1) has the
following relatively prime factorization:

q3(q − 1)(q3 + 1) = (q3)(8)
(
q − 1

2

)(
q + 1

4

)
(q + 3q0 + 1)(q − 3q0 + 1),

G has 3-Sylow subgroups of order q3 and 2-Sylow subgroups of order 8. In
addition to these, it is known that there are Hall subgroups in G correspond-
ing to the remaining factors: q−1

2 , q+1
4 , q+3q0 +1, q−3q0 +1. First we recall

the basic properties of Hall subgroups. The details can be found in [Ro].

Hall subgroups. A Hall subgroup A of a finite group H is a subgroup
with (|A|, |G : A|) = 1.

Theorem 2.1 (Wielandt). Let the finite group H possess a nilpotent
Hall subgroup A. Then every subgroup of order dividing |A| is contained
in a conjugate of A. In particular , all Hall subgroups of order |A| of H are
conjugate.
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Remark 2.2. Any Hall subgroup A (with (3, |A|) = 1) of the Ree group
is Abelian. So by Theorem 2.1 any subgroup of G of order dividing |A| is
contained in a conjugate of A.

We give some properties of subgroups of G. One can get the details from
[L-N] and [W].

Proposition 2.3. For subgroups of G, the following properties hold :

(1) A 2-Sylow subgroup of G is a self-centralizing elementary Abelian
subgroup of order 8 and its index in the normalizer is 21.

(2) 2-subgroups of equal order are conjugate in G, in particular all in-
volutions of G are conjugate.

(3) The centralizer of an involution in G is isomorphic to Z2×PSL(2, q).
(4) In G, for each subgroup E of order 4 there exists a cyclic Hall

subgroup A1 of order (q + 1)/4 and an element ω of order 6 such
that N(E) = N(A1) = E o (A1 o 〈ω〉) and C(A1) = E × A1.

(5) G has a cyclic Hall subgroup A0 of order (q − 1)/2. The group
N(A0) is dihedral of order 2(q − 1).

(6) G has cyclic Hall subgroups A2 and A3 of order q − 3q0 + 1 and
q+3q0+1 respectively. A2 and A3 are respectively the centralizers of
their nonidentity elements and are disjoint from their conjugates.
The normalizer N(Ai), i = 2, 3, is a Frobenius group with kernel
Ai and a cyclic noninvariant factor of order 6.

(7) If U is a 3-Sylow subgroup of G, U has order q3 and is disjoint
from its conjugates. Its center Z(U) is elementary Abelian of or-
der q, U is of class 3, and U contains a normal elementary Abelian
subgroup U1 of order q2 containing Z(U) which is both the derived
group and the Frattini subgroup of U . The members of U−U1 have
order 9, their cubes forming Z(U)− 〈1〉.

(8) The normalizer N(U) is UT , where T is cyclic of order q− 1. If κ
is the involution of T , then CU (κ) = CU1(κ) is elementary Abelian
of order q and CU (κ) ∩ Z(U) = 〈1〉. If τ is an element of T of
(odd) order (q − 1)/2, then CU (τ i) = 〈1〉 for all τ i 6= 1.

(9) Let A be one of the groups U,A0, A1, A2, A3 and H be a nontrivial
subgroup of A, then N(H) ≤ N(A).

(10) The permutation representation of G on the left cosets of N(U)
represents G faithfully as a 2-transitive permutation group in such
a way that the subgroup fixing three letters has order 2. In what
follows, this representation will be called the usual 2-transitive per-
mutation representation of G.

The maximal subgroups of G are described by V. M. Levchuk and Ya.
N. Nuzhin in [L-N]:
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Theorem 2.4. Maximal subgroups of G are exhausted , up to conjugacy ,
by the following :

(i) N(U), the normalizer of a 3-Sylow subgroup;
(ii) C(κ), the centralizer of an involution κ;

(iii) N(Ai), the normalizer of the subgroup Ai, i = 1, 2, 3, where Ai are
cyclic Hall subgroups of order (q + 1)/4, q − 3q0 + 1, q + 3q0 + 1,
respectively ;

(iv) Ree(m), q = mp, p being a prime.

It follows from Proposition 2.3(10) that G can be represented faithfully
as a 2-transitive permutation group on a set Ω of cardinality q3 + 1. Let P
and Q be distinct points in Ω. Denote by GP and GPQ the subgroups of G
fixing the point P and the points P and Q respectively.

Proposition 2.5. In its usual 2-transitive permutation representation
on Ω, G has the following properties:

(i) GPQ = T , where T is cyclic of order q − 1. In particular , G has a
unique involution fixing two points of Ω.

(ii) If a nonidentity element κ ∈ GPQ fixes more than two points then
κ is the involution of T .

(iii) Any involution of G fixes q + 1 points of Ω.
(iv) GP is the normalizer N(U) (which is of order q3(q−1)) of a 3-Sylow

subgroup U of G. Moreover , U acts transitively on the set Ω−{P}.
(v) The 3-Sylow subgroups are in one-to-one correspondence with the

points in Ω.

Proof. For (i)–(iii) we refer to [K-O-S] and [Re]. Since the action of G on
Ω is 2-transitive, we have |GP | = |G|/|Ω| = q3(q − 1). Note that |N(U)| =
q3(q−1) for any 3-Sylow subgroup U ofG. Hence, using Theorem 2.4, we find
that GP is the normalizer of a 3-Sylow subgroup U of G. If U is not transitive
on Ω − {P} then some element τ of U should fix some point Q ∈ Ω − {P}.
This implies τ ∈ GPQ, which contradicts (i) because q3 is relatively prime
to q − 1. This also shows that each point of Ω is fixed by a unique 3-Sylow
subgroup of G, which establishes (v) (since G acts transitively on Ω and
3-Sylow subgroups are conjugate in G).

Now, we look at the action of G on Ω more closely and obtain some
more properties which we need later.

Theorem 2.6. Let 1 6= σ ∈ G.

(i) If 3 | |σ| then σ ∈ NG(U) for some 3-Sylow subgroup, U , of G, and
σ fixes a unique point of Ω.

(ii) If |σ| | q− 1 and |σ| 6= 2 then σ is contained in some cyclic subgroup
of G, of order q − 1, and σ fixes exactly two points of Ω.
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(iii) If |σ| = 2 then σ fixes exactly q + 1 points of Ω.

In particular , σ fixes a point of Ω if and only if |σ| | q3(q − 1).

For the proof of the theorem we need the following:

Lemma 2.7. Let 3 | |σ|. Then σ ∈ NG(U) for some 3-Sylow subgroup, U ,
of G.

Proof. Write the order of σ as |σ| = 3fm with (3,m) = 1. Let σ0 = σm

and τ0 = σ3f . Then |σ0| = 3f , σ0 ∈ U for some 3-Sylow subgroup U of G,
|τ0| = m and σ = σ0τ0. Since σ0 commutes with τ0, we have

τ0σ
i
0τ
−1
0 = σi0 for all i.

This implies τ0 ∈ NG(〈σ0〉) and by Proposition 2.3(9), NG(〈σ0〉) ⊆ NG(U).
So τ0 ∈ NG(U) and we get σ = σ0τ0 ∈ NG(U).

Lemma 2.8. Let 1 6= σ ∈ G with |σ| | q− 1. Then σ is contained in some
cyclic subgroup of G, of order q − 1, and σ fixes (at least) two points of Ω.

Proof. If |σ| = 2 then the result follows from Proposition 2.5. So we
assume that |σ| | q − 1 and |σ| 6= 2.

Now, let T be the cyclic subgroup of G of order q−1, fixing two distinct
points P,Q ∈ Ω (cf. Proposition 2.5) and T2 be the subgroup of T of order
(q − 1)/2. As |σ| | q − 1 and |σ| 6= 2, we have σ2 6= 1 and |σ2| | (q − 1)/2. So
σ2 is contained in a cyclic Hall subgroup of order (q − 1)/2, which should
be a conjugate of T2 (by Remark 2.2). In other words, there is an element
α ∈ G such that σ2 ∈ αT2α

−1. Obviously σ ∈ NG(〈σ2〉) and by Proposi-
tion 2.3(9), σ ∈ NG(αT2α

−1). Observe that NG(αT2α
−1) = αNG(T2)α−1.

The group NG(T2) (and therefore any of its conjugates) is a dihedral group
of order 2(q−1) by Proposition 2.3(5). A dihedral group, D, of order 2(q−1)
has a unique cyclic subgroup of order q− 1, TD, and any cyclic subgroup C
of D with |C| 6= 2 is contained in TD. Therefore σ ∈ αTα−1, which is cyclic
of order q − 1, and σ fixes both α(P ) and α(Q), where α(P ) 6= α(Q).

We are now ready to prove Theorem 2.6.

Proof of Theorem 2.6. Let 1 6= σ ∈ G. Assume first that 3 | |σ|. Then by
Lemma 2.7, σ ∈ NG(U) for some 3-Sylow subgroup, U , of G, and by Propo-
sition 2.5, σ fixes a point of Ω. Since (3, q−1) = 1, again by Proposition 2.5,
σ cannot fix two distinct points of Ω. So we proved (i).

Now, any nonidentity element of G which fixes more than two points of
Ω should be an involution, and any involution of G fixes q + 1 points (cf.
Proposition 2.5). So (ii) and (iii) follow from Lemma 2.8.

The necessity part of the last assertion of the theorem follows from
Proposition 2.5. For the sufficiency, assume |σ| | q3(q− 1). Then either 3 | |σ|
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or |σ| | q − 1. Therefore, (i)–(iii) (proved above) imply that σ should fix a
point of Ω.

We are now going to show that the representation of the Ree group
G = Aut(F/Fq) on the set of rational places of F has the same properties
as the usual 2-transitive permutation representation of the Ree group G. In
fact, we show that these two representations are the same.

Proposition 2.9. Let G be a finite group of order mn. Let Ω and Ω′ be
two sets of equal cardinality |Ω| = |Ω′| = n. Assume that G acts as a tran-
sitive permutation group on each of Ω and Ω′. Assume also that subgroups
of order m of G are conjugate to each other. Then the actions of G on Ω
and Ω′ are the same up to relabelling.

Proof. Denote the points of Ω by P0, . . . , Pn−1. We will label the points
of Ω′ as P ′0, . . . , P

′
n−1 in such a way that for each τ ∈ G and each i =

0, . . . , n− 1,
τ(Pi) = Pj ⇒ τ(P ′i ) = P ′j .

This will prove the proposition.
Let H = GP0 be the subgroup of G fixing the point P0 in Ω. Then

|H| = m. Observe that H fixes a point P ′ of Ω′. Consider a point Q′ ∈ Ω′
and the subgroup GQ′ fixing Q′. Then |GQ′ | = m and by assumption GQ′ is
a conjugate of H. So H = αGQ′α

−1 for some α ∈ G. This implies that H
fixes α(Q′). We set

P ′0 = α(Q′).

So any element of H fixes P0 in Ω and P ′0 in Ω′. Since G acts transitively
on Ω, there are σ1, . . . , σn−1 ∈ G−H such that

σi(P0) = Pi, i = 1, . . . , n− 1.

As the elements of each of the cosets σiH map P0 to Pi, we have

i 6= j ⇒ σiH ∩ σjH = ∅.(2.1)

We label the remaining points of the set Ω ′ as

P ′i = σi(P ′0), i = 1, . . . , n− 1.

For i 6= j, P ′i 6= P ′j because otherwise we have σi(P ′0) = σj(P ′0), which
implies σ−1

i σj(P ′0) = P ′0 and σ−1
i σj ∈ H, contradicting (2.1). Therefore we

have Ω′ = {P ′0, . . . , P ′n−1}.
Now, let τ ∈ G, i ∈ {0, . . . , n− 1}, and assume that τ(Pi) = Pj for some

j = 0, . . . , n−1. As σi(P0) = Pi and σj(P0) = Pj , we have σ−1
j τσi(P0) = P0.

So σ−1
j τσi ∈ H and σ−1

j τσi(P ′0) = P ′0, which implies τσi(P ′0) = σj(P ′0). Since
σi(P ′0) = P ′i and σj(P ′0) = P ′j , we get τ(P ′i ) = P ′j .

Corollary 2.10. If the Ree group G acts transitively on a set of cardi-
nality q3 + 1, then this action is unique up to relabelling. In particular , the



Subfields of the function field of the Ree curve 139

representation of G = Aut(F/Fq) on the set of rational places of F is the
usual 2-transitive representation of G.

Proof. The order of G is q3(q − 1)(q3 + 1). Let H be a subgroup of G
of order q3(q− 1). By Theorem 2.4, H is the normalizer N(U) of a 3-Sylow
subgroup U of G. Also for any two 3-Sylow subgroups U and U ′ of G, N(U)
and N(U ′) are conjugate in G. Therefore the result follows from Proposition
2.9 and the fact that F has q3 + 1 rational places on which G = Aut(F/Fq)
acts as a transitive permutation group.

3. The ramification structure. In this section, we find the ramified
places of F and the associated ramification groups in the extension F/FG,
where F = Fq(x, y1, y2) (defined by (1.1) and (1.2)) and G = Aut(F/Fq).

We first recall the definition of ramification groups of a place P of F in
the extension F/FH , where H is any subgroup of G. Let vP be the discrete
valuation of P and OP be the valuation ring associated to vP . For each
i ≥ −1, the ramification groups of P are defined as

Hi(P ) = {σ ∈ H | vP (σ(z)− z) ≥ i+ 1 for each z ∈ OP }.
The different exponent of P in the extension F/FH is

dP =
∑

i≥0

(|Hi(P )| − 1)

(see for example [St, III.8.8]). If g and gH are the genera of F and FH

respectively, then the Riemann–Hurwitz formula states that

2g − 2 = |H|(2gH − 2) +
∑

P is a place of F

dP deg(P ).

The group G acts on the rational places of F as a transitive permutation
group, therefore each rational place is wildly ramified in the extension F/FG

with ramification index |G|/(q3+1) = q3(q−1). Moreover if P and Q are two
rational places of F , then for each i ≥ −1 the ramification groups Gi(P ) and
Gi(Q) are conjugate in G. The decomposition group G−1(P ) and the inertia
group G0(P ) of a rational place P are equal and their order is q3(q−1). The
ramification groups for a rational place are computed in [H-P]:

Theorem 3.1. Let P be a rational place of F and Gi = Gi(P ) be the
ramification groups of P for the extension F/FG. Let ν0 = 0, ν1 = 1, ν2 =
3q0 + 1 and ν3 = q + 3q0 + 1. Then:

(i) G0 = Gν0 = N(U), where U is a 3-Sylow subgroup of G and N(U)
its normalizer in G,

(ii) G1 = Gν1 = U with |U | = q3,
(iii) Gi = U1, where U1 is the derived group of U and |U1| = q2 for

ν1 + 1 ≤ i ≤ ν2,
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(iv) Gi = Z(U), the center of U , which is of order q for ν2 + 1 ≤ i ≤ ν3,
(v) Gi = 〈1〉 for i ≥ ν3 + 1.

Now in order to find the other ramified places, we first consider the
extension F/FG, where F = FFq, the constant field extension of F/Fq with
the algebraic closure Fq of Fq.

We fix the following notation. For any positive integer m, by an Fqm-
rational place of F we mean a place extending a degree 1 place of F ′ = FFqm
in the constant field extension F/F ′. If m and n are positive integers with
n |m then by an Fqm \ Fqn-rational place we mean an Fqm-rational place
which is not Fqn-rational. For any subgroup H of G and any place P of F ,
the H-orbit of P will be the set

H.P = {σ(P ) | σ ∈ H}.
Now, we will use the Riemann–Hurwitz formula to determine the non-

Fq-rational places of F ramified in F/FG. The ramification groups at an Fq-
rational place Q of F are given by Theorem 3.1, so the different exponent
of Q is

dQ = (q3(q − 1)− 1) + (q3 − 1) + 3q0(q2 − 1) + q(q − 1).

The genus of FG is zero (because FG ⊂ F q(x)) and we know that the genus
g of F is

g = 3
2q0(q − 1)(q + q0 + 1).

Since all the Fq-rational places of F have the same different exponent, the
Riemann–Hurwitz formula applied to the extension F/FG gives

2g − 2 = −2|G|+ (q3 + 1)dQ +R,

where R is the degree of the part of the different arising from the ramifica-
tions at non-Fq-rational places of F . Computing R, we get

R = q3(q − 1)(q3 + 1− (q + 1)(q + 3q0 + 1)).

Let B = G−1(Q) be the subgroup of G fixing an Fq-rational place Q. The
order of this group is q3(q − 1) and the orbit of it at any non-Fq-rational
place has q3(q− 1) elements ([P]). Therefore any non-Fq-rational place of F
is unramified in F/FB. Let P1 be a non-Fq-rational place of F ramified in
F/FG. Let PB1 and PG be the restrictions of P1 to the fields FB and FG

respectively. Let PB1 , . . . , P
B
t be the places of FB lying over PG in FB/FG,

and let ei = e(PBi |PG), i = 1, . . . , t, be the corresponding ramification
indices. The diagram in Figure 1 summarizes these definitions and notations.

The extension FB/FG is not Galois. On the other hand, if P is a place
of F extending PG, then the ramification index e(P |PG) of P over PG is
equal to e(P1|PG) since F/FG is Galois. Also if PB is the restriction of P
to FB then the ramification indices e(P |PB), e(P1|PB1 ) of P and P1 over
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PB and PB1 respectively are both 1. As

e(P |PG) = e(P |PB)e(PB|PG), e(P1|PG) = e(P1|PB1 )e(PB1 |PG),

we get
e(PB|PG) = e(PB1 |PG1 ).

In other words the ramification indices e1, . . . , et are all equal. So let e =
e1 = · · · = et. We have

et = q3 + 1,

q3 + 1 being the degree of the extension FB/FG. In particular e (which is
also the ramification index of P1 over PG) divides q3 + 1 and P1 is tamely
ramified in F/FG. So the different exponent of P1 over PG is e − 1 and
the contribution of all the places of F extending PG to the degree of the
different of F/FG is q3(q − 1)t(e − 1) = q3(q − 1)(q3 + 1 − t). Comparing
this number with R, we see that there is only one ramified place of FG

which has a non-Fq-rational extension in F . As q3 + 1 factorizes as q3 + 1 =
(q+1)(q+3q0+1)(q−3q0+1) and t = (q+1)(q+3q0+1), we get e = q−3q0+1.
We summarize the discussion above in the proposition:

Proposition 3.2. The number of non-Fq-rational places of F ramified
over FG is q3(q − 1)(q + 1)(q + 3q0 + 1). These places all lie over a single
place of FG and their ramification index over that place is q − 3q0 + 1.

Now we show that the non-Fq-rational places of F ramified over FG

are exactly the Fq6 \ Fq-rational places of F . In [P] the number Nm of
Fqm-rational places of F is

Nm = qm + 1− q0q
m/2(q − 1)[(q + 3q0 + 1) cosmπ/2 + 2(q + 1) cos 5mπ/6].
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So the numbers of Fq2-, Fq3- and Fq6-rational places of F are

N2 = q3 + 1, N3 = q3 + 1,

N6 = q3 + 1 + q3(q − 1)(q + 1)(q + 3q0 + 1)

respectively. As the number N1 of Fq-rational places of F is q3 + 1, F has
no Fq2 \ Fq- and Fq3 \ Fq-rational place. Moreover the number of Fq6 \ Fq-
rational places is equal to the number of non-Fq-rational places of F ramified
over FG. Now if P is an Fq6 \Fq-rational place, every place in the orbit G.P
will be so (because the automorphism group G = Aut(F/Fq) is Fq-rational,
i.e. every element of G restricts to an automorphism of F/Fq which will map
a degree 6 place of F to a degree 6 place). So we have

|G.P | ≤ N6 − (q3 + 1) < |G|,
where |G.P | is the number of elements in the G-orbit of an Fq6 \Fq-rational
place P . Therefore every Fq6 \ Fq-rational place is ramified in the extension
F/FG. We arrive at the following proposition:

Proposition 3.3. The non-Fq-rational places of F ramified in the ex-
tension F/FG are exactly the Fq6 \ Fq-rational places of F . Moreover none
of these places is Fq2- or Fq3-rational.

We find the inertia group of an F6
q \ Fq-rational place in F/FG.

Lemma 3.4. Let P1 be an Fq6 \ Fq-rational place of F . Then:

(i) G0(P1) = M , where M is a cyclic Hall subgroup of G with |M | =
q − 3q0 + 1.

(ii) M fixes exactly six Fq6 \ Fq-rational places P1, . . . , P6 which are the
elements of the N(M)-orbit of P1.

Proof. The order of the group G0(P1) is equal to the ramification index
of P1 in F/FG:

|G0(P1)| = q − 3q0 + 1.

Since G contains Hall subgroups of order q−3q0 + 1, G0(P1) is one of them,
say M . Consider the N(M)-orbit, Ω1, of P1. Since M < N(M), any place
in Ω1 is fixed by M . The index of M in N(M) is 6, so M has 6 distinct
left cosets in N(M): σ1M,σ2M, . . . , σ6M , σi ∈ N(M) and σ1 = 1 . Clearly
Ω1 has at most 6 elements (corresponding to each coset). Let Pi = σi(P1),
i = 2, . . . , 6. If Pi = Pj with i 6= j then σ−1

i σj(P1) = P1 implying σ−1
i σj ∈

G0(P1) = M , which is a contradiction because σiM and σjM are distinct.
So Ω1 = {P1, . . . , P6} and M fixes the elements of Ω1.

Let P be an Fq6 \ Fq-rational place fixed by M . Since all the Fq6 \ Fq-
rational places are in the same G-orbit, P = σ(P1) for some σ ∈ G. But then
σMσ−1 also fixes P . As |G0(P )| = |M | = |σMσ−1|, we have M = σMσ−1,
which implies σ ∈ N(M). Therefore P ∈ Ω1.
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Now, we will use the results above to find the ramification groups of
nonrational places of F/Fq ramified in F/FG. First note that the field FG

is equal to the compositum FGF q (since G is F q-rational). So F/F and
FG/FG are constant field extensions and they are unramified. Therefore the
ramified places of F over FG are exactly the degree 1 places and the degree 6
places. In addition, the ramification index of a degree 6 place of F in F/FG

is q − 3q0 + 1. We have

Theorem 3.5. The nonrational places of F ramified in the extension
F/FG are the degree 6 places of F and they all lie over a single degree 1
place of FG. For any degree 6 place P of F , let G−1(P ) and G0(P ) denote
its decomposition and inertia groups in F/FG. Then:

(i) G0(P ) = M , a cyclic Hall subgroup of order q − 3q0 + 1 of G,
(ii) G−1(P ) = N(M), the normalizer of M in G, with

|N(M)| = 6(q − 3q0 + 1).

Moreover the degree 6 places of F are in one-to-one correspondence with the
Hall subgroups of order q − 3q0 + 1 of G.

Proof. Let P be a degree 6 place of F and P1, . . . , P6 its extensions in F .
Let G0(Pi) and G0(P ) denote the inertia groups of Pi and P in F/FG and
F/FG respectively. Since OP ⊂ OPi and F/F is unramified, for any σ ∈ G
and z ∈ OP we have

vPi(σ(z)− z) ≥ 1 ⇒ vP (σ(z)− z) ≥ 1.

So G0(Pi) ≤ G0(P ), but their orders are equal; hence

G0(P ) = G0(Pi), i = 1, . . . , 6.(3.1)

Set M = G0(P ), which is a cyclic Hall subgroup of order q − 3q0 + 1 of G.
By (3.1) and Lemma 3.4, the places P1, . . . , P6 are in the N(M)-orbit of P1
in F . So N(M), as a subgroup of Aut(F/FG), fixes P :

N(M) ≤ G−1(P ).

As G0(P )<G−1(P ) and N(M) is the largest subgroup ofG withM<N(M),
we get G−1(P ) = N(M).

Let PG denote the restriction of P to FG. The index |G−1(P ) : G0(P )| =
6 is equal to the relative degree of P over PG, which implies that PG is of
degree 1 in FG. The fact that all degree 6 places of F lie over a single place
of FG follows from Proposition 3.2. The last assertion of the theorem follows
from:

• G0(P ) does not fix any other degree 6 place (this follows from (3.1)
and Lemma 3.4),
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• the inertia groups of degree 6 places are conjugate to each other and
any conjugate of G0(P ) is the inertia group of a degree 6 place (since
the G-orbit of P is the set of degree 6 places in F ),
• the Hall subgroups of order q − 3q0 + 1 are conjugate in G.

4. Subfields of F . Every subgroup H of G is contained in a maximal
subgroup M of G. The maximal subgroups of G are given in Theorem 2.4.
In this section, for many subgroups H of G we determine the genera of the
fixed subfields FH of F .

The ramification groups in F/FG are given in Section 3. For any sub-
group H ≤ G, the ramification groups in F/FH can be calculated using the
following theorem (see, for example, [Se, Chapter IV, §1]).

Theorem 4.1. Let P be a place of F . For each i ≥ −1, let Gi(P ) be the
ramification groups of P in the extension F/FG and Hi(P ) the ramification
groups of P in F/FH . Then

Hi(P ) = Gi(P ) ∩H for any i ≥ −1.

The following theorem gives criteria for membership in the inertia groups
G0(P ) of the ramified places P of F in the extension F/FG:

Theorem 4.2. Let σ be a nonidentity element of G. Then σ is in the
inertia group G0(P ) of some place P of F if and only if exactly one of the
following holds:

(1) |σ| | q3(q − 1),
(2) |σ| | q − 3q0 + 1.

Moreover , if |σ| | q − 3q0 + 1 and σ ∈ G0(P ), then P is a degree 6 place
of F , σ is in some cyclic Hall subgroup of G of order q − 3q0 + 1 and σ is
not contained in the inertia group of any other place of F .

In the case |σ| | q3(q − 1) and σ ∈ G0(P ), P is a degree 1 place of F ,
σ ∈ NG(U) for some 3-Sylow subgroup U of G and :

(i) if 3 | |σ| then σ is not contained in the inertia group of any other
place of F ;

(ii) if |σ| | q − 1 and |σ| 6= 2 then σ is in some cyclic subgroup of G of
order q− 1, and σ is in the inertia group of exactly two places of F
which are degree 1 places;

(iii) if |σ| = 2 then σ is in the inertia group of exactly q + 1 places, all
of them being degree 1 places.

Proof. For a place P of F , G0(P ) 6= 〈1〉 if and only if P is ramified
in F/FG. By Theorems 3.1 and 3.5, the ramified places of F in F/FG are
exactly the degree 1 places and degree 6 places of F . The inertia group of
a degree 1 place P is the normalizer N(U) of the corresponding 3-Sylow
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subgroup U of G and |N(U)| = q3(q − 1) (cf. Theorem 3.1, Proposition
2.5, and Proposition 2.3(8)). The inertia group of a degree 6 place P is the
corresponding Hall subgroup M of order q − 3q0 + 1 (cf. Theorem 3.5).

Conversely, assume first that |σ| | q− 3q0 + 1. By Remark 2.2, σ ∈M for
a Hall subgroup M of order q − 3q0 + 1. Since (q − 3q0 + 1, q3(q − 1)) = 1,
σ cannot fix a degree 1 place.

For the case |σ| | q3(q − 1), the proof follows from Theorem 2.6.

In the rest of this section, Ω will denote the set of degree 1 places
P0, . . . , Pq3 of F . The elements of Ω will be referred to as points and G
is considered with its usual (faithful, 2-transitive) action on Ω (cf. Corollary
2.10). For two distinct points Pi, Pj ∈ Ω, GPi will denote the subgroup of
G fixing Pi, and GPiPj the subgroup of G fixing both Pi and Pj . Also, for
H ≤ G and P ∈ Ω, H.P will denote the H-orbit of P , which is the set
{σ(P ) | σ ∈ H} ⊂ Ω.

In Subsection 4.1 we find genera of all subfields of F fixed by a subgroup
of the centralizer C(κ) of an involution κ in G.

4.1. Centralizer of an involution. Let κ be an involution of G and L =
C(κ) be its centralizer. By Proposition 2.3(3), we have

L ∼= Z2 × PSL(2, q)(4.1)

and |L| = q(q − 1)(q + 1).
First observe that the Z2 component in (4.1) is equal to 〈κ〉, since oth-

erwise L would centralize two distinct commuting involutions and should
be contained in the normalizer of a subgroup of order 4, which is not the
case (see Proposition 2.3(4)). Let us now see that L has a unique subgroup
isomorphic to PSL(2, q). Denote by L′ the PSL(2, q) component in (4.1) and
by L′′ any subgroup of L isomorphic to PSL(2, q). Then the order of L′∩L′′
should be at least |PSL(2, q)|/2. But by the well known subgroup struc-
ture of PSL(2, q) (see for example Theorem 4.11 below), the only subgroup
of order ≥ |PSL(2, q)|/2 of PSL(2, q) is PSL(2, q) itself, which shows that
L′ = L′′. From now on let L′ be the subgroup of L which is isomorphic to
PSL(2, q); we have L = 〈κ〉 × L′ = L′ × 〈κ〉.

By Proposition 2.5, κ fixes exactly q + 1 points, say P0, . . . , Pq. Let T
be the subgroup GP0P1 fixing P0 and P1. By Proposition 2.5, T is cyclic of
order q − 1 and κ is the unique involution of T . Let T2 be the subgroup of
T of order (q − 1)/2.

We first show that L acts on P0, . . . , Pq as a permutation group.

Lemma 4.3. Any element of G which commutes with κ permutes the
fixed points of κ.

Proof. Let σ ∈ G be such an element, and Pi be a fixed point of κ. Then
κσ(Pi) = σκ(Pi) = σ(Pi). So κ fixes σ(Pi).
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For involutions of G, we have a kind of converse of Lemma 4.3.

Lemma 4.4. Any involution of G that permutes any two fixed points of
κ commutes with κ.

Proof. Without loss of generality assume that θ is an involution of G
that maps P0 to P1. The group θT2θ fixes both P0 and P1 and |θT2θ| = |T2|.
Therefore θT2θ = T2 and hence θ ∈ N(T2). By Proposition 2.3(5), N(T2)
is a dihedral group of order 2(q − 1). Since T is cyclic, T ⊂ N(T2) as
well. Moreover θ 6∈ T since θ does not fix neither P0 nor P1. Therefore
N(T2) = 〈θ, T 〉. Let τ be a generator of T . Then θτ = τ−1θ. As κ = τ (q−1)/2

and (τ (q−1)/2)−1 = τ (q−1)/2, we get θκ = κθ.

The following two lemmata will be essential in the genus calculations.

Lemma 4.5. Let σ be a nonidentity element of L fixing some point Q 6∈
{P0, . . . , Pq}. Then:

(i) σ does not fix any of P0, . . . , Pq,
(ii) |σ| = 2.

Proof. Let 1 6= σ ∈ L and σ(Q) = Q for some Q 6∈ {P0, . . . , Pq}. Let l be
a prime dividing m = |σ|. Assume that σ(Pi) = Pi for some i = 0, 1, . . . , q.
We have

σm/l(Pi) = Pi, σm/l(Q) = Q, |σm/l| = l.

As σm/l fixes two points (Q and Pi), by Proposition 2.5 we have l | q − 1.
Moreover σm/l cannot fix Pj for any j 6= i. Otherwise σm/l fixes three distinct
points and σm/l should be an involution, indeed it should be κ since there is
a unique involution fixing Pi and Pj (cf. Proposition 2.5). However κ does
not fix Q 6∈ {P0, . . . , Pq}, which is a contradiction. Hence by Lemma 4.3,
σm/l permutes q points ({P0, . . . , Pq} − {Pi}) without fixing any of them.
As l = |σm/l| is prime, this implies l | q, which is a contradiction because
l | q − 1 and (q, q − 1) = 1.

Therefore σ cannot fix any of P0, . . . , Pq. The same is true for σm/l. Then
by Lemma 4.3, 〈σm/l〉 acts without fixed point on q + 1 points, so l | q + 1.
As σ fixes the point Q, |σ| | q3(q − 1) = |GQ| (by Proposition 2.5), which
implies l | q3(q − 1). Since (q + 1, q3(q − 1)) = 2, we have l = 2, but 2 is the
greatest power of 2 dividing q3(q − 1), so |σ| = 2.

Lemma 4.6. Let κ1 6= κ2 be two involutions of G. Then:

(i) If κ1 commutes with κ2 then they cannot fix the same point of Ω.
(ii) Assume there is an involution distinct from κ1 and κ2 which com-

mutes with both κ1 and κ2. Then κ1 and κ2 cannot fix the same
point.

Proof. Assume κ1κ2 = κ2κ1. Then |〈κ1, κ2〉| = 4. But |GP | = q3(q − 1)
for any P ∈ Ω and 4 - q3(q − 1), which proves (i).
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To show (ii), let κ be the involution with κ1 6= κ 6= κ2 commuting with
both κ1 and κ2. Suppose κ1(Q) = Q = κ2(Q) for some Q ∈ Ω. Then

κiκ(Q) = κκi(Q) = κ(Q) for i = 1, 2.

So κ1 and κ2 fixes both Q and κ(Q). As κ commutes with κ1 (and κ2), by
(i), κ(Q) 6= Q. Recall that G has a unique involution fixing two distinct
points (Proposition 2.5); this implies κ1 = κ2, which is not the case.

To identify the ramification groups in the extension F/FL, we also use
the following lemma:

Lemma 4.7. Let P 6= Q be two points of Ω. Then G has an involution
θ with θ(P ) = Q.

Proof. As G acts 2-transitively on Ω, there is an element θ ∈ G such
that θ(P ) = Q and θ(Q) = P. We will show that θ is indeed an involution
of G.

Now, θ2 fixes both P and Q and by Proposition 2.5, we have

|θ2| | q − 1,

implying |θ| | 2(q−1) = 4
( q−1

2

)
. If |θ| - q−1 then 4 | |θ|, but there is no element

of order 4 in G, since 2-Sylow subgroups of G are elementary Abelian (by
Proposition 2.3(1)). So |θ| | q − 1 and by Theorem 2.6, θ fixes (at least) two
points P ′ and Q′. As θ does not fix P and Q, {P,Q} ∩ {P ′, Q′} = ∅. This
implies that θ2 fixes four distinct points: P,Q, P ′, Q′. So by Proposition 2.5,
θ2 is either an involution or the identity of G. If θ2 is an involution then
|θ| = 4, which is not possible. Therefore θ2 = 1 and θ is an involution.

Proposition 4.8. The group L has exactly q+1 3-Sylow subgroups each
fixing one of P0, . . . , Pq.

Proof. Let V be a 3-Sylow subgroup of L. Then V fixes Pj for some
j = 0, 1, . . . , q. We will construct q + 1 conjugates (in L) of V , each fixing
one of P0, . . . , Pq, and so the list of 3-Sylow subgroups in L will be exhausted
(there may be at most q+1 3-Sylow subgroups in L). Let Pk ∈ {P0, . . . , Pq}
be distinct from Pj and θ be an involution in G with θ(Pj) = Pk. The
existence of θ is justified by Lemma 4.7, and θ ∈ L by Lemma 4.4.

Now by Proposition 2.5, any 3-Sylow subgroup of G either fixes a point
or maps it to q3 distinct points. Also, by Lemma 4.3, V should permute the
points P0, . . . , Pq. Therefore the V -orbits of Pj and Pk are

V.Pj = {Pj}, V.Pk = {P0, . . . , Pq} − {Pj}.
In other words, the elements σθ, σ ∈ V , maps Pj to q distinct points
{P0, . . . , Pq} − {Pj}. Hence the groups σθV θσ−1, σ ∈ V, are q distinct con-
jugates of V each fixing one of the points in the set {P0, . . . , Pq} − {Pj}.
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Let V be the 3-Sylow subgroup of L fixing P0 and let θ be an involution
mapping P0 to P1. Consider the set

L = V T ∪ V θV T,
where V T = {στ | σ ∈ V, τ ∈ T} and V θV T =

⋃
σ∈V σθV T . It is clear that

|V T | = q(q− 1) and |σθV T | = q(q− 1) for any σ ∈ V . Let σ1 and σ2 be two
distinct elements of V . Then

σ1θ(P0) = σ1(P1) 6= σ2(P1) = σ2θ(P0).

Any element of V T fixes P0, so the elements of σ1θV T map P0 to σ1θ(P0) =
σ1(P1) and those of σ2θV T map P0 to σ2θ(P0) = σ2(P1). This implies

σ1θV T ∩ σ2θV T = ∅.
Also, for any σ ∈ V , σθ(P0) = σ(P1) 6= P0 and V T ∩ σθV T = ∅. Therefore,
the number of elements in L is q(q− 1)(q+ 1), which equals the order of L.
Hence

L = V T ∪ V θV T.(4.2)

In particular, the subgroup of L fixing P0 is V T . Since V T = V T2×〈κ〉, the
subgroup of L′ fixing P0 is V T2.

We are now ready to find the ramification groups of a place fixed by κ
in the extension F/FL:

Theorem 4.9. Let P be a place fixed by κ, and V the 3-Sylow subgroup
of L fixing P . Then the ramification groups in the extension F/FL are:

(i) L0(P ) = NL(V ) = V T , where T is a subgroup of L of order q − 1
fixing P and any one of the remaining places fixed by κ. The order
of L0(P ) is q(q − 1).

(ii) Li(P ) = V with |Li(P )| = q for 1 ≤ i ≤ 3q0 + 1.
(iii) Li(P ) = 〈1〉 for i ≥ 3q0 + 2.

Proof. Let U be the 3-Sylow subgroup of G fixing P , N(U) = UT its
normalizer, U1 its derived group and Z(U) its center. Then by Theorem 3.1
the ramification groups of P in the extension F/FG are:

G0(P ) = N(U), G1(P ) = U,

Gi(P ) =
{
U1 for 2 ≤ i ≤ 3q0 + 1,

Z(U) for 3q0 + 2 ≤ i ≤ q + 3q0 + 1.
(4.3)

By Theorem 4.1, Li(P ) = L ∩ Gi(P ). As V is a 3-Sylow subgroup of L,
L1(P ) = V . By Proposition 2.3(8), V ∩U1 = V (since CU (κ) = CU1(κ)) and
V ∩ Z(U) = 〈1〉 (since CU (κ) ∩ Z(U) = 〈1〉), so that

Li(P ) =
{
V for 1 ≤ i ≤ 3q0 + 1,

〈1〉 for i ≥ 3q0 + 2.
(4.4)
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The subgroup of L fixing P is V T from the discussion preceding the theorem.
So L0(P ) = V T . From the properties of ramification groups (cf. [St, Chap.
III]) L1(P )<L0(P ), so by Proposition 2.3(9), NL(V ) ≤ UT . Since L∩UT =
V T , we get NL(V ) = V T .

Corollary 4.10. Let P be a place fixed by κ and H be a subgroup of L.
Then the ramification groups Hi = Hi(P ) of P in the extension F/FH are
Hi = Li(P )∩H, i ≥ 0. In particular Hi = H1 for 2 ≤ i ≤ 3q0 + 1, Hi = 〈1〉
for i ≥ 3q0 + 2, and the different exponent of P in F/FH is given by

dP = (|H0| − 1) + (|H1| − 1) + 3q0(|H1| − 1).

4.1.1. The subgroups of L. The subgroups of PSL(2, q) are well known
by what is commonly called Dickson’s Hauptsatz (see [V-M] for a proof
involving the ramifications in subfields of the rational function field). When
q = 32s+1, s ≥ 1, this theorem becomes:

Theorem 4.11 (L. E. Dickson). PSL(2, q), q = 32s+1, s ≥ 1, has only
the following subgroups:

(1) elementary Abelian 3-groups of order 3f with f ≤ 2s+ 1;
(2) cyclic groups of order n with n | (q ± 1)/2;
(3) dihedral groups of order 2n with n | (q ± 1)/2;
(4) A4, alternating group on four letters;
(5) semidirect products of elementary Abelian 3-groups of order 3f with

cyclic groups of order n with f ≤ 2s+ 1, n | 3f − 1 and n | (q − 1)/2;
(6) PSL(2, 3f ) with f | 2s+ 1.

Remark 4.12. Let H ≤ L be a subgroup with κ 6∈ H and H � L′. Then
the following isomorphism Φ maps H into L′: Φ(α) = α for each α ∈ H ∩L′
and Φ(β) = κβ for each β ∈ H \ (H ∩ L′). So H is a subgroup of L which
does not contain κ and which is isomorphic to a subgroup of PSL(2, q). In
the subsections below, where we calculate the genera of subfields fixed by
subgroups of L′, it is easily seen that this property is enough to carry out
the calculations. Therefore the genus of FH is equal to the genus FΦ(H).
So for our purposes, it is enough to consider the subgroups of L′ (listed in
Theorem 4.11) and their direct products with 〈κ〉.

In each subsection below we will find the genera of the subfields of F
corresponding to a distinct (type of) subgroup listed in Theorem 4.11, and
its direct product by κ. First observe that since (|L|, q−3q0 + 1) = 1, if P is
a ramified place of F in the extension F/FH of any subgroup H ≤ L, then
P should be a degree 1 place by Theorem 4.2.

Elementary Abelian 3-groups. Let V ′ be a 3-group in L′ of order 3f , f ≤
2s+1 and V be the 3-Sylow subgroup of L containing V ′. Since the 3-Sylow
subgroups are disjoint, only one place P of F is ramified in the extension
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F/F V
′
, which is one of the places fixed by κ (see Proposition 4.8). By

Theorem 4.9 and Corollary 4.10, the different exponent of this place in
F/F V

′
is

dP = (3f − 1) + (3f − 1) + 3q0(3f − 1).

If we let gV ′ be the genus of F V
′

then the Riemann–Hurwitz formula applied
to the extension F/F V

′
gives

2g − 2 = 3f (2gV ′ − 2) + (3q0 + 2)(3f − 1),

where g = 3
2q0(q − 1)(q + q0 + 1) is the genus of F and gV ′ is computed as

gV ′ = 1
2 [3−f (3q0q

2 + q2 − q)− 3q0].

Let H = κ × V ′ and gH be the genus of FH . As κ fixes the place P ,
κ ∈ H0(P ) (the inertia group of P in F/FH), so H0(P ) = H and the
different exponent, dHP , of P , in F/FH becomes

dHP = (2(3f )− 1) + (3f − 1) + 3q0(3f − 1).

Any element σ ∈ H with 3 | |σ| can fix only one place (cf. Theorem 2.6),
which should be P (because H0(P ) = H). The group H does not contain
any involution other than κ. Also H −{κ} has no element of order dividing
q − 1. So by Theorem 2.6, the remaining ramified places of F in F/FH

are the q other places fixed by κ, each with ramification index 2. So the
Riemann–Hurwitz formula states that

2g − 2 = 2(3f )(2gH − 2) + (2(3f )− 1) + (3q0 + 1)(3f − 1) + q

and we have
gH = 1

4 [3−f (3q0q
2 + q2 − 2q)− 3q0 + 1].

In the particular case where V ′ = V , the genus gV of F V is

gV = 1
2(3q0 + 1)(q − 1)

and the genus of F 〈κ〉×V equals

gκV = 1
4(3q0 + 1)(q − 1).

Cyclic groups of order dividing (q + 1)/2. Let C+ be a subgroup of L′

of order n | (q+ 1)/2. Assume first that 2 -n. Then C+ does not contain any
involution and any element of order 3. Also (n, q − 1) = 1, which implies
C+ ∩ L0(P ) = 〈1〉 for all P . So the extension F/FC

+
is unramified and

2g − 2 = n(2gC+ − 2),

where gC+ (the genus of FC
+

) is computed as

gC+ =
1

2n
(3q0(q − 1)(q + q0 + 1)− 2) + 1.

If 2 |n then C+ (being a cyclic group) contains only one involution. So
F/FC

+
is ramified at q + 1 places with ramification index 2. Applying the
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Riemann–Hurwitz formula 2g − 2 = n(2gC+ − 2) + q + 1, we get

gC+ =
1

2n
(3q0(q − 1)(q + q0 + 1)− q − 3) + 1.

Consider now the subgroup H+ = 〈κ〉 × C+ of L. Again we have two
cases. If 2 -n, then H+ contains only one involution so that

2g − 2 = 2n(2gH+ − 2) + q + 1

where gH+ is the genus of FH
+

, computed as

gH+ =
1

4n
(3q0(q − 1)(q + q0 + 1)− q − 3) + 1.

If 2 |n then H+ has 3 distinct involutions. Since (by Lemma 4.6) distinct
involutions of L fix disjoint set of points, F/FH

+
is ramified at 3(q + 1)

places of F . In this case, gH+ is computed as

gH+ =
1

4n
(3q0(q − 1)(q + q0 + 1)− 3q − 5) + 1.

We consider the following particular cases: if |C+| = (q + 1)/4, then the
genera of FC

+
and F 〈κ〉×C

+
are

gC+ = 6q0q + 2q − 6q0 − 3, gκC+ = 3q0q + q − 3q0 − 2,

respectively, and if |C+| = (q + 1)/2, then

gC+ = 3q0q + q − 3q0 − 2, gκC+ = 1
2(3q0q + q − 3q0 − 5) + 1.

Cyclic groups of order dividing (q − 1)/2. Let C− ≤ L′ with n = |C−|
dividing (q − 1)/2. Note that the extension F/FC− is tame because 3 -n. Let
T be the cyclic subgroup of G of order q−1, fixing P0 and P1. By Remark 2.2,
C− is conjugate to a subgroup of T . So without loss of generality we assume
C− ≤ T . Therefore, the inertia groups of P0 and P1, in the extension F/FC

−
,

are

C−0 (P0) = V0T ∩ C− = C−, C−0 (P1) = V1T ∩ C− = C−,

where V0 and V1 are the 3-Sylow subgroups of L fixing P0 and P1 respectively.
As 2 - (q − 1)/2, C− does not contain any involution, so F/FC

−
is ramified

only at the places P0 and P1. If gC− is the genus of FC
−

, we have

2g − 2 = n(2gC− − 2) + 2(n− 1)

and

gC− =
g

n
=

3
2n

q0(q − 1)(q + q0 + 1).

Now, let H− = κ × C−. As κ ∈ T , again we have H− ≤ T . So the
extension F/FH

−
is ramified at P0, P1 with ramification index 2n, and at

q − 1 other places, fixed by κ, with ramification index 2. If we apply the
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Riemann–Hurwitz formula to F/FH
−

:

2g − 2 = 2n(2gH− − 2) + 2(2n− 1) + q − 1

where gH− is the genus of FH
−

, we get

gH− =
1

4n
(q − 1)(3q0q + q + 3q0 − 1).

When n = (q − 1)/2, H− becomes equal to T and the genus of F T is

gT = 1
2(3q0q + q + 3q0 − 1).

Dihedral groups of order 2n with n dividing (q+1)/2. Let D+ ≤ L′ be a
dihedral subgroup of order 2n with n | (q + 1)/2. Since (q+ 1, q(q− 1)) = 2,
the ramification index of any place of F , in F/FD+

, is at most 2. Let C+

be the subgroup of D+ of order n and θ an involution in D+ which is not
contained in C+. Then

D+ = 〈θ, C+〉.
The involutions of D+ are

(1) the elements in {θσ | σ ∈ C+},
(2) the possible involution of C+.

So again we have two cases: 2 -n and 2 |n. If 2 -n, the number of distinct
involutions in D+ is n = |C+|. So, denoting by gD+ the genus of FD

+
, we

have
2g − 2 = 2n(2gD+ − 2) + n(q + 1)

and we get

gD+ =
1

4n
(q + 1)[(3q0 + 1)(q − 1)− n− 1] + 1.

If 2 |n, then D+ has n+ 1 distinct involutions and we have

gD+ =
1

4n
(q + 1)[(3q0 + 1)(q − 1)− n− 2] + 1.

Let M+ = 〈κ〉×D+ ≤ L. If 2 -n then M+ has 2n+1 distinct involutions.
We have

2g − 2 = 4n(2gM+ − 2) + (2n+ 1)(q + 1)

where gM+ is the genus of FM
+

, computed as

gM+ =
1

8n
(q + 1)[(3q0 + 1)(q − 1)− 2n− 2] + 1.

In the case 2 |n, M+ has 2(n+ 1) + 1 = 2n+ 3 distinct involutions and we
get

gM+ =
1

8n
(q + 1)[(3q0 + 1)(q − 1)− 2n− 4] + 1.
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If n = (q + 1)/4, we have

gD+ = (3q0 + 1)(q − 1)− (q + 1)/4,

gM+ = 1
2(3q0 + 1)(q − 1)− (q + 1)/4,

and if n = (q + 1)/2, then

gD+ = 1
2(3q0 + 1)(q − 1)− (q + 1)/4,

gM+ = 1
4(3q0 + 1)(q − 1)− (q + 1)/4.

Dihedral groups of order 2n with n dividing (q − 1)/2. Let D− ≤ L′ be
a dihedral subgroup of order 2n with n | (q − 1)/2. Since (3, 2n) = 1, the
extension F/FD

−
is tame. Let T be the cyclic subgroup of G of order q− 1,

fixing the points P0 and P1, and let C− be the subgroup of D− of order n.
We can assume that C− ≤ T by taking a suitable conjugate of D−. Let θ
be an element of D−, with θ 6∈ C−. Then θ is an involution and

D− = 〈θ, C−〉.
The only involution of T is κ, so θ 6∈ T ; moreover, being an involution
commuting with κ, θ (and any element of D− − C−) does not fix any of
the points fixed by κ (cf. Lemma 4.6). So, as in the case of cyclic groups of
order dividing (q − 1)/2, the ramification indices of P0 and P1, in F/FD

−
,

are equal to n = |C−| . The other ramified places of F in F/FD
−

are those
fixed by involutions in D−. Since 2 -n, D− has n = |C−| involutions, each
fixing a disjoint set of q + 1 points. So the Riemann–Hurwitz formula gives

2g − 2 = 2n(2gD− − 2) + 2(n− 1) + n(q + 1),

where gD− is the genus of FD
−

and we get

gD− =
1

4n
(q − 1)(3q0q + q + 3q0 − n).

Consider now the subgroup M− = 〈κ〉 × D− ≤ L. The ramified places
of F in F/FM

−
are as follows:

• since κ ∈ T , P0 and P1 are ramified with ramification index 2n;
• there are q−1 more places, P2, . . . , Pq, fixed by κ, and they are ramified

with index 2;
• M− has 2n involutions distinct from κ, each fixing a disjoint set of q+1

places (which are also different from P0, . . . , Pq), so that, 2n(q+1) more
places are ramified with index 2.

Substituting this data in the Riemann–Hurwitz formula,

2g − 2 = 4n(2gM− − 2) + 2(2n− 1) + (q − 1) + 2n(q + 1),

where gM− is the genus of FM
−

, we get

gM− =
1

8n
(q − 1)(3q0q + q + 3q0 − 2n− 1).
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In the particular case where n = (q − 1)/2 , we have

gD− = 1
4(6q0 + 1)(q + 1), gM− = 1

4 · 3q0(q + 1).

Here we note that, when n = (q − 1)/2, M− becomes itself a dihedral group
of order 2(q − 1), generated by the involution θ and the cyclic group T .
Moreover, M− is the normalizer (in G) of the cyclic Hall subgroup C− ≤ G
with |C−| = (q − 1)/2 (listed in Proposition 2.3(5)).

Semidirect products of elementary Abelian 3-groups with cyclic groups.
Let S = V ′ o C− ≤ L′ be the semidirect product of an elementary Abelian
3-group, V ′ ≤ L′, of order 3f with a cyclic group, C− ≤ L′, of order n, with
f ≤ 2s+ 1, n | 3f − 1 and n | (q − 1)/2. Let V be the 3-Sylow subgroup of L′

containing V ′ and T the cyclic subgroup of L, of order q−1, containing C−.
Since V ′ is normal in S = V ′ o C−, by Proposition 2.3(9), S is contained
in the normalizer NL(V ) of V in L. By Proposition 4.8, V fixes one of the
places P0, . . . , Pq fixed by κ, and by Theorem 4.9, NL(V ) = V T is the inertia
group of that place. So, by taking a suitable conjugate of S, we can assume:

• V (and V ′) fixes P0,
• T (and C−) fixes P0 and P1;

in particular, NL(V ) = V T is the inertia group, L0(P0), of P0 in the exten-
sion F/FL. Since 2 - |S|, S does not contain any involution and the ramifi-
cations of F/F S can occur only at the places fixed by κ. As V ′ is the only
3-Sylow subgroup of S, only P0 is wildly ramified. The ramification groups
of P0 in F/FS are

S0(P0) = S, Si(P0) =
{
V ′ for 1 ≤ i ≤ 3q0 + 1,

〈1〉 for i ≥ 3q0 + 2.

Therefore the different exponent of P0 is (cf. Corollary 4.10)

dP0 = (3fn− 1) + (3f − 1) + 3q0(3f − 1).

Now the V ′-orbit of P1, V ′.P1 = {σ(P1) | σ ∈ V ′}, has 3f elements, say
V ′.P1 = {P1, . . . , P3f}. Each conjugate of C− by an element of V ′, σC−σ−1,
fixes the place σ(P1). So each place in V ′.P1 is tamely ramified in F/F S with
ramification index n = |C−|. Now we will show, using a counting argument,
that if P 6= P0 and P 6∈ V ′.P1, then no nonidentity element of S fixes P .
Hence the ramified places of F in F/F S are exactly P0, . . . , P3f .

Let σ1, σ2 ∈ V ′ be two distinct elements of V ′. Then

σiC
−σ−1

i ∩ V ′ = 〈1〉, i = 1, 2.

For i = 1, 2, each element of σiC−σ−1
i fixes both P0 and σi(P1). So any

element of σ1C
−σ−1

1 ∩ σ2C
−σ−1

2 fixes P0, σ1(P1) and σ2(P1). As σ1(P1) 6=
σ2(P1), any element of σ1C

−σ−1
1 ∩ σ2C

−σ−1
2 is either the identity or an

involution (because a nonidentity element of G fixing 3 points should be an
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involution, cf. Proposition 2.5), but S does not contain any involution, so

σ1C
−σ−1

1 ∩ σ2C
−σ−1

2 = 〈1〉.
Therefore the number of elements in

⋃
σ∈V ′(σC

−σ−1−〈1〉) is |V ′|(|C−|−1)
= |S| − |V ′|. So we have

S =
⋃

σ∈V ′
(σC−σ−1 − 〈1〉) ∪ V ′,

where, for all σ ∈ V ′, an element in σC−σ−1 − 〈1〉 fixes only P0 and σ(P1),
and an element of V ′ fixes only P0. Hence any element of S fixes either P0
or an element of V ′.P1.

We are ready to compute the genus, gS , of FS . We have

2g − 2 = 3fn(2gS − 2) + dP0 + 3f (n− 1),

where dP0 = 3q03f − 3q0 + 3fn+ 3f − 2 and we get

gS =
1
2
· 1

3fn
3q0(q2 + qq0 − q0 − 3f ).

Consider now the subgroup 〈κ〉 × S ≤ L. As κ ∈ T ≤ V T , the different
exponent of P0 in F/F 〈κ〉×S is

dκSP0
= (2 · 3fn− 1) + (3f − 1) + 3q0(3f − 1).

The other ramified places of F in F/F 〈κ〉×S are

• the 3f places fixed by conjugates of 〈κ〉×C−, with ramification index
2n;
• the remaining q − 3f places fixed by κ, with ramification index 2.

So the Riemann–Hurwitz formula states

2g − 2 = 2 · 3fn(2gκS − 2) + dκSP0
+ 3f (2n− 1) + (q − 3f ),

where gκS denotes the genus of F κ×S and dκSP0
= 3q03f−3q0 +2 ·3fn+3f−2.

Then gκS is computed as

gκS =
1
4
· 1

3fn
(3q0q

2 + q2 − 2q − 3q03f + 3f ).

When f = 2s+ 1 and n = (q − 1)/2, we have

S = V T2, 〈κ〉 × S = V T,

where T2 is the subgroup of T of order (q − 1)/2. The genera of F V T2 and
F V T are computed as

gV T2 = 3q0 + 1, gV T = 1
2(3q0 + 1)

respectively.
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The groups isomorphic to PSL(2, 3f ). Let L′f be a subgroup of L′ iso-
morphic to PSL(2, 3f ) with f | 2s+ 1. Then

|L′f | = |PSL(2, 3f )| = 1
2 · 3f (3f − 1)(3f + 1).

If f = 1, then L′f is isomorphic to the alternating group on four letters
and this case is considered in the next subsection. Therefore we assume here
that f > 1 is an odd integer.

Recall that for any q = 32s+1, s ≥ 1, L has a unique subgroup L′ isomor-
phic to PSL(2, q) and L′ has q+1 disjoint 3-Sylow subgroups corresponding
to P0, . . . , Pq, the fixed places of κ. Let θ be an involution of L′ and assume
without loss of generality that θ(P0) = P1. Let V be a 3-Sylow subgroup of
L′ (or equivalently of L) fixing P0, and T be the subgroup of L fixing P0

and P1. Recall the equality (4.2),

L = V T ∪ V θV T.
Let T2 be the subgroup of order (q − 1)/2 of T . Using the same arguments
used to obtain (4.2), we also get

L′ = V T2 ∪ V θV T2.

Note also that L′ has q+ 1 disjoint 3-Sylow subgroups corresponding to the
fixed places of κ and for the normalizer of V in L′ we have NL′(V ) = V T2.

Since f > 1 is odd, considering Ree(3f ) and by the discussion above, L′f

has 3f + 1 disjoint 3-Sylow subgroups corresponding to P0, . . . , P3f among
the fixed places of κ. Moreover

L′f = V fT f2 ∪ V fθfV fT f2 ,

where V f is the 3-Sylow subgroup of L′f fixing P0, T f2 is the subgroup, of
order (3f − 1)/2, fixing P0 and P1, and θf is an involution of L′ such that
θf (P0) = P1. Also NL′f (V f ) = V fT f2 , V f ≤ V , and T f2 ≤ T2.

Therefore for any P ∈ {P0, . . . , P3f}, the ramification groups are

L′f0 (P ) = V fT f2 , L′fi (P ) =
{
V f for 1 ≤ i ≤ 3q0 + 1,

〈1〉 for i ≥ 3q0 + 2,

where V f is the 3-Sylow subgroup of L′f fixing P , and T f2 is the subgroup
(of order (3f − 1)/2) of L′f fixing P and all P0, . . . , P3f . Hence the different
exponent of P in F/FL

′f
is

dP =
(1

2 · 3f (3f − 1)− 1
)

+ (3f − 1) + 3q0(3f − 1).

Now, let σ ∈ L′f .

(i) If 3 | |σ| then σ fixes a unique place among P0, . . . , P3f ;
(ii) if |σ| | q − 1 and |σ| 6= 2 then by Theorem 2.6, σ is contained in a

cyclic subgroup (of G) of order q − 1 and from the subgroup struc-
ture of PSL(2, 3f ) (cf. Theorem 4.11), σ is contained in a cyclic
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subgroup of L′f of order (3f − 1)/2, and fixes exactly two places
among P0, . . . , P3f ;

(iii) if |σ| = 2 then σ is an involution of L distinct from κ and does not
fix any of the places fixed by κ.

Therefore, from Theorem 2.6, if P is a place fixed by κ and P 6∈ {P0, . . .

. . . , P3f} then P is not ramified in F/FL
′f

. So the remaining ramified places
of F in F/FL

′f
are those fixed by involutions of L′f ∼= PSL(2, 3f ).

When t is odd, PSL(2, 3t) has 3t(3t − 1)/2 involutions. So in our case,
f | 2s+ 1 and L′f has 3f (3f − 1)/2 involutions. Now, we are ready to apply
the Riemann–Hurwitz formula to the extension F/FL′f :

2g− 2 =
1
2
· 3f (3f − 1)(3f + 1)(2gL′f − 2) + (3f + 1)dP +

3f (3f − 1)
2

(q+ 1),

where gL′f is the genus of L′f and

dP = 1
2 · 3f (3f − 1) + 3f + 3q0(3f − 1)− 2.

The genus of L′f is computed as

gL′f =
3q0(q2 − 32f ) + q2 − 32f − q + 3f + 1

2 · 3f (3f − 1)(3f − q)
3f (3f − 1)(3f + 1)

.

Consider now the group 〈κ〉 × L′f . In F/F κ×L
′f

, the different exponent
of each of the 3f + 1 wildly ramified places will become

dκP = (3f (3f − 1)− 1) + (3f − 1) + 3q0(3f − 1)

(because the inertia group of such a place will be of the form 〈κ〉×(V ′oC−),
which is of order 3f (3f − 1)). The involution κ will fix q − 3f more places

and these will be ramified with ramification index 2. There are 2 3f (3f−1)
2 =

3f (3f − 1) more involutions in κ × L′f , each fixing q + 1 points. Then the
Riemann–Hurwitz formula gives

2g−2 = 3f (3f−1)(3f+1)(2gκL′f−2)+(3f+1)dκP +(q−3f )+3f (3f−1)(q+1),

where gκL′f , the genus of L′f , is calculated as

gκL′f =
3q0(q2 − 32f ) + q2 − 32f + 2(3f − q) + 3f (3f − 1)(3f − q)

2 · 3f (3f − 1)(3f + 1)
.

In particular, when 3f = q, i.e. L′f = L′ ∼= PSL(2, q), the genus, gL′ , of
the field FL

′
is gL′ = 0, and as FL ⊂ FL′ , the genus of FL is also zero.

Groups isomorphic to the alternating group on four letters. Let A be a
subgroup of L′ isomorphic to A4. Then:

(i) |A| = 12;
(ii) A has three distinct involutions κ1, κ2, κ3, with κ1κ2 = κ3;
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(iii) A has four disjoint 3-Sylow subgroups, V ′i , i = 0, 1, 2, 3, where V ′i =
κiV

′
0κi, i = 1, 2, 3.

If P0 is the point fixed by V ′0 (which is among the points fixed by κ), then
each V ′i fixes κi(P0), for i = 1, 2, 3. Let us see that

P0 6= κi(P0) 6= κj(P0)

if i 6= j. This will prove that each of the four 3-Sylow subgroups of A fixes
a distinct point.

Since κ 6∈ A, we have κi 6= κ and by Lemma 4.6, κi(P0) 6= P0, for each
i = 1, 2, 3. Suppose that κ1(P0) = κ2(P0) = P1. Then

κ1κ2(P0) = κ1(P1) = P0,

i.e. κ1κ2 fixes P0, but by (ii) above, κ1κ2 = κ3 is an involution, and again
by Lemma 4.6, κ1κ2 cannot fix P0. So κ1(P0) 6= κ2(P0) and similarly

i 6= j ⇒ κi(P0) 6= κj(P0).

Therefore, for each i = 0, . . . , 3, Vi fixes a different point, so it is contained
in a different 3-Sylow subgroup, Ui, of L. Moreover, only four places of F are
wildly ramified in F/FA. If Pi is the place fixed by Vi, then the ramification
groups of Pi, in F/FA are

A0(Pi) = A1(Pi) = A2(Pi) = Vi, A3(Pi) = 〈1〉,
and the different exponent of Pi is

dPi = (3− 1) + (3− 1) + 3q0(3− 1) = 4 + 6q0.

The remaining ramified places of F in F/FA are the 3(q + 1) places fixed
by the involutions of A. We have

2g − 2 = 12(2gA − 2) + 4(4 + 6q0) + 3(q + 1),

where gA is the genus of FA, calculated as

gA =
1
24

(3q0q
2 + q2 + 2q − 27q0 + 3).

If we consider the extension F/F 〈κ〉×A, the different exponent of Pi, i =
0, . . . , 3, becomes

dκPi = (6− 1) + (3− 1) + 3q0(3− 1) = 7 + 6q0.

The remaining q − 3 places fixed by κ are ramified in F/F 〈κ〉×A, with ram-
ification index 2. The group 〈κ〉 × A has six more involutions, each fixing
q + 1 points. So we have

2g − 2 = 24(2gκA − 2) + 4(7 + 6q0) + (q − 3) + 6(q + 1),

where the genus, gκA, of F 〈κ〉×A is calculated as

gκA =
1
48

(3q0q
2 + q2 − 8q − 27q0 + 15).
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4.2. Normalizer of a subgroup of order q+3q0+1. Let K be a cyclic Hall
subgroup of G of order q+ 3q0 + 1 and Γ = NG(K). By Proposition 2.3(6),
Γ is a Frobenius group with kernel K and a cyclic noninvariant factor of
order 6. In this subsection we find the genera of all subfields of F fixed by
a subgroup of Γ .

Let us first recall the definition of a Frobenius group and some properties
of Frobenius groups (see for example [G-L-S 2] or [Ro]). A finite group Γ is
called a Frobenius group if it has a subgroup H ≤ Γ with 〈1〉 6= H 6= Γ such
that

H ∩Hσ = 〈1〉 for all σ ∈ Γ −H
where Hσ = σHσ−1. Then

K = Γ −
⋃

σ∈Γ
(Hσ − 〈1〉)

is a normal subgroup of Γ such that

Γ = KH, H ∩K = 〈1〉.
K is called the Frobenius kernel, H is called a Frobenius complement (or a
noninvariant factor). The Frobenius kernel K is uniquely determined by the
conditions above and H is uniquely determined up to K-conjugacy.

First we find all subgroups of a Frobenius group with cyclic Frobe-
nius kernel of order n and cyclic Frobenius complement of order 6, where
gcd(n, 6) = 1.

Proposition 4.13. Let M be a Frobenius group with cyclic Frobenius
kernel N of order n and cyclic Frobenius complement of order 6, where
gcd(n, 6) = 1. If M1 ≤M is a subgroup, then M1 is of one of the following
types:

(i) |M1| |n and M1 ≤ N ,
(ii) |M1| | 6 and M1 ≤ H for a Frobenius complement H of M ,

(iii) |M1| = n1h1 with 1 < n1, 1 < h1, n1 |n, h1 | 6 and M1 = N1 oH1,
where N1 is the subgroup of N with |N1| = n1 and H1 is the subgroup
of a Frobenius complement H of M with |H1| = h1. Moreover M1
is itself a Frobenius group with Frobenius kernel N1 and Frobenius
complement H1.

Proof. It is clear that for any n1 |n, h1 | 6 and any Frobenius complement
H of M , there are cyclic subgroups N1 of N and H1 of H with |N1| = n1 and
|H1| = h1. Conversely for any subgroup M1 of M with |M1| |n or |M1| | 6, we
have M1 ≤ N or M1 ≤ H for a Frobenius complement H of M respectively,
by Theorem 2.1. Therefore it remains to consider (iii).

For any subgroup N1 ≤ N and h ∈ H, if g ∈ N1 then |g| = |hgh−1| and
hence hgh−1 ∈ N1. Therefore for any nontrivial subgroup 〈1〉 6= N1 ≤ N
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of the Frobenius kernel N and any nontrivial subgroup 〈1〉 6= H1 ≤ H of
a Frobenius complement H, N1 o H1 is a Frobenius subgroup of M with
Frobenius kernel N1 and Frobenius complement H1.

Conversely first assume that M1 is a subgroup of order 2n1 with 1 <
n1 |n. Let H1 be a 2-Sylow subgroup of M1. Then H1 ≤ H for a unique
Frobenius complement H of M . If x ∈ N − 〈1〉, then H1 ∩ xH1x

−1 = 〈1〉. If
x ∈M1− (N ∪H1), then x is an involution and x 6∈ H, since H has a unique
involution. Therefore H1 ∩ xH1x

−1 = 〈1〉 for any x ∈ M1 − H1 and M1 is
a Frobenius group with Frobenius complement H1. Moreover the Frobenius
complement of M1 is the unique subgroup N1 of N with |N1| = n1.

Next assume that M1 is a subgroup of order 3n1 with 1 < n1 |n. Let
H1 be a 3-Sylow subgroup of M1. Similarly M1 is a Frobenius group with
Frobenius complement H1 and the subgroup N1 of N with |N1| = n1 as the
Frobenius kernel.

Now we assume that M1 is a subgroup of order 6n1 with 1 < n1 < n and
n1 |n. Let N1 be the subgroup of N of order n1. Let {1, α} and {1, β, β2}
be 2-Sylow and 3-Sylow subgroups of M1. Let {1, α} ⊂ H, where H =
{1, h, . . . , h5} is the Frobenius complement containing α. Then α = h3 and
β = uh2u−1 (or β = uh4u−1) for u ∈ N . First we consider the case u ∈ N1.
In this case we have α = h3 ∈ M1 and h2 ∈ M1 (or h4 ∈ M1). Therefore
h ∈M1 and hence M1 = N1oH, which is a Frobenius group with Frobenius
kernel N1 and Frobenius complement H.

We show that the other case u ∈ N − N1 is impossible. Let H1 = 〈α〉.
Observe that N1 o 〈β〉 is a subgroup of M1. Moreover N1 o 〈β〉 ∩ {gα :
g ∈ N1 o 〈β〉} = ∅ and M1 = N1 o 〈β〉 ∪ {gα : g ∈ N1 o 〈β〉}. Since
N1 o 〈β〉 ∩H = ∅, for any σ ∈M1 −H1 we have σH1σ

−1 = 〈1〉. Hence M1
is a Frobenius group with Frobenius complement H1 and Frobenius kernel
N1 o 〈β〉. In particular αβα ∈ N1 o 〈β〉.

Note that for any g ∈ N , we have

α(gα)2 = (αgα)gα = g(αgα)α since N is Abelian

= (gα)2α.

Then α ∈ (gα)−2H(gα)2 ∩ H. Moreover (gα)2 ∈ N and hence (gα)2 = 1,
since H is a Frobenius complement of M . Therefore αg = g−1α.

We have α = h3, β = uh2u−1 (or β = uh4u−1), and αβα ∈ N1 o 〈β〉.
Then

αβα = α(uh2u−1)α (or = α(uh4u−1)α)

= (u−1α)h2(αu) (or = (u−1α)h4(αu))

= u−1h2u (or = u−1h4u)

= u−2βu2.
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Moreover 〈αβα〉 is a subgroup of order 3 and all subgroups of order 3 in
N1o 〈β〉 are exactly {〈v−1βv〉 : v ∈ N1}. Therefore there exists v ∈ N1 such
that {1, u−2βu2, u−2β2u2} = {1, v−1βv, v−1β2v}. We have either u−2βu2 =
v−1βv or u−2βu2 = v−1β2v. Then either vu−2βu2v−1 = β or vu−2βu2v−1

= β2. In both cases, vu−2〈β〉u2v−1 = 〈β〉. Moreover N o 〈β〉 is a Frobenius
group with Frobenius kernel N and Frobenius complement 〈β〉. Since vu−2

∈ N and vu−2〈β〉u2v−1 = 〈β〉, we have vu−2 = 1 and so v = u2. However
u ∈ N −N1 and 〈u〉 = 〈u2〉, since gcd(2, n) = 1. Hence it is a contradiction
that v = u2 ∈ N1.

We consider the ramification structure of the extension F/F Γ . The
extension F/F Γ is not ramified at the nonrational places of F because
(|Γ |, q − 3q0 + 1) = 1 (cf. Theorem 3.5). So we need to find the ramified
places inside Ω (the set of rational places of F ) and the corresponding ram-
ification groups.

The order of Γ is 6(q+3q0+1), so the order of its 3-Sylow subgroups is 3.
Let H be a Frobenius complement of Γ . Then H is a cyclic group of order 6.
So H contains an involution κ and an element σ of order 3. Assume σ fixes
the point P0. Since σ commutes with κ, from the discussions in Section 4.1,
κ (in particular H) also fixes P0.

We first discuss the wildly ramified places of F in F/F Γ . Recall that the
order of the subgroup of G fixing a point of Ω is q3(q−1). As (|K|, q3(q−1))
= 1, the K-orbit of P0, K.P0 = {α(P0) | α ∈ K}, has |K| = q + 3q0 + 1
elements, say P0, . . . , Pq+3q0 (we will show later that κ fixes only P0 among
these points).

Theorem 4.14. The wildly ramified places of F in F/F Γ are P0, . . .
. . . , Pq+3q0. The ramification groups of P0 in F/FΓ are

Γ0(P0) = H, Γi(P0) =
{ 〈σ〉 for 1 ≤ i ≤ 3q0 + 1,

〈1〉 for i ≥ 3q0 + 2.

The different exponent of P0 is

dP0 = (6− 1) + (3− 1) + 3q0(3− 1) = 6q0 + 7.

Moreover , for each i = 1, . . . , q + 3q0, the ramification groups of Pi are
conjugates of those of P0, and the different exponent of Pi is equal to dP0 .

Proof. As (|Γ |, q3(q−1)) = 6, H is the (largest) subgroup of Γ fixing P0,
and the assertions about the ramification groups and the different exponent
of P0 follow from Theorem 4.9 and Corollary 4.10.

The wildly ramified places of F will be those fixed by 3-Sylow subgroups
of Γ . Any 3-Sylow subgroup of Γ has order 3 and should be a conjugate
(in Γ ) of 〈σ〉, so it should be contained in a conjugate (in Γ ) of H. So
the wildly ramified places of F will be those fixed by conjugates of H. As
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Γ can be written as the product of its Frobenius kernel and its Frobenius
complement, Γ = KH, any conjugate (in Γ ) of H is αωHω−1α−1 = αHα−1,
where α ∈ K and ω ∈ H. In other words, the set of conjugates of H is

{αHα−1 | α ∈ K}.
Let α1 6= α2 be two elements of K. Then α1(P0) 6= α2(P0). For i = 1, 2,

the element of order 3 of αiHα−1
i is αiσα−1

i , and this element fixes only
αi(P0) ∈ Ω. So the groups α1Hα

−1
1 and α2Hα

−1
2 are distinct. Therefore,

H has q + 3q0 + 1 conjugates, each of them fixing a different point among
P0, . . . , Pq+3q0+1. Since any conjugate, αHα−1, of H, is the inertia group of
α(P0), the last assertion of the theorem follows.

Now, the ramification index of any tamely ramified place of F in F/F Γ

is 2 (because (|Γ |, q3(q − 1)) = 6). So we need to find the fixed points of
involutions in Γ .

Lemma 4.15. The group Γ has exactly q+3q0+1 involutions, each fixing
exactly one point among P0, . . . , Pq+3q0 and q other points of Ω. Moreover ,
two distinct involutions of Γ cannot fix the same point of Ω.

Proof. The order of a 2-Sylow subgroups of Γ is 2. Therefore any invo-
lution of Γ is a conjugate (in Γ ) of κ, so it is contained in a conjugate of H.
In the proof of Theorem 4.14, we have also established that H has exactly
q+ 3q0 + 1 distinct conjugates. From the definition of Frobenius groups, the
conjugates of H are disjoint. As each conjugate of H has a unique involu-
tion, Γ has exactly q + 3q0 + 1 involutions and (from the proof of Theorem
4.14) each of them fixes one of P0, . . . , Pq+3q0.

To finish the proof it is enough to show that distinct involutions of Γ
cannot fix the same point. Let κ1 6= κ2 be two involutions in Γ . Suppose
κ1(P ) = κ2(P ) = P for some point P of Ω. Then the subgroup of Γ
generated by κ1 and κ2, 〈κ1, κ2〉, will also fix P . So 〈κ1, κ2〉 ≤ GP (and
〈κ1, κ2〉 ≤ Γ ), which implies

|〈κ1, κ2〉| | 6 = (q3(q − 1), 6(q + 3q0 + 1)).

Obviously the order of the group 〈κ1, κ2〉 cannot be 2 and 3. So |〈κ1, κ2〉|
= 6 but this implies that 〈κ1, κ2〉 = Γ0(P ) which is a conjugate of H. No
conjugate of H has two distinct involutions, and this contradiction finishes
the proof.

From Lemma 4.15, we easily get

Theorem 4.16. The number of tamely ramified places of F in the ex-
tension F/FΓ is q(q + 3q0 + 1), and the ramification index of each of them
is 2.

Any subgroup of Γ is given in Proposition 4.13. In the subsections below
we find genera of any subfield of F corresponding to subgroups Γ .
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Subgroups of the form N1 oH with |N1| = n1 | q + 3q0 + 1 and |H| = 6.
N1 o H has n1 disjoint Frobenius complements each fixing a place among
the wildly ramified places of F in F/F Γ . The ramification groups of these
places in F/FN1oH are the same as their ramification groups in F/F Γ , say
P0, . . . , Pn1−1. For any P ∈ {P0, . . . , Pn1−1}, the corresponding Frobenius
complement of N1oH fixing P has the unique involution which fixes q other
places of Ω. Moreover two distinct involutions of N1oH cannot fix the same
place. Therefore the Riemann–Hurwitz formula applied to F/FN1oH gives

2g − 2 = 6n1(2gN1oH − 2) + n1(6q0 + 7) + n1q,

where gN1oH is the genus of FN1oH , computed as

gN1oH =
3q0(q − 1)(q + q0 + 1)− n1(q + 6q0 − 5)− 2

12n1
.

In particular for N1 = K we have N1 oH = Γ and gΓ = (q − 1)(q0 − 1)/4.

Subgroups of the form N1o 〈β〉 with |N1| = n1 | q+ 3q0 + 1 and |β| = 3.
N1 o 〈β〉 has n1 disjoint Frobenius complements each fixing a unique place
P0, . . . , Pn1−1. Let P be one of these places. The ramification groups of P
in F/FN1o〈β〉 are

(N1 o 〈β〉)i(P ) =
{ 〈β〉 for 0 ≤ i ≤ 3q0 + 1,

〈1〉 for i ≥ 3q0 + 2.
Therefore its different exponent is

dP = (3− 1) + (3− 1) + 3q0(3− 1) = 6q0 + 4.

N1 o 〈β〉 has no involutions and applying the Riemann–Hurwitz formula to
F/FN1o〈β〉 we get

2g − 2 = 3n1(2gN1o〈β〉 − 2) + n1(6q0 + 4),

where gN1o〈β〉 is the genus of FN1o〈β〉, computed as

gN1o〈β〉 =
3q0(q − 1)(q + q0 + 1)− n1(6q0 − 2)− 2

6n1
.

In particular for N1 = K we have gKo〈β〉 = (q − 1)q0/2− q/3.
Subgroups of the form N1o 〈α〉 with |N1| = n1 | q+ 3q0 + 1 and |α| = 2.

Observe that gcd(|N1 o 〈α〉|, 3) = 1 and hence there is no wild ramification
in F/FN1o〈α〉. Since N1 o 〈α〉 has n1 disjoint Frobenius complements each
having a unique involution, the Riemann–Hurwitz formula gives

2g − 2 = 2n1(2gN1o〈α〉 − 2) + n1(q + 1),

where gN1o〈α〉 is the genus of FN1o〈α〉, computed as

gN1o〈α〉 =
3q0(q − 1)(q + q0 + 1)− n1(q − 3)− 3

4n1
.

In particular for N1 = K we have gKo〈α〉 = (3(q + 1)q0 + 1− 3q)/4.
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Subgroups of the form N1 with |N1| = n1 | q + 3q0 + 1. Observe that
gcd(|N1|, 6) = 1 and hence the extension F/FN1 is unramified. Therefore
the Riemann–Hurwitz formula gives

2g − 2 = n1(2gN1 − 2),

where gN1 is the genus of FN1 , computed as

gN1 =
3q0(q − 1)(q + q0 + 1) + 2n1 − 2

2n1
.

In particular for N1 = K we have gK = (3(q + 1)q0 − 2q)/2.

4.3. Normalizer of a subgroup of order q − 3q0 + 1. Let K be a cyclic
Hall subgroup of G of order q − 3q0 + 1 and Γ = NG(K). By Proposi-
tion 2.3(6), Γ is a Frobenius group with kernel K and a cyclic noninvariant
factor of order 6. The properties of the group and its action on Ω (the set
of rational places of F ) are very similar to those of the normalizer of a Hall
subgroup of order q+ 3q0 + 1, which we discussed in Section 4.2. So by just
imitating the proofs of Theorems 4.14 and 4.16, we get the ramified rational
places of F in F/F Γ .

Theorem 4.17. F has q − 3q0 + 1 wildly ramified places in F/F Γ . The
ramification groups of each wildly ramified place P are

Γ0(P ) = H, Γi(P ) =
{ 〈σ〉 for 1 ≤ i ≤ 3q0 + 1,

〈1〉 for i ≥ 3q0 + 2,

where H is a Frobenius complement of Γ , which is cyclic of order 6, and σ
is the element of order 3 of H. The different exponent of P in F/F Γ is

dP = (6− 1) + (3− 1) + 3q0(3− 1) = 6q0 + 7.

F has q(q−3q0+1) tamely ramified rational places, each with ramification 2.

Proposition 4.13 gives all subgroups of Γ for this subsection as well. In
the following subsections, we find genera of any subfield corresponding to
subgroups of Γ .

Subgroups of the form N1 oH with |N1| = n1 | q − 3q0 + 1 and |H| = 6.
Note that N1 ≤ K and K is a cyclic Hall subgroup of order q − 3q0 + 1.
By Theorem 3.5, there exists a degree 6 place Q of F such that K fixes Q.
The ramification index of Q in F/FG is q − 3q0 + 1 and hence by Theorem
4.1, the ramification index of Q in F/FN1oH is n1. Moreover N1oH has n1
disjoint Frobenius complements. Each of these gives a unique wildly ramified
place P and its different exponent is dP = 6q0 + 7. Also the involution of
each Frobenius complement fixes q other places of Ω. Therefore applying
the Riemann–Hurwitz formula to F/FN1oH we get

2g − 2 = 6n1(2gN1oH − 2) + n1(6q0 + 7) + n1q + 6(n1 − 1),
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where gN1oH is the genus of FN1oH , computed as

gN1oH =
3q0(q − 1)(q + q0 + 1)− n1(q + 6q0 + 1) + 4

12n1
.

In particular for N1 = K we have N1 oH = Γ and gΓ = (q + 1)(q0 + 1)/4.

Subgroups of the form N1 o 〈β〉 with |N1| = n1 | q − 3q0 + 1 and |β| = 3.
As in the previous subsection, there is only one nonrational place Q of F
which ramifies in F/FN1o〈β〉. It is a degree 6 place and its ramification
index is n1. Moreover N1o 〈β〉 has n1 disjoint Frobenius complements each
fixing a unique (rational) place. Let P be one of these places. Then P is
wildly ramified with different exponent dP = 6q0 + 4. Since N1o 〈β〉 has no
involutions, the Riemann–Hurwitz formula gives

2g − 2 = 3n1(2gN1o〈β〉 − 2) + n1(6q0 + 4) + 6(n1 − 1),

where gN1o〈β〉 is the genus of FN1o〈β〉, computed as

gN1o〈β〉 =
3q0(q − 1)(q + q0 + 1)− n1(6q0 + 4) + 4

6n1
.

In particular for N1 = K we have gKo〈β〉 = (q + 1)q0/2 + 2q/3.

Subgroups of the form N1 o 〈α〉 with |N1| = n1 | q − 3q0 + 1 and |α| = 2.
There is only one nonrational place Q of F , of degree 6, ramifying in
F/FN1o〈α〉 with ramification index n1. Since gcd(|N1o 〈α〉|, 3) = 1, there is
no wild ramification. As N1o 〈α〉 has n1 distinct involutions, the Riemann–
Hurwitz formula gives

2g − 2 = 2n1(2gN1o〈α〉 − 2) + n1(q + 1) + 6(n1 − 1),

where gN1o〈α〉 is the genus of FN1o〈α〉, computed as

gN1o〈α〉 =
3q0(q − 1)(q + q0 + 1)− n1(q − 3) + 4

4n1
.

In particular for N1 = K we have gKo〈α〉 = (3q + 1)(q0 + 1)/4 + 2q0.

Subgroups of the form N1 with |N1| = n1 | q − 3q0 + 1. F/FN1 is ramified
at the degree 6 place Q with the ramification index n1. Since gcd(|N1|, 6)
= 1, there is no other ramification. Therefore the Riemann–Hurwitz formula
gives

2g − 2 = n1(2gN1 − 2) + 6(n1 − 1),

where gN1 is the genus of FN1 , computed as

gN1 =
3q0(q − 1)(q + q0 + 1)− 4n1 + 4

2n1
.

In particular for N1 = K we have gK = 3q0(q + 3)/2 + 2q.
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4.4. Normalizer of a subgroup of order (q + 1)/4. Let A be a cyclic Hall
subgroup of order (q + 1)/4 and J = NG(A) be its normalizer in G. By
Proposition 2.3(4) and [G-L-S 3, pp. 332–333], the order of J is 6(q+1) and
we have:

Proposition 4.18. There is an elementary abelian subgroup E ≤ G of
order 4 and a dihedral subgroup D ≤ G of order (q + 1)/2 where A ≤ D,
and the elements of E commute with the elements of D, such that NG(A)
is the extension of E×D by an element of order 3 normalizing both factors
and acting without fixed points on E and A.

We will assume that the groups E and D in the above proposition are
subgroups of J and so E ×D < J . We will denote E ×D by K. In fact K
is the only subgroup of J with order 2(q + 1). Indeed, we have

Lemma 4.19. Let H ≤ J and write the order of H as |H| = 2ia3j ,
where a | (q + 1)/4. Then H has a subgroup of order 2ia contained in K. In
particular if gcd(|H|, 3) = 1 then H ≤ K.

Proof. First we note that the involutions of J are elements of K. This
follows from the fact thatK is a normal subgroup of J with index 3. Similarly
any element of order dividing (q + 1)/4 is contained in A. Write the prime
decomposition of a as a = pm1

1 · · · pmtt . Then for each i = 1, . . . , t, the pi-
Sylow subgroup Spi of H is contained in some Hall subgroup of G of order
(q + 1)/4. So Spi is cyclic and contained in A. Therefore H has a subgroup
AH of order a which is contained in K. Also, any 2-Sylow subgroup S2 of H
is contained in K. Now the subgroup generated by AH and S2 is the desired
subgroup of order 2ia.

Here we note that, being the center of K, the first component E of
E × D is also uniquely determined. For the second component, although
K contains four distinct dihedral subgroups of order (q + 1)/2, only one of
them is normalized by elements of order 3, which will be discussed below.

From the Sylow theorems, it follows that J has q+ 1 3-Sylow subgroups
and the order of the normalizer of each of them is 6. By Proposition 2.3(4),
3-Sylow subgroups are cyclic of order 6. Notice that any 3-Sylow subgroup V
normalizes K, so that J = KoV. In particular, V acts on K by conjugation
and since V is a cyclic group generated by some σ ∈ J , |σ| = 3, the fixed
points of this action are the elements of K commuting with σ. We have

Lemma 4.20. Let σ ∈ J be an element with |σ| = 3. Then σ commutes
with a unique involution κ ∈ K \ E. Let D be the dihedral subgroup of K
generated by κ and A. Then σ normalizes both E and D and acts without
fixed points on E and A.
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Proof. The subgroup E is the center of K, and A is the only cyclic
subgroup of K of order (q + 1)/4. So any automorphism of K (in particular
conjugation by σ) should map E and A to themselves. Hence σEσ−1 = E
and σAσ−1 = A. Now, for any involution κ ∈ K \ E, σκσ−1 is again an
involution in K \ E. The number of involutions in K \ E is q + 1. Since
3 - q + 1, σ should commute with an involution in K \ E. As |NJ(σ)| = 6,
there is no other element of K commuting with σ, which finishes the proof.

Let κ0 = 1, κ1, κ2, κ3 denote the distinct elements of E. From the above
lemma, it follows that the distinct conjugates of a 3-Sylow subgroup V of J
are

κiαV α
−1κi, i = 0, . . . , 3, α ∈ A.

Let κ be the involution of K \E commuting with the generator σ of V , and
D be the dihedral subgroup generated by κ and A. Then, for any α ∈ A,
the involution α2κ ∈ D commutes with ασα−1, κ1ασα

−1κ1, κ2ασα
−1κ2,

κ3ασα
−1κ3. Since gcd((q + 1)/4, 2) = 1, any involution of D can be written

as α2κ for some α ∈ A. As D has (q + 1)/4 involutions and J has q + 1
3-Sylow subgroups, we get:

Lemma 4.21. The group K has a unique dihedral subgroup D of order
(q + 1)/2 normalized by elements of order 3 in J , and each involution of D
is contained in the normalizer of exactly four 3-Sylow subgroups of J which
are conjugate under the elements of E.

From now onD will denote the dihedral subgroup ofK, of order (q+1)/2,
normalized by elements of order 3 in J .

We want to determine the structure of all subgroups of J . If H ≤ J with
3 - |H|, then Lemma 4.19 implies H ≤ K and the subgroups of K can be
easily listed. So we need to deal with subgroups H of J with 3 | |H|.

Lemma 4.22. Let H ≤ J with 3 | |H|. Let EH be the subgroup H ∩ E
of H. Then EH is either trivial or equal to E.

Proof. Let σ ∈ H be an element of order 3. Then by Lemma 4.20, σ acts
on E by conjugation and this action does not fix any nontrivial subgroup of
E, which proves the lemma.

Lemma 4.23. Let H ≤ J with 3 | |H|. Let σ ∈ H be an element of or-
der 3, EH = H ∩ E and DH = H ∩D. Then

H = (EH ×DH)o 〈σ〉,
in particular H ∩K = EH ×DH . Moreover :

(i) If 2 - |DH | then H has |EH | |DH | 3-Sylow subgroups and the normal-
izer (in H) of each of them is equal to that subgroup.

(ii) If 2 | |DH | then H has 1
2 |EH | |DH | 3-Sylow subgroups and the order

of the normalizer (in H) of each of them is 6. In this case, each
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involution of DH is contained in the normalizer of exactly |EH | 3-
Sylow subgroups of H.

Proof. To show the first assertion, we need only show that H ∩ K =
EH × DH . Let B = H ∩ K and AH = H ∩ A. First note that B is either
EH × AH or EH × D1 where D1 is a dihedral subgroup generated by AH
and an involution in K \E. Now, as AH ≤ DH and EH ×DH ≤ B, we need
only show that, in the case B = EH × D1 with 2 | |D1|, DH also contains
an involution. This is equivalent to showing that B contains an involution κ
commuting with σ (then κ should also be in DH). So assume B = EH ×D1
with 2 | |D1|. By Lemma 4.22, EH = 〈1〉 or E. In both cases, since B < H,
the same counting argument as in the proof of Lemma 4.20 shows that σ
commutes with an involution in B. This also shows that if 2 | |DH | then
|NH(〈σ〉)| = 6.

Now by Lemma 4.19 the order of H is 3|EH | |DH |. Let V be a 3-Sylow
subgroup of H, and n3 be the number of its conjugates in H. In the case
2 - |DH |, Lemma 4.20 implies that NH(V ) = V , and (i) follows from the
Sylow theorems. When 2 | |DH |, we have |NH(V )| = |NH(〈σ〉)| = 6 and
n3 = 1

2 |EH | |DH |. The last assertion follows from Lemma 4.21.

The following theorem gives a complete list of subgroups of J .

Theorem 4.24. The group J = NG(A) has only the following subgroups:

(i) subgroups of E ×D,
(ii) for each subgroup D1 of D, extensions of E ×D1 by an element of

order 3,
(iii) for each subgroup D1 of D, extensions of D1 by an element of or-

der 3.

Proof. By Lemmas 4.19 and 4.23, any subgroup of J is one of those
listed in (i)–(iii). So we need only show the existence of subgroups listed
in (ii) and (iii). Let D1 ≤ D. In the case 2 | |D1| let σ ∈ J be an element
of order 3 commuting with an involution in D1 (such a σ exists by Lemma
4.21), otherwise let σ ∈ J be any element of order 3. By Lemma 4.20,
σ normalizes both E and A, but since A is cyclic, it also normalizes any
subgroup of A. Thus the following are subgroups of J :

D1 o 〈σ〉, (E ×D1)o 〈σ〉.
Now we determine the ramification structure of F/F J . The extension

F/F J is not ramified at the nonrational places of F because gcd(|J |, q −
3q0 + 1) = 1. So we need to find the ramified places inside Ω (the set of
rational places of F ) and the corresponding ramification groups.

For the wild ramifications of F/F J , we have:
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Proposition 4.25. The number of wildly ramified places of F in F/F J

is q + 1. If P is one of them, then the ramification groups of P , in F/F J

are

J0(P ) = NJ(V ), Ji(P ) =
{
V for 1 ≤ i ≤ 3q0 + 1,

〈1〉 for i ≥ 3q0 + 2,

where V is a 3-Sylow subgroup of J . The different exponent of P is

dP = (6− 1) + (3− 1) + 3q0(3− 1) = 6q0 + 7.

Proof. The number of wildly ramified places of F in F/F J is equal to
the number of 3-Sylow subgroups of J , which is q + 1. For V a 3-Sylow
subgroup, since |NJ(V )| is contained in the centralizer of some involution,
the other assertions follow from Theorem 4.9 and its corollary.

The ramification index of any tamely ramified place of F in F/F J is
2 (because gcd(|J |, q3(q − 1)) = 6). So we need to find the places fixed by
involutions in J . Now, any involution of J is an element of E×D (by Lemma
4.19) which is contained in the centralizer of some involution. So Lemma 4.6
of Section 4.1 implies that two distinct involutions of J cannot fix the same
place. Since any involution of G fixes q + 1 places, counting the involutions
in J and using Lemma 4.21, we get:

Proposition 4.26. The tamely ramified places of F in F/F J are:

(i) the q+1
4 (q − 3) places fixed by (q + 1)/4 involutions of D, which are

also in the normalizer NJ(V ) of a 3-Sylow subgroup V of J ,
(ii) the (3(q + 1)/4+3)(q+1) places fixed by the remaining 3(q + 1)/4+3

involutions of E ×D.

We want to find the genera of all subfields of F fixed by subgroups of J .
The subgroups of E × D are contained in the centralizer of an involution
in E, and were already studied in Section 4.1. So, in this section we shall
consider only the subgroups of J listed in (ii) and (iii) of Theorem 4.24.
We distinguish here four types of subgroups which will be discussed in the
following subsections.

Subgroups of the form A1, where A1 ≤ A is cyclic of order a1 | (q + 1)/4.
Since gcd(a1, q

2(q−1)) = 1, F/FA1 is unramified and hence by the Riemann–
Hurwitz formula we have

2g − 2 = a1(2gA1 − 2),

where gA1 is the genus of FA1 , computed as

gA1 =
3q0(q − 1)(q + q0 + 1)− 2

2a1
+ 1.

In particular for A1 = A we have gA = 6(q − 1)q0 + 2q − 3.
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Subgroups of the form D1, where D1 ≤ D is dihedral of order 2a1 with
a1 | (q + 1)/4. Since gcd(3, 2a1) = 1, there is no wild ramification in F/FD1 .
The number of involutions in D1 is a1 and hence the Riemann–Hurwitz
formula gives

2g − 2 = 2a1(2gD1 − 2) + a1(q + 1),

where gD1 is the genus of FD1 , computed as

gD1 =
3q0(q − 1)(q + q0 + 1)− 2

4a1
+ 1− q + 1

4
.

In particular for D1 = D we have gD = 3q0(q − 1) + q − 1− (q + 1)/4.

Subgroups of the form E × A1, where A1 ≤ A is cyclic of order a1 divid-
ing (q+1)/4. Since gcd(4a1, 3)=1, there is no wild ramification in F/FE×A1.
Since E × A1 has three involutions the Riemann–Hurwitz formula gives

2g − 2 = 4a1(2gE×A1 − 2) + 3(q + 1),

where gE×A1 is the genus of FE×A1 , computed as

gE×A1 =
3q0(q − 1)(q + q0 + 1)− 2− 3(q + 1)

8a1
+ 1.

In particular for A1 = A we have gE×A = 3q0(q − 1)/2− (q − 1)/2.

Subgroups of the form E ×D1, where D1 ≤ D is dihedral of order 2a1
with a1 | (q + 1)/4. Since gcd(8a1, 3) = 1, the extension F/FE×D1 is unram-
ified. E ×D1 has 4a1 + 3 involutions and hence Riemann–Hurwitz formula
gives

2g − 2 = 8a1(2gE×D1 − 2) + (4a1 + 3)(q + 1),

where gE×D1 is the genus of FE×D1 , computed as

gE×D1 =
3q0(q − 1)(q + q0 + 1)− 2 + (4a1 + 3)(q + 1)

16a1
+ 1.

In particular for D1 = D we have gE×D = (3q0(q − 1) + 2)/4 + 2.

Subgroups of the form A1 o 〈σ〉, where A1 ≤ A is cyclic of order a1 divid-
ing (q + 1)/4 and σ ∈ J, |σ| = 3. By Lemma 4.23, A1 o 〈σ〉 has a1 = |A1|
3-Sylow subgroups and since gcd(|A1 o 〈σ〉|, 2) = 1, it does not contain any
involution. So F has a1 ramified places (each with index 3) in F/FA1o〈σ〉 and
the different exponent of each of them equals 6q0 +4. The Riemann–Hurwitz
formula states

2g − 2 = 3a1(2gA1oσ − 2) + a1(6q0 + 4),

where gA1oσ is the genus of FA1o〈σ〉, computed as
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gA1o〈σ〉 =
3q0(q − 1)(q + q0 + 1)− 2− 4a1

6a1
+ 1.

In particular for A1 = A we have gA1o〈σ〉 = 2q0(q − 1)− q0 − 1.

Subgroups of the form D1 o 〈σ〉, where D1 ≤ D is dihedral of order 2a1
with a1 | (q + 1)/4 and σ ∈ J, |σ| = 3. By Lemma 4.23, D1 o 〈σ〉 has a1

3-Sylow subgroups, the order of the normalizer of each of them is 6 and
each involution of D1 is contained in the normalizer of only one 3-Sylow
subgroup of D1 o 〈σ〉. The last implies that each involution of D1 fixes one
place which is wildly ramified and q other places which are tamely ramified
in F/F J . So F has a1 wildly ramified places, with different exponent 6q0 +7
each, and a1q tamely ramified places of index 2, in F/F J . Applying the
Riemann–Hurwitz formula we get

2g − 2 = 6a1(2gD1oσ − 2) + a1(6q0 + 7) + a1q,

where gD1oσ is the genus of FD1o〈σ〉, computed as

gD1o〈σ〉 =
3q0(q − 1)(q + q0 + 1)− 2− a1(6q0 + q + 7)

12a1
+ 1.

In particular for D1 = D we have gDo〈σ〉 = q0(q − 1)− (q − 2q0 − 1)/4.

Subgroups of the form (E × A1)o 〈σ〉, where A1 ≤ A is cyclic of order
a1 | (q + 1)/4 and σ ∈ J, |σ| = 3. This subgroup has 4a1 3-Sylow subgroups
and three involutions, which implies that F has 4a1 wildly ramified places
with different exponent 6q0 + 4 and 3(q + 1) tamely ramified places with
index 2. So the Riemann–Hurwitz formula states

2g − 2 = (12a1)(2g(E×A1)o〈σ〉 − 2) + 4a1(6q0 + 4) + 3(q + 1),

where g(E×A1)o〈σ〉 is the genus of F (E×A1)o〈σ〉, computed as

g(E×A1)o〈σ〉 =
3q0(q − 1)(q + q0 + 1)− 2− 4a1(6q0 + 4)− 3(q + 1)

24a1
+ 1.

In particular for A1 = A we have g(E×A)o〈σ〉 = (3q0(q − 1) + q − 3)/6− q0.

Subgroups of the form (E ×D1)o 〈σ〉, where D1 ≤ D is dihedral of order
2a1 with a1 | (q + 1)/4 and σ ∈ J, |σ| = 3. This subgroup has 4a1 3-Sylow
subgroups and hence F has 4a1 wildly ramified places. Moreover the different
exponent of these places is 6q0 + 7. There are a1 involutions in D1 which
are also in the normalizer of a 3-Sylow subgroup of J and each of them
fixes q− 3 more places. Also (E ×D1)o 〈σ〉 has 3a1 + 3 further involutions
which are not in the normalizer of any 3-Sylow subgroup of J . Therefore
the Riemann–Hurwitz formula gives

2g − 2 = 24a1(2g(E×D1)o〈σ〉 − 2) + 4a1(6q0 + 7) + a1(q − 3)

+ (3a1 + 3)(q + 1),
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where g(E×D1)o〈σ〉 is the genus of F (E×D1)o〈σ〉, computed as

g(E×D1)o〈σ〉 =
3q0(q − 1)(q + q0 + 1)− 2− 4a1(q + 6q0 + 7)− 3(q + 1)

48a1
+ 1.

In particular for D1 = D this subgroups becomes J and we have gJ =
q0(q − 3)/4.

4.5. Ree subgroups. Let M ≤ G be a Ree subgroup of the form Ree(m)
with q = mn, where n is an odd integer (not necessarily prime) with n ≥ 3
and m ≥ 27. In this subsection we find the genus of the subfield of F fixed
by M .

Remark 4.27. Recall that maximal Ree subgroups of G are of the form
Ree(m) with q = mn and n is a prime. Therefore by Theorem 2.4, the only
subgroup of G which would not be considered in the previous subsections
or in this subsection is either a subgroup of the normalizer of a 3-Sylow
subgroup of G or a subgroup of a Ree subgroup of G of the form Ree(3).

Let m0 be defined by m = 3m2
0 and V be a 3-Sylow subgroup of M . Let

U be the 3-Sylow subgroup of G containing V . Let g ∈ N(U)∩M and v ∈ V .
Then gvg−1 ∈ U ∩M = V and hence N(U)∩M ≤ NM (V ), where NM (V ) is
the normalizer of V inM . By Proposition 2.3(10), for the normalizerN(V ) of
V in G, we have N(V ) ≤ N(U). Therefore NM (V ) = N(V )∩M ≤ N(U)∩M
and hence NM (V ) = N(U) ∩M . This implies that for any g1, g2 ∈M ,

g1NM (V ) = g2NM (V ) ⇔ g1N(U) = g2N(U).(4.5)

By the results in Section 2, M has the usual 2-transitive representation of
m3 + 1 left cosets of NM (V ) in M . Similarly G has the usual 2-transitive
representation of q3 + 1 left cosets of N(U) in G. By Corollary 2.10, G has
the usual 2-transitive representation on the set Ω of rational places of F . In
particular any P corresponds to a unique left coset gN(U) in G. Let Ωm ⊂ Ω
be the subset of Ω consisting of the rational places of F corresponding to
the left cosets gN(U) with g ∈ M ≤ G. By (4.5), |Ωm| = m3 + 1 and by
Corollary 2.10, M has the usual 2-transitive representation on Ωm.

Theorem 4.28. Let σ be a nonidentity element of M . Then σ fixes a
rational place of P ∈ Ω if and only if one of the following holds:

(i) 3 | |σ| and σ ∈ NM (V ). In this case P corresponds to the 3-Sylow
subgroup U of G containing V and P ∈ Ωm.

(ii) |σ| | m − 1 and |σ| 6= 2. In this case σ fixes exactly two distinct
rational places P and P ′ with P,P ′ ∈ Ωm.

(iii) |σ| = 2. In this case σ fixes exactly m − 1 distinct rational places
from Ωm and q −m rational places from Ω −Ωm.

Proof. By Theorem 4.2, as σ ∈ G, σ fixes a rational place P ∈ Ω if
and only if either 3 | |σ| or |σ| |m − 1. If 3 | |σ|, then σ ∈ NM (V ) for some
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3-Sylow subgroup V of M and σ fixes exactly one rational place P ∈ Ωm
by Theorem 4.2. Similarly if |σ| |m−1 and |σ| 6= 2, then σ fixes exactly two
distinct rational places of Ωm. If |σ| = 2, then σ fixes exactly m− 1 rational
places from Ωm by the usual 2-transitive representation of M on Ωm, and
q − 1 rational places from Ω by the usual 2-transitive representation of G
on Ω.

In computations, we need the following lemmata.

Lemma 4.29. The number of involutions of Ree(m) is
(
m3+1

2

)
(
m+1

2

) = m2(m2 −m+ 1).

Proof. Let κ be an involution of M . Then κ fixes exactly m+ 1 rational
places P0, . . . , Pm from Ωm. Moreover for any two distinct rational places
P,P ′ ∈ Ωm, there exists a unique involution of the subgroup MPP ′ of M
fixing P and P ′. Since each involution is counted exactly

(
m+1

2

)
times as the

involution of any two distinct rational places of its fixed rational places, we
get the formula.

Lemma 4.30. No two distinct involutions of M can fix the same rational
place Q from Ω −Ωm.

Proof. Assume that κ1 6= κ2 are two involutions of M fixing Q ∈ Ω−Ωm.
By Lemma 4.6, κ1κ2 6= κ2κ1. Multiplying both sides by κ1κ2 we get

(κ1κ2)(κ1κ2) 6= (κ1κ2)(κ2κ1) = 1.

Then κ1κ2 is neither the identity nor an involution and it fixes a rational
place Q ∈ Ω −Ωm. This is a contradiction to Theorem 4.28.

Let P ∈ Ωm. We compute the ramification groups for P in F/FM . The
inertia group M0(P ) for P in F/FM is the subgroup of M fixing P . By
Proposition 2.5 and Proposition 2.3(8), M0(P ) = V Tm−1, where V is the
3-Sylow subgroup of M fixing P , and Tm−1 is the cyclic subgroup of order
m − 1 of M fixing P and any other rational place from Ωm. Let U be the
3-Sylow subgroup of G containing V . Let U1 be the derived group of U ,
and Z(U) be the center of U in G. By Theorems 3.1 and 4.1, for the higher
ramification groups of P in the extension F/FM we have:

(i) M1(P ) = M ∩ U = V ,
(ii) Mi(P ) = V ∩ U1 for 2 ≤ i ≤ 3q0 + 1,

(iii) Mi(P ) = V ∩ Z(U) for 3q0 + 2 ≤ i ≤ q + 3q0 + 1,
(iv) Mi(P ) = 〈1〉 for i ≥ q + 3q0 + 2.

Lemma 4.31. Under the above notations, we have V ∩ U1 = V1, where
V1 is the derived group of V .
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Proof. Recall that

U1 = 〈x−1y−1xy : x, y ∈ U〉, V1 = 〈x−1y−1xy : x, y ∈ V 〉.
As V ≤ U , by definition of derived subgroups we have V1 ≤ U1 and V1 ≤ V .
It remains to prove that V ∩ U1 ≤ V1. Assume that there exists α ∈ V ∩ U1
and α 6∈ V1. As α ∈ V − V1, by Proposition 2.3(7), the order of α is 9. But
α ∈ U1 as well and U1 is an elementary Abelian group again by Proposition
2.3(7). Hence the order of α cannot be 9, which is a contradiction.

Lemma 4.32. Under the above notations, we have V ∩ Z(U) = Z(V ),
where Z(V ) is the center of V in M .

Proof. For α ∈ V ∩ Z(U), α ∈ V and αh = hα for any h ∈ U . In
particular αh = hα for any h ∈ V ≤ U . Therefore α ∈ Z(V ). It remains to
prove that Z(V ) ≤ V ∩Z(U). Assume that there exists α ∈ Z(V ) such that
α 6∈ Z(U). Since α ∈ Z(V ) − 〈1〉, α = γ3 for some γ ∈ V − V1 by Proposi-
tion 2.3(7). Moreover V ∩ U1 = V1 by Lemma 4.31 and hence γ 6∈ U1.
Therefore γ ∈ U−U1 and again by Proposition 2.3(7), α = γ3 ∈ Z(U). This
is a contradiction.

Corollary 4.33. Let P ∈ Ωm. Let V be the 3-Sylow subgroup of M
fixing P , and Tm−1 be the cyclic subgroup of M fixing P and another place
of Ωm. Let V1 be the derived subgroup of V and Z(V ) be the center of V .
The ramification groups of P in the extension F/FM are:

(i) M0(P ) = V Tm−1,
(ii) M1(P ) = V ,

(iii) Mi(P ) = V1 for 2 ≤ i ≤ 3q0 + 1,
(iv) Mi(P ) = Z(V ) for 3q0 + 2 ≤ i ≤ q + 3q0 + 1,
(v) Mi(P ) = 〈1〉 for i ≥ q + 3q0 + 2.

Therefore the different exponent dP of P in F/FM is

dP = m3(m− 1)− 1 + (m3 − 1) + 3q0(m2 − 1) + q(m− 1)

= m4 + 3q0(m2 − 1) + q(m− 1)− 2.

For the ramification structure of F/FM at nonrational places, we need
the following lemmata.

Lemma 4.34. If n ≡ 3 mod 6, then gcd(|Ree(m)|, q − 3q0 + 1) = 1.

Proof. Note that m3 | q3, m−1 | q−1 and |Ree(m)| = m3(m−1)(m3+1).
Since gcd(q3(q−1), q−3q0 +1) = 1, we have gcd(m3(m−1), q−3q0 +1) = 1.
It remains to prove that gcd(m3 +1, q−3q0 +1) = 1. Let n = 3+6k, where k
is a nonnegative integer. Then q+ 1 = m3(2k+1) + 1 and hence m3 + 1 | q+ 1.
The assertion follows from the fact that gcd(q + 1, q − 3q0 + 1) = 1.
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Lemma 4.35. For any odd integer n ≥ 5 we have:

(i) if n ≡ 1 mod 6 with (n−1)/6 even or n ≡ 5 mod 6 with (n− 5)/6
odd , then

m− 3m0 + 1 | q − 3q0 + 1, m+ 3m0 + 1 | q + 3q0 + 1;

(ii) if n ≡ 1 mod 6 with (n− 1)/6 odd or n ≡ 5 mod 6 with (n− 5)/6
even, then

m− 3m0 + 1 | q + 3q0 + 1, m+ 3m0 + 1 | q − 3q0 + 1.

Proof. We only give the proof of (i). Note that

3m2
0 ≡ 3m0 − 1 mod (m− 3m0 + 1),

32m5
0 ≡ m0 − 1 mod (m− 3m0 + 1),

33m6
0 ≡ −1 mod (m− 3m0 + 1).

If n ≡ 1 mod 6 and k = (n− 1)/6 is even, then

q0 = m033km6k
0 ≡ m0 mod (m− 3m0 + 1),

q = 3q2
0 ≡ 3m2

0 mod (m− 3m0 + 1),

q − 3q0 + 1 ≡ 3m2
0 − 3m0 + 1 ≡ 0 mod (m− 3m0 + 1).

If n ≡ 5 mod 6 and k = (n− 5)/6 is odd, then

q0 = 32m5
033km6k

0 ≡ (m0 − 1)(−1) mod (m− 3m0 + 1),

q = 3q2
0 ≡ −3m0 + 2 mod (m− 3m0 + 1),

q − 3q0 + 1 ≡ (−3m0 + 2)− 3(1−m0) + 1 ≡ 0 mod (m− 3m0 + 1).

Using similar arguments we also get m+ 3m0 + 1 | q + 3q0 + 1.

Lemma 4.36. The number of distinct Hall subgroups of order m−3m0+1
of Ree(m) is

|Ree(m)|
6(m− 3m0 + 1)

=
m3(m− 1)(m+ 1)(m+ 3m0 + 1)

6
.

The number of distinct Hall subgroups of order m+ 3m0 + 1 of Ree(m) is

|Ree(m)|
6(m+ 3m0 + 1)

=
m3(m− 1)(m+ 1)(m− 3m0 + 1)

6
.

Proof. Let A2,m be a Hall subgroup of order m−3m0 +1 in Ree(m) and
k = |Ree(m)|/6(m− 3m0 + 1). Any Hall subgroup of order q − 3q0 + 1 in
Ree(m) is of the form gA2,mg

−1 for some g ∈ Ree(m). Let

{NM (A2,m), a1NM (A2,m), . . . , ak−1NM (A2,m)}
be the set of left cosets of the normalizer NM (A2,m) of A2,m in Ree(m).
We fix 1, a1, . . . , ak−1 ∈ Ree(m). For any g ∈ Ree(m), there are uniquely
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determined elements a ∈ {1, a1, . . . , ak−1} and α ∈ NM (A2,m) such that
g = aα. Let α, β ∈ NM (A2,m) and a, b ∈ {1, a1, . . . , ak−1}. Then

(aα)A2,m(aα)−1 = (bβ)A2,m(bβ)−1 ⇔ aA2,ma
−1 = bA2,mb

−1

⇔ a−1bA2,m(a−1b)−1 = A2,m

⇔ a−1b ∈ NM (A2,m)

⇔ a = b.

Hence k is the number of distinct Hall subgroups of order m − 3m0 + 1 in
Ree(m). We use similar arguments for the number of distinct Hall subgroups
of order m+ 3m0 + 1 of Ree(m).

Now we can identify the ramification structure of F/FM at nonrational
places of F .

Theorem 4.37. For n ≥ 3, if n ≡ 3 mod 6, then there is no nonrational
place of F ramified in F/FM . For n ≥ 5:

(i) If n ≡ 1 mod 6 with (n− 1)/6 even or n ≡ 5 mod 6 with (n− 5)/6
odd , then F has exactly m3(m− 1)(m+ 1)(m+ 3m0 + 1)/6 places
of degree 6 which ramify in F/FM . Moreover the ramification index
of any of these places is m− 3m0 + 1.

(ii) If n ≡ 1 mod 6 with (n− 1)/6 odd or n ≡ 5 mod 6 with (n− 5)/6
even, then F has exactly m3(m− 1)(m+ 1)(m− 3m0 + 1)/6 places
of degree 6 which ramify in F/FM . Moreover the ramification index
of any of these places is m+ 3m0 + 1.

Proof. F/FM is ramified at a nonrational place of F if and only if there
exists a Hall subgroup A2 of G with order q−3q0+1 such that A2∩M 6= 〈1〉.
For n ≥ 3 and n ≡ 3 mod 6, as gcd(|M |, q − 3q0 + 1) = 1 by Lemma 4.34,
there is no ramified nonrational place of F in the extension F/FM . For n ≥ 5
and n ≡ 1 mod 6 with (n− 1)/6 even, each Hall subgroup of M with order
m− 3m0 + 1 is in a uniquely determined Hall subgroup of G with order q−
3q0+1, since m−3m0+1 | q−3q0+1. Moreover the number of Hall subgroups
of M with order m−3m0 +1 is m3(m− 1)(m+ 1)(m+ 3m0 + 1)/6 by Lem-
ma 4.36. This completes the proof in this case. The other cases are proved
similarly.

Now we compute the genus of FM . The different exponent dP for any
P ∈ Ωm is given by Corollary 4.33 as

dP = (m4 − 2) + 3q0(m2 − 1) + q(m− 1).

M has m2(m2−m+ 1) distinct involutions and each involution gives q−m
extra ramified rational places from Ω − Ωm with ramification index 2 (see
Lemmas 4.29 and 4.30).
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Case n ≡ 3 mod 6. By Theorem 4.37 there is no ramification at nonra-
tional places of F in F/FM . Hence the Riemann–Hurwitz formula applied
to F/FM gives

2g − 2 = m3(m− 1)(m3 + 1)(2gM − 2)

+ (m3 + 1)((m4 − 2) + 3q0(m2 − 1) + q(m− 1))

+m2(m2 −m+ 1)(q −m),

where gM is the genus of FM , computed as

gM =
1

2m3(m− 1)(m3 + 1)
{3q0(q − 1)(q + q0 + 1)

− (m3 + 1)(q(m− 1) + 3q0(m2 − 1) +m4 − 2)

− (q −m)m2(m2 −m+ 1)− 2}+ 1.

In particular when m = 27 and q = 39, we have gM = 4.

Case n ≡ 1 mod 6 with (n− 1)/6 even or n ≡ 5 mod 6 with (n− 5)/6
odd. By Theorem 4.37, there are exactly m3(m−1)(m+1)(m+3m0 +1)/6
places of degree 6 which ramify in F/FM . The ramification index of any of
these places is m− 3m0 + 1. Therefore the Riemann–Hurwitz formula gives

2g − 2 = m3(m− 1)(m3 + 1)(2gM − 2)

+ (m3 + 1)((m4 − 2) + 3q0(m2 − 1) + q(m− 1))

+m2(m2 −m+ 1)(q −m)

+m3(m− 1)(m+ 1)(m+ 3m0 + 1)(m− 3m0),

where gM is the genus of FM , computed as

gM =
1

2m3(m− 1)(m3 + 1)
{3q0(q − 1)(q + q0 + 1)

− (m3 + 1)(q(m− 1) + 3q0(m2 − 1) +m4 − 2)

− (q −m)m2(m2 −m+ 1)

−m3(m2 − 1)(m+ 3m0 + 1)(m− 3m0)− 2}+ 1.

In particular when m = 27 and q = 333, we have

gM = 198087081146045468888591849593.

Case n ≡ 1 mod 6 with (n− 1)/6 odd or n ≡ 5 mod 6 with (n− 5)/6
even. Using Theorem 4.37 as above, the Riemann–Hurwitz formula in this
case gives

2g − 2 = m3(m− 1)(m3 + 1)(2gM − 2)

+ (m3 + 1)((m4 − 2) + 3q0(m2 − 1) + q(m− 1))

+m2(m2 −m+ 1)(q −m)

+m3(m− 1)(m+ 1)(m− 3m0 + 1)(m+ 3m0),
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where gM is the genus of FM , computed as

gM =
1

2m3(m− 1)(m3 + 1)
{3q0(q − 1)(q + q0 + 1)

− (m3 + 1)(q(m− 1) + 3q0(m2 − 1) +m4 − 2)

− (q −m)m2(m2 −m+ 1)

−m3(m2 − 1)(m− 3m0 + 1)(m+ 3m0)− 2}+ 1.

In particular when m = 27 and q = 315, we have gM = 67059625.

Remark 4.38. For various subgroups H ≤ G, the action of H on the
rational places of F is examined throughout the section. More precisely, for
a subgroup H ≤ G considered in one of the subsections above, the number
of degree 1 places of F ramified in the extension F/FH and the ramification
index of each of them is determined. Using this information, one can easily
compute the number of degree 1 places of FH below the degree 1 places
of F . This will give a lower bound on the number of rational places of FH

(see examples below). On the other hand, for most of the subgroups H ≤ G,
there will be rational places of FH below higher degree places of F , and
to find the number of such places is difficult. The task of computing the
exact number of rational places of FH for some of the subgroups H ≤ G is
considered in another work that we are preparing.

We now give examples on how to calculate the number of rational places
of FH below the rational places of F . For H ≤ G, let N(FH) denote the
number of degree 1 places of FH . We give examples among subgroups of the
centralizer of an involution. Let κ ∈ G be an involution and L the centralizer
of κ in G. Recall that L = κ×L′, where L′ is the subgroup of L isomorphic
to PSL(2, q) (see Section 4.1).

Example 4.39. Let H = κ × D+, where D+ ≤ L′ is a dihedral sub-
group of order 2n with n | (q + 1)/2 and 2 |n. Then |H| = 4n and 8 | |H|.
From Section 4.1, there are (2n + 3)(q + 1) places in F ramified in F/FH ,
each of them being a degree 1 place with ramification index 2. So each or-
bit of H among the ramified places of F has 4n/2 elements. Therefore H
has (2n+ 3)(q + 1)/2n orbits among ramified places of F and (q3 + 1 −
(2n+ 3)(q + 1))/4n orbits among the unramified degree 1 places of F . So

N(FH) ≥ (2n+ 3)(q + 1)
2n

+
q3 + 1− (2n+ 3)(q + 1)

4n
.(4.6)

Note that in the special case of n = 2, i.e. when H is a 2-Sylow subgroup
of G, we have equality in (4.6).

Example 4.40. Let H be a 3-subgroup of L of order m = 3f , f ≤ 2s+1.
From Section 4.1, there is only one place in F (which is a degree 1 place)
ramified in F/FH with ramification index m. In this case also, the number
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of places of FH below the degree 1 places of F is equal to the exact number
of degree 1 places of FH . So we have

N(FH) = 1 +
q3

m
.
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TÜBA-GEBIP/2003-13).

References

[G-S-X] A. Garcia, H. Stichtenoth and C. P. Xing, On subfields of the Hermitian func-
tion field, Compositio Math. 120 (2000), 137–170.
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İnönü Bulvarı
06531, Ankara, Turkey
E-mail: cakcak@metu.edu.tr

Department of Mathematics
Middle East Technical University
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