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1. Introduction

1.1. General setting. The central object of study in simultaneous met-
ric Diophantine approximation is the set

Wd(ψ) = {x ∈ Rd : ‖qx− p‖∞ < ψ(q) for infinitely many (p, q) ∈ Zd × N}

of ψ-approximable vectors in Rd, where ψ : N → R+ ∪ {0} is a given map,
which we call an approximating function if it is non-increasing. In words,
Wd(ψ) is the set of d-tuples of real numbers that can be rationally approx-
imated simultaneously, meaning with common denominator, at the “rate”
given by ψ, with infinitely many different denominators. For τ ∈ R+ we
denote Wd(q 7→ q−τ ) = Wd(τ). The supremum of all τ ∈ R+ ∪ {∞} such
that x ∈ Wd(τ) is called the Diophantine type of x, and if it is ∞, then x is
called Liouville. The Liouville numbers form a set of Hausdorff dimension 0
in R.

1.2. Foundational results. The seminal result on Diophantine ap-
proximation, Dirichlet’s Theorem (c. 1840), guarantees that if ψ(q) ≥ q−1/d,
then Wd(ψ) is all of Rd. On the other hand, a standard argument using
the Borel–Cantelli Lemma shows that if ψ(q) ≤ q−1/d−ε for some ε > 0,
then md(Wd(ψ)) = 0, where md is Lebesgue measure on Rd. One may
guess that the difference lies in the convergence or divergence of the in-
tegral of ψd. Indeed, Khintchine’s Theorem (1926) set the foundation for
simultaneous metric Diophantine approximation by making this dichotomy
precise [Kh].

Khintchine’s Theorem (1926). Let ψ be an approximating function,
and d ∈ N. Then
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md(Wd(ψ)) =

{
null if

∑∞
q=1 ψ(q)d <∞,

full if
∑∞

q=1 ψ(q)d =∞.

As regards the Lebesgue measure of Wd(ψ), Khintchine’s Theorem tells
us the whole story. Of course, there are other measures, and notions of
size, that one may consider. Jarńık’s Theorem (1931) provides a similar
dichotomy for Hausdorff measures of Wd(ψ).

Later, Gallagher [Ga] extended Khintchine’s Theorem in the following
sense.

Gallagher’s Theorem (1965). If d ≥ 2, then Khintchine’s Theorem
is also true for functions ψ : N→ R+ ∪ {0} that are not monotone.

Remark. Gallagher’s Theorem is one of the main tools here. We use it
in the proofs of Theorems 1–4. (See §2.7.)

1.3. Current directions. One of the major trends is developing the
theory of rational approximations and “Khintchine types” for manifolds
embedded in Rd. A manifold M ⊂ Rd is said to be of Khintchine type for
divergence if whenever ψ is an approximating function such that

∑
q∈N ψ(q)d

diverges, almost every point on M is ψ-approximable. On the other hand,
it is said to be of Khintchine type for convergence if whenever ψ is an
approximating function such that

∑
q∈N ψ(q)d converges, almost no point

on M is ψ-approximable. If it is both, it is of Khintchine type.

Recently, Beresnevich, Dickinson, and Velani have shown that any an-
alytic non-degenerate (meaning curved enough that no part of it is con-
tained in any hyperplane) submanifold of Rd is of Khintchine type for di-
vergence [BDV, B]. Vaughan and Velani showed that non-degenerate planar
curves are of Khintchine type for convergence [VV].

1.4. Our focus. This article is about the degenerate case. Far from
deviating from all hyperplanes, the manifolds we consider here are hyper-
planes. Specifically, we investigate questions related to the following general
problem:

Describe the set of rationally approximable points in the fiber
over a given fixed coordinate in Euclidean space.

For instance, suppose ψ is an approximating function such that
∑
ψ(q)d

diverges, say ψ(q) = (q log q)−1/d. Fix x ∈ R. Dirichlet’s Theorem guaran-
tees that x is ψ-approximable. But our ψ decays quite slowly, so we may
expect that almost every point (x, x2, . . . , xd) ∈ Rd in the fiber over x is
also ψ-approximable. Our first result, Theorem 1, confirms this for d ≥ 3.
On the other hand, if we had chosen ψ such that

∑
ψ(q)d converges, then

it would make sense to expect the opposite statement: almost no points
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(x, x2, . . . , xd) ∈ Rd are ψ-approximable, with x ∈ R fixed. We find in The-
orem 5 that this is sometimes true, sometimes not.

All of our results (presented in §2) are of a similar flavor. Namely, they
are steps toward the more general and distant goal of bringing the theory
of Khintchine types to the setting of affine subspaces in Rn. Ultimately, one
would like to be able to state a condition on an approximating function ψ
that is equivalent to almost all points on a subspace being ψ-approximable.
We only manage to do this for certain hyperplanes (see Theorem (b)). The
rest of our results are sufficient conditions for the “almost all” or “almost
no” cases.

2. Results

2.1. Divergence results for prototypical approximating func-
tions. We have a number of results for the divergence situation, which for
illustrative purposes we state in order of increasing generality of approxi-
mating functions. The first holds for ψ(q) = (q log q)−1/d.

Theorem 1. Let d ≥ 3 and ψ(q) = (q log q)−1/d. Then

md−1(Wd(ψ) ∩ ({x} × Rd−1)) = full for every x ∈ R.

From Theorem 1 we immediately deduce the same statement for ψ(q) =
(q log . . . log q)−1/d, because this function dominates (q log q)−1/d. Slightly
more challenging are approximating functions of the form

ψs,d(q) =

(
1

q(log q)(log log q) . . . (log . . . log q)

)1/d

where s ∈ N is the length of the last string of logarithms. For these we are
able to prove the following.

Theorem 2. Let d ≥ 3 and s ∈ N. Then

md−1(Wd(ψs,d) ∩ ({x} × Rd−1)) = full

for any x whose Diophantine type is greater than d, and any x whose regular
Diophantine type is greater than 1.

The regular Diophantine type of x ∈ R is the supremum of σ̃ ∈ [1,∞)
such that rational approximations |x− p/q| < q−(1+σ̃) appear with positive
lower asymptotic density in the sequence {qn}n≥0 of continuants of x. In
simpler words, the regular Diophantine type of a number is the maximal
rate at which it can be rationally approximated, not just infinitely often,
but also with some frequency.

Remark (On Khintchine’s transference principle). We will present a
proof of Theorem 1 that holds for all non-Liouville x, and a proof of Theo-
rem 2 that holds for non-Liouville x with regular Diophantine type greater
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than 1. The remaining cases are covered by Khintchine’s transference prin-
ciple, which implies that if x ∈ R has Diophantine type greater than d, then
every point on {x}×Rd−1 has Diophantine type greater than 1/d. In partic-
ular, if ψ is an approximating function that eventually dominates q−(1+ε)/d

for every ε > 0, then every point on {x} × Rd−1 is ψ-approximable.

Remark. Theorem 2 is actually a corollary of a more general theorem
(Theorem 30) that holds for more fibers, but has a more technical statement.
Both theorems are still true for uncountably many numbers not satisfying
their assumptions, including uncountably many numbers of any Diophantine
type and regular Diophantine type 1, and every number of Diophantine type
at most the golden ratio regardless of regular Diophantine type. Such fibers
are accounted for in Theorem 3 below.

2.2. Divergence result for approximating functions satisfying
the divergence condition. In the next theorem we name fibers on which
the desired “almost everywhere” assertion can be made, provided only that
the approximating function ψ is such that

∑
ψ(q)d diverges. Among these

are all fibers over base-points of Diophantine type less than the golden ratio
(or, with an additional restriction, less than two), and an uncountable set
of fibers over base-points of any given Diophantine type.

Theorem 3. Let d ≥ 3. If ψ is an approximating function such that∑
q∈N ψ(q)d diverges, then

md−1(Wd(ψ) ∩ ({x} × Rd−1)) = full

for:

(a) Any x ∈ Q (even if d = 2).
(b) Any x ∈ R \Q with the positive density property (see Definition 14),

including but not restricted to:

– Any x /∈ W1(ϕ) where ϕ = (1 +
√

5)/2.
– Any x /∈ W1(2) for which there exists R ≥ 1 such that eventually

whenever a partial quotient of x exceeds R, its continuants at least
double before the next partial quotient exceeding R.

(c) Uncountably many numbers of any Diophantine type.

Remark. The subpoints in part (b) come from Proposition 15.

One may ask whether Theorem 3 holds for non-monotonic functions.
A simple observation shows that it cannot: after fixing x ∈ R \Q, consider
the function ψ(q) = ‖qx‖, where ‖·‖ denotes distance to the nearest integer.
Then

∑
ψ(q)d diverges, yet we can never have ‖qx‖ < ψ(q), so the entire

fiber over x is missing from Wd(ψ).
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2.3. Divergence result for approximating functions all of whose
convergent subseries have zero density. As to the question of whether
the result of Theorem 3 holds for fibers other than those fitting into parts (a),
(b), or (c), we have the following theorem, which gives a sufficient condition
on the approximating function ψ for the result to hold on all fibers. Recall
that the density d(A) of a set A ⊆ N is given by the limit

d(A) = lim
N→∞

|A ∩ [1, N ]| /N

when it exists. When the limit does not exist, we can still define the lower
density d(A) and the upper density d(A) by the lim inf and lim sup, respec-
tively.

Theorem 4. Let d ≥ 3. If ψ is an approximating function such that
every convergent subseries

∑
q∈A ψ(q)d has asymptotic density d(A) = 0,

then

md−1(Wd(ψ) ∩ ({x} × Rd−1)) = full for all x ∈ R.

For example, the approximating function ψ(q)=cq−1/d, where c>0, sat-
isfies the requirement that all convergent subseries of

∑
ψ(q)d have asymp-

totic density 0. Therefore, almost every point on every d − 1-dimensional
fiber of Rd is ψ-approximable. Of course, in the case c = 1 we already knew
this (and more) from Dirichlet’s Theorem. But when we allow any c ∈ (0, 1),
Theorem 4 reflects the fact that badly approximable vectors—vectors x ∈ Rd
for which there exists c := c(x) > 0 such that ‖qx − p‖∞ ≥ cq−1/d for all
(p, q) ∈ Zd × N—do not overpopulate any hyperplanes.

2.4. Convergence result. The next result deals with the convergence
situation. Given ψ such that

∑
q∈N ψ(q)d converges, we would like to assert

that almost no points on the fiber {x} × Rd−1 are ψ-approximable. Again,
we are able to make the desired statement for certain fibers, but not for
others, depending on the Diophantine type of the base-point.

Theorem 5. Let d ≥ 2. If ψ is an approximating function such that∑
q∈N ψ(q)d converges, then

md−1(Wd(ψ) ∩ ({x} × Rd−1)) = null

for:

(a)

{
No x ∈ Q if

∑
q∈N ψ(q)d−1 diverges.

Every x ∈ R if it converges.

(b) Any x ∈ R \ Q with the bounded ratio property (see Definition 16),
including but not restricted to:
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– Any x of Diophantine type less than ϕ = (1 +
√

5)/2.
– Any x of Diophantine type less than 2 for which there exists
R ≥ 1 such that eventually whenever a partial quotient of x ex-
ceeds R, its continuants at least double before the next partial quo-
tient exceeding R.

Remark. The subpoints in (b) are Proposition 17. In part (a), when∑
q∈N ψ(q)d−1 diverges, we get full instead of null.

We were unaware during submission of this manuscript that Theorem 5(b)
actually follows from [Gh, Theorem 1.6] in the work of A. Ghosh (1). He
describes “dual” approximability properties of points on hyperplanes when
the approximating function gives a convergent series. After applying Khint-
chine’s transference principle, one finds that Ghosh’s result implies in par-
ticular that coordinate hyperplanes in Rd, translated perpendicularly by
a distance of Diophantine type < d, are of Khintchine type for conver-
gence.

His methods come from dynamics on homogeneous spaces. Specifically,
the approximability properties of a point in Rd are related to the behavior
of an associated flow orbit in the space of unimodular lattices in Rd+1.
Whether the orbit diverges into the cusp, and at what rate, determines the
Diophantine type of the point in Rd (see [KM]). Ghosh’s work comes from a
growing family of results exploiting the connections between homogeneous
dynamics and Diophantine approximation, and its most immediate ancestor
is a paper [Kl03] of Kleinbock on extremality of affine subspaces of Rd,
relevant in §2.6.

Our arguments for Theorem 5 are very elementary by comparison.

2.5. A repackaging in terms of Khintchine types. We can state
Theorems 3 and 5 more succinctly by using the terminology of Khintchine
types.

In the following statements, “perpendicular translate of a coordinate
hyperplane” means a coordinate hyperplane that has been translated by a
vector perpendicular to it.

Theorem (a). Perpendicular translates of coordinate hyperplanes in Rd
(where d ≥ 2) by rational numbers are of Khintchine type for divergence, but
not for convergence.

Theorem (b). Perpendicular translates of coordinate hyperplanes in Rd
(where d ≥ 3) by numbers with the bounded ratio property are of Khintchine
type. In fact they are of Khintchine type for convergence even when d = 2.

(1) We thank the reviewer for bringing this paper to our attention.
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Theorem (c). Uncountably many perpendicular translates of coordinate
hyperplanes in Rd (where d ≥ 3) by numbers of any given Diophantine
type are of Khintchine type for divergence among approximating functions
dominating any given.

2.6. Extremality corollaries. There is a weaker notion than Khint-
chine type for convergence, called “extremality.” A manifold M ⊂ Rd is
extremal if for every approximating function such that ψ(q) ≤ q−(1+δ)/d for
some δ > 0, almost no point on M is ψ-approximable.

The idea of extremality dates back to a 1932 conjecture of Mahler, that
Veronese curves are extremal. These are curves of the form

(x, x2, x3, . . . , xd) ⊂ Rd.

Mahler’s conjecture was settled by Sprindžuk [Sp] in 1964, and this led to
a great deal of research into the extremality of curves, and in general man-
ifolds, embedded in Rd. In the 1980s Sprindžuk conjectured that any non-
degenerate analytic submanifold of Rd is extremal, and this was eventually
settled by Kleinbock and Margulis [KM] in 1998, even without analyticity.
(For a manifold that is not analytic, the non-degeneracy condition must be
stated somewhat more carefully, in terms of the linear span of the partial
derivatives of the manifold’s parametrizing functions. See [KM].)

Theorem 5 yields some corollaries on extremality of certain translated
hyperplanes (degenerate manifolds). They were already known (and can be
read off from [Kl03, Theorem 1.3]), but we list them for the sake of com-
pleteness.

The following corollary is an immediate consequence of Theorem 5(b).

Corollary 6. Perpendicular translates of coordinate hyperplanes
in Rd, d ≥ 2, by numbers with the bounded ratio property are extremal.

From our proofs we will also be able to read off the following two corol-
laries, also listing translated coordinate hyperplanes that are extremal, this
time according to their Diophantine type.

Corollary 7. Any perpendicular translate of a coordinate hyperplane
by a number of Diophantine type ϕ = (1 +

√
5)/2 or less is extremal.

Corollary 8. Any perpendicular translate of a coordinate hyperplane
by a number of Diophantine type 2 or less, for which there exists R ≥ 1 such
that eventually whenever a partial quotient of x exceeds R, its continuants
at least double before the next partial quotient exceeding R, is extremal.

Remark. Notice that in these corollaries the bounds on Diophantine
type are not strict, whereas in Theorem 5 (or, really, Proposition 17) they
are.
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Remark. As we mentioned above, these corollaries already follow from
the work of Kleinbock, which tells us exactly which hyperplanes are ex-
tremal and which are not. In fact, even more is known. Notice that to say
that a submanifold is extremal is to say that almost every point on it is
of Diophantine type 1/d. It turns out that even if a subspace is not ex-
tremal, almost all of its points still share a common Diophantine type, as
do almost all the points on any non-degenerate submanifold of that sub-
space (where non-degeneracy in this case is determined with respect to the
subspace). Details of this, and formulas for these Diophantine types, can be
found in [Kl08, Z].

2.7. On the proofs. Our strategy for Theorems 1–5 is to arrive at
a point where we can apply either Khintchine’s Theorem or Gallagher’s
Theorem to a hyperplane in Rd.

Given an approximating function ψ and a point x ∈ R, we define a new
function

ψ̄(q) :=

{
ψ(q) if ‖qx‖ < ψ(q),

0 if not,

where ‖·‖ denotes distance to the nearest integer, and we examine the sum

(2.1)
∞∑
q=1

ψ̄(q)d−1.

If d− 1 ≥ 2, we can apply Gallagher’s Theorem to the fiber {x}×Rd−1 and
the non-monotonic function ψ̄, to prove that

md−1(Wd−1(ψ̄)) = md−1(Wd(ψ) ∩ ({x} × Rd−1))

is either null or full, depending on whether (2.1) converges or diverges.

All of the effort in all of our “divergence” results is in proving the diver-
gence of (2.1) in different scenarios. Our strategy is centered around showing
that the intersection of the set

Q(x, ψ) = {q ∈ N : ‖qx‖ < ψ(q)}

with an interval [M,N ] grows quickly and steadily as the length N −M
grows. For this it is most natural to think in terms of circle rotations. We
develop an argument based on the Three Gaps Theorem. (See §3.5.)

For our “convergence” results, we try to show that (2.1) converges.
Here we do not even need Gallagher, as the monotonicity condition in
Khintchine’s Theorem is really only relevant to the divergence part. It is
well-known that the convergence part is an easy consequence of the Borel–
Cantelli Lemma, and holds even when ψ is not monotone. This is why The-
orem 5 holds for d ≥ 2.
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Finally, we point out that although we do need d ≥ 3 in order to apply
Gallagher’s Theorem in our divergence results, it is not the only reason we
make the assumption. Lemma 19 in §5 also requires it.

3. Mathematical preliminaries

3.1. Asymptotic notation. We use the following notation:

• � means “less than or equal to a positive multiple of.”
• � means “� and �.”
• <∗,=∗, and ≤∗ mean “eventually less than,” “eventually equal to,” or

“eventually less than or equal to,” respectively.
• . means “less than or asymptotically equal to.”
• ∼ means “. and &,” i.e. “asymptotically equal to.”

3.2. Continued fractions. For x ∈ R \Q, let

x = [a0; a1, a2, a3, . . . ] = a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . .

be the simple continued fraction expansion of x, let {pk/qk}k∈N be its con-
vergents, and ηk = |qkx−pk| the associated differences. The continuants {qk}
follow the recursion qk = akqk−1 +qk−2 and therefore grow at least exponen-
tially fast. Every m ∈ N has a unique representation as m = rqk + qk−1 + s
where 1 ≤ r ≤ ak+1 and 0 ≤ s < qk.

We take this opportunity to introduce a notation that we use throughout
the paper. Given x = [a0; a1, a2, . . . ] ∈ R \Q and a fixed R ≥ 0, let

{km := kx,Rm }m≥0

be the sequence of indices where akm+1 > R, starting with the conventional
k0 = −1. Let ∆km := km+1 − km.

We will use the following simple lemma.

Lemma 9. Let {F (n)}n∈N := {1, 1, 2, 3, 5, . . . } be the Fibonacci sequence.
Then

qk+n ≥ F (n+ 1)qk for all k, n ∈ N.

Proof. By the recursive relations between continuants, we have

qk ≥ qk−1 + qk−2 ≥ 2qk−2 + qk−3 ≥ 3qk−3 + 2qk−4 ≥ 5qk−4 + 3qk−5

≥ 8qk−5 + 5qk−6 ≥ · · · ≥ F (n+ 1)qk−n + F (n)qk−n−1

for any n < k, which implies the result.
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In general this lemma may not give a very strong bound. We only use
the particular case qkm+1 ≥ F (∆km) qkm+1. For an upper bound we have
Lemma 10 below.

3.3. Diophantine type and growth of continuants. Recall that for
σ ∈ [1,∞), we define

W1(σ) = {x ∈ R : |x− p/q| < 1/q1+σ for infinitely many (p, q) ∈ Z× N}.

It is a standard fact that the convergents of x ∈ R \Q satisfy

1

qn(qn + qn+1)
<

∣∣∣∣x− pn
qn

∣∣∣∣ < 1

qnqn+1
,

and therefore

x ∈ W1(σ) ⇒ qσn < 2qn+1 for infinitely many n

and

qσn < qn+1 for infinitely many n ⇒ x ∈ W1(σ).

In particular, the Diophantine type of x is the supremum over σ ∈ [1,∞)
such that qσn < qn+1 for infinitely many n ∈ N.

Conversely, x /∈ W1(σ) implies that qn+1 ≤∗ qσn. We may equivalently
define the Diophantine type of x as the infimum of σ ∈ [1,∞) for which
qσn � qn+1 as n→∞.

Lemma 10. If x /∈ W1(σ), then

qkm+1 ≤∗ (R+ 1)σ∆km−1+σ2∆km−2+···+σm∆k0 ≤ (R+ 1)σ
mkm

for any R ≥ 1.

Proof. Since x /∈ W1(σ), we have

qkm+1 ≤∗ qσkm ≤ (R+ 1)σ∆km−1qσkm−1+1

≤∗ · · · ≤∗ (R+ 1)σ∆km−1+σ2∆km−2+···+σm∆k0 ≤ (R+ 1)σ
mkm .

3.4. Types of Diophantine types. A number x ∈ R belongs to the
set W1(σ) of σ-approximable numbers if there are infinitely many rational
approximations to x with denominator q satisfying ‖qx‖ < q−σ. In view of
the approximating properties of convergents, this can be expressed as

W1(σ) = {x : qσn < qn+1 for infinitely many n ∈ N} ,

where {qn} are the continuants of x. It is useful to refine this definition
further by making a distinction between numbers x ∈ W1(σ) for which
these approximating q’s appear often, and those for which the q’s appear
seldom.
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Example/Definition (Uniform Diophantine type). Perhaps the most
natural way to define “frequent approximability” is to require that eventu-
ally all continuants satisfy the growth condition. We may call

Wuni
1 (σ) = {x : qσn < qn+1 for all sufficiently large n ⊆ N}

the set of uniformly σ-approximable numbers. Notice that this means, in
particular, that the set of continuants satisfying the growth condition has
density 1 as a subsequence of {qn}n≥0. The following definition relaxes this.

Example/Definition (Regular Diophantine type). Another natural
notion of frequent approximability is captured by the set of regularly σ-
approximable numbers:

Wreg
1 (σ) =

{
x : qσnj < qnj+1 for some s.p.l.a.d. {nj} ⊆ N

}
where s.p.l.a.d. stands for “sequence of positive lower asymptotic density.”
It is obvious that Wuni

1 (σ) ⊂ Wreg
1 (σ) ⊂ W1(σ). Notice that Wreg

1 (1) = R,
because all continuants satisfy qn < qn+1. We define the regular Diophantine
type of x to be the supremum over σ ∈ [1,∞) such that x ∈ Wreg

1 (σ).

Actually, we will work with a more permissive set.

Example/Definition (Essential Diophantine type). We define the set
of essentially σ-approximable numbers to be

Wess
1 (σ) = {x ∈ R : there exists R ≥ 0 for which qσkmj

< qkmj+1

on some s.p.l.a.d. {mj} ⊆ N}.

The containmentsWuni
1 (σ) ⊂ Wreg

1 (σ) ⊂ Wess
1 (σ) ⊂ W1(σ) are clear. Again,

any number x is an element ofWess
1 (1), and we define its essential Diophan-

tine type to be the supremum over σ ∈ [1,∞) where x ∈ Wess
1 (σ).

3.5. Three Gaps Theorem. For any x ∈ R and m ∈ N the set {qx+
Z}mq=1 ⊂ R/Z cuts the circle R/Z into arcs of at most three different lengths;
this is known as the Three Gaps Theorem.

For m ∈ N, write

m = rqk + qk−1 + s

where 1 ≤ r ≤ ak+1 and 0 ≤ s < qk as in §3.2, and let rx(m + 1) de-
note the ratio of the longest gap length to the shortest gap length in the
trajectory {qx+ Z}m+1

q=1 ⊂ R/Z. Then for m ∈ N,

(3.1) rx(m+ 1) =


ε+

ηk+2

ηk+1
+ ak+2 if r = ak+1,

ε+
ηk+1

ηk
+ (ak+1 − r) if r < ak+1,

where ε = 1 unless s = qk − 1, in which case ε = 0. (See [MK].)
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4. Sequences with bounded gap ratios. Formula (3.1) shows that
rx is always bounded if and only if x is badly approximable. On the other
hand, for any R ≥ 1 it is easy to generate a sequence

{Ln := LRn := Lx,Rn } ⊆ N
such that the ratios rx(Ln) are bounded by R for all n, regardless of the
continued fraction expansion of x. The reason for doing this is to control
the density of points on partial orbits of x of length Ln.

Lemma 11. Let x ∈ R\Q. Suppose the gap ratio for {qx+Z}Lq=1 ⊂ R/Z
is bounded by R, and L ≥ 2. Then for any q0 ∈ N,

1

RL
< `min <

1

L
< `max <

R

L
where `min and `max are the minimum and maximum arc-lengths into which
the set {qx+ Z}q0+L

q=q0+1 cuts the circle.

Proof. The L points of {qx + Z}Lq=1 partition the circle R/Z into L
intervals. Let `min and `max be the shortest and the longest lengths of these
intervals. Assuming x is irrational and L ≥ 2, we have `min < 1/L < `max.
(Of course, if L = 1, then `min = `max = 1, no matter what x is.) By the
ratio bound, `max ≤ R`min. Putting the two inequalities together gives the
desired system of inequalities, which is of course unchanged by a rotation
by q0x.

Lemma 12. Let R ≥ 0. Then rx(L) ≤ 2 + R exactly when L belongs to
some block

{qk −Rqk−1, . . . , q`} ⊆ N
of consecutive integers, where k = 0 or ak > R, and ` ≥ k indexes the next
time a`+1 > R again. (If it never happens again, we interpret this as ` =∞
and q∞ =∞.)

Proof. This follows simply by invoking (3.1). We can list all m ∈ N that
result in bounded gap ratios, and find that rx(m+ 1) ≤ 2 +R exactly when

m ∈

{
{qk −Rqk−1 − 1, . . . , qk − 1} for some ak > R,

{qk, . . . , qk+1 − 1} for some ak+1 ≤ R.

Concatenating these blocks and setting L = m+ 1 gives the lemma.

Remark. A consequence of this lemma that is interesting in itself (and
probably known to experts) is that the continuants {qn}∞n=0 are exactly the
times when the gap ratios for {qx}qnq=1 are bounded by 2.

If we form the sequence {km := kx,Rm } and set

(4.1) Bm+1 = Bx,R
m+1 = [qkm+1 −Rqkm , qkm+1 ] ∩ N,
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Lemma 12 implies that our sequence of 2 + R-bounded gap ratios is the
concatenation {Ln} = {B1, B2, . . . }. If the sequence {km} terminates at kt,
then

Bt+1 = [qkt+1 −Rqkt ,∞) ∩ N.

This happens only if x ∈ R \ Q is badly approximable; conversely, if x is
badly approximable, we can choose R ≥ 0 large enough that this happens.

4.1. Calculations based on (4.1). It will be useful to keep certain

measurements of Bx,R
m in mind. First, the length of the block Bm+1 is

(4.2) |Bm+1| = qkm+1 − qkm+1 +Rqkm + 1.

If the sequence {km} terminates at kt, then we can obviously consider |Bt+1|
to be infinite.

Let {ωm}∞m=1 be the sequence such that Lωm = qkm is the right end-point
of the block Bm. Then ωm is the sum of the lengths of the blocks B1, . . . , Bm,
which, by (4.2), is

ωm =

m−1∑
n=0

(qkn+1 − qkn+1 +Rqkn + 1).

Let αm be the index for the left end-point Lαm of the block Bm, so that
αm = ωm−1 + 1 for all m ∈ N, and α1 = 1.

The distance between consecutive blocks Bm+1 and Bm is

Bm+1 −Bm := minBm+1 −maxBm = qkm+1 − (R+ 1)qkm .

The following lemma describes the sumΣBm of the elements in the blockBm.

Lemma 13. We have

ΣBm ∼ 1
2(q2

km − (qkm−1+1 −Rqkm−1)2).

In particular,

qkmqkm−1 � ΣBm � qkmqkm−1 for all m ∈ N.

Also,

q2
km � ΣBm � qkmqkm−1 whenever qkm ≥ 2qkm−1+1

(i.e. if akm > 1 or km − km−1 > 2).

Proof. Block sums are given by the formula

ΣBm = 1
2(qkm + qkm−1+1 −Rqkm−1)(qkm − qkm−1+1 +Rqkm−1 + 1)

∼ 1
2(q2

km − (qkm−1+1 −Rqkm−1)2).
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If km 6= km−1 + 1,

ΣBm
qkmqkm−1

∼
q2
km
− (qkm−1+1 −Rqkm−1)2

2qkmqkm−1

=
1

2

(
qkm
qkm−1

−
q2
km−1+1

qkmqkm−1
−R2

q2
km−1

qkmqkm−1
+ 2R

qkm−1+1qkm−1

qkmqkm−1

)
≤ 1

2
((akm + 1) + 2R)� 1

because akm ≤ R in this case. On the other hand, if km = km−1 + 1, then

ΣBm
qkmqkm−1

∼
q2
km
− (qkm −Rqkm−1)2

2qkmqkm−1

=
2Rqkmqkm−1 −R2q2

km−1

2qkmqkm−1
� 1,

which establishes the upper bound.

For the lower bound, first suppose that km−1 + 1 = km. In this case

qkmqkm−1 = (akmqkm−1 + qkm−2)qkm−1 ≥ (R+ 1)q2
km−1,

so that

q2
km
− (qkm−1+1 −Rqkm−1)2

qkmqkm−1
=

2Rqkmqkm−1 −R2q2
km−1

qkmqkm−1

= 2R−
R2q2

km−1

qkmqkm−1
= 2R− R2

R+ 1
> R,

proving ΣBm � qkmqkm−1 = qkmqkm−1 in this case.

If km−1 + 2 = km and akm = 1 then

ΣBm = 1
2(qkm + qkm−1+1 −Rqkm−1)(qkm − qkm−1+1 +Rqkm−1 + 1)

= 1
2(2qkm−1+1 − (R− 1)qkm−1)((R+ 1)qkm−1 + 1)

= (R+ 1)qkm−1+1qkm−1 − 1
2(R+ 1)(R− 1)q2

km−1

+ qkm−1+1 − 1
2(R− 1)qkm−1 .

Dividing by qkm−1+1qkm−1 gives

ΣBm
qkm−1+1qkm−1

= (R+ 1)−
(R+ 1)(R− 1)q2

km−1

2qkm−1+1qkm−1

+
qkm−1+1

qkm−1+1qkm−1

−
(R− 1)qkm−1

2qkm−1+1qkm−1

∼ (R+ 1)−
(R+ 1)(R− 1)qkm−1

2qkm−1+1
≥ (R+ 1)− (R− 1)

2
� 1.
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which proves ΣBm � qkm−1qkm−2. But in this case we have qkm = qkm−1 +
qkm−2 ≤ 2qkm−1, so we have proved ΣBm � qkmqkm−2 = qkmqkm−1 .

In the remaining cases we have km−1 + 1 6= km and there is some integer
A ≥ 2 such that

qkm ≥ Aqkm−1+1 + qkm−1 .

We write

q2
km − (qkm−1+1 −Rqkm−1)2 =

A2 − 1

A2
q2
km +

1

A2
q2
km − (qkm−1+1 −Rqkm−1)2

and proceed to bound

A2 − 1

A2
q2
km +

1

A2
q2
km − (qkm−1+1 −Rqkm−1)2

≥ A2 − 1

A2
q2
km +

(
qkm−1+1 +

1

A
qkm−1

)2

−
(
qkm−1+1 +

1

A2
qkm−1 −

(
R+

1

A

)
qkm−1

)2

=
A2 − 1

A2
q2
km + 2

(
R+

1

A

)(
qkm−1+1 +

1

A
qkm−1

)
qkm−1 −

(
R+

1

A

)2

q2
km−1

≥ A2 − 1

A2
q2
km +

(
R+

1

A

)2

q2
km−1

� q2
km

because A ≥ 2.

4.2. Positive density property. The following definition is relevant
to our “divergence” results.

Definition 14 (Positive density property). We say x ∈ R \ Q has the
positive density property if there exists R ≥ 1 such that

lim sup
m→∞

LRαm
ΣR
αm

< 1.

An intuitive interpretation is that a number with positive density property
has blocks Bm := Bx,R

m that are not too far away from each other.

Proposition 15. The number x ∈ R\Q has the positive density property
if and only if

qkm+1 −Rqkm �
m∑
`=1

(q2
k`
− (qk`−1+1 −Rqk`−1

)2)

as m→∞. In particular,

• any x /∈ W1(ϕ), and
• any x /∈ W1(2) for which there exists R ≥ 1 such that qkm ≥ 2qkm−1+1

for all but finitely many m ∈ N
has the positive density property.
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Proof. The positive density property is the requirement that there is
some δ < 1 such that

LRαm+1

ΣR
αm+1

=
qkRm+1 −RqkRm

qkRm+1 −RqkRm +ΣR
ωm

≤ δ

for all sufficiently large m. This is equivalent to qkm+1−Rqkm � Σωm , which
by Lemma 13 is equivalent to

qkm+1 −Rqkm �
m∑
`=1

(q2
k`
− (qk`−1+1 −Rqk`−1

)2).

In particular,

(4.3) qkm+1 −Rqkm � ΣBm

is sufficient.

If km−1 + 1 = km, the sufficient condition (4.3) becomes

qkm+1 −Rqkm � qkmqkm−1,

for which it is sufficient that
qkm+1

qkmqkm−1
� 1.

We will have this comparison whenever x /∈ W1(ϕ).

On the other hand, if km−1+1 6= km, then Lemma 13 allows us to consider
two cases: either ∆km−1 := km−km−1 = 2 and akm = 1, or qkm ≥ 2qkm−1+1.
In the first case, (4.3) becomes

qkm+1 −Rqkm � qkmqkm−1 = qkmqkm−2,

and for this it is sufficient that
qkm+1

qkmqkm−2
� 1.

If x /∈ W1(ϕ), then

qkm+1

qkmqkm−2
�

qϕkm

qkmq
1/ϕ
km−1

,

and since qkm = qkm−1 + qkm−2 ≤ 2qkm−1 in this case,

qϕkm

qkmq
1/ϕ
km−1

�
qϕkm

q
1+1/ϕ
km

� 1,

as desired.

In the case of qkm ≥ 2qkm−1+1, the last part of Lemma 13 implies that

qkm+1 −Rqkm � q2
km
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is sufficient for (4.3) to hold. This is satisfied whenever x /∈ W1(2). In par-
ticular, if x /∈ W1(ϕ), then (4.3) holds, which proves the first point in the
proposition. This last paragraph also proves the second point.

4.3. Bounded ratio property. The following property is slightly
stronger than the positive density property. It is relevant to our “conver-
gence” results.

Definition 16 (Bounded ratio property). We say that x ∈ R \ Q has
the bounded ratio property if there exists a bound R ≥ 1 such that∑

m∈N

BR
m+1 −BR

m

ΣR
ωm

<∞.

This is equivalent to ∑
m∈N

Lαm+1

Σωm
<∞.

Again, having the bounded ratio property means that the jumps between
the blocks Bm are not too high.

The following proposition gives numbers with the bounded ratio prop-
erty, based on Diophantine type.

Proposition 17 (Numbers with the bounded ratio property).

• Every number of Diophantine type less than ϕ = (1 +
√

5)/2 has the
bounded ratio property.
• Every number of Diophantine type less than 2 for which there is some
R ≥ 1 such that qkm ≥ 2qkm−1+1 for all but finitely many m ∈ N has
the bounded ratio property.

Remark. Notice that these are not the same numbers listed in Propo-
sition 15. There, we require (for example) that x /∈ W1(ϕ), whereas here we
are requiring that x /∈ W1(σ) for some σ < ϕ, which is slightly stronger.

Proof of Proposition 17. For the first assertion, let σ < ϕ be such that
x /∈ W1(σ). By Lemma 13 we have

Lαm+1

Σωm
� qkm+1

qkmqkm−1

unless ∆km−1 = 2 and akm = 1, and in turn

� qkm+1

qkmqkm−1
� q

σ−1−1/σ
km

.

On the other hand, if ∆km−1 = 2 and akm = 1, then qkm � qkm−1, so

Lαm+1

Σωm
� qkm+1

qkmqkm−2
�

qσkm

q
1+1/σ
km−1

� q
σ−1−1/σ
km

,
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as above. Now, the sum
∑

m∈N q
σ−1−1/σ
km

converges because σ− 1− 1/σ < 0.
Therefore, x has the bounded ratio property.

For the second assertion, let σ < 2 and let x /∈ W1(σ) be such that
qkm ≥ 2qkm−1+1 for all but finitely many m ∈ N, for some R ≥ 1. By
Lemma 13,

Lαm+1

Σωm
� qkm+1

q2
km

� qσ−2
km

,

and the sum
∑

m∈N q
σ−2
km

diverges because σ − 2 < 0. Therefore x has the
bounded ratio property, and the proposition is proved.

5. Some counting lemmas. The counting Lemmas 18 and 20 below
give bounds on |Q(x, ψ) ∩ [M,N ]| when M and N come from our bounded
ratio sequences {Ln}.

Lemma 18. Let {Ln} be a sequence of R-bounded gap ratios for x ∈
R \ Q, and define Σn = L1 + · · · + Ln. If ψ is an approximating function
such that Lnψ(Σn) ≥ R for n sufficiently large, then

Σn+1∑
q=Σn+1
q∈Q(x,ψ)

1� Ln+1 ψ(Σn+1) as n→∞,

where Q(x, ψ) = {q ∈ N : ‖qx‖ < ψ(q)} is the set of denominators that ψ-
approximate x in R.

Proof. We bound below

Σn+1∑
q=Σn+1
q∈Q(x,ψ)

1 ≥ |{qx}Σn+1

q=Σn+1 ∩ [0, ψ(Σn+1))| ≥
⌊
ψ(Σn+1)

`max

⌋
,

which by Lemma 11 we can bound below by⌊
ψ(Σn+1) · Ln+1

R

⌋
� Ln+1 ψ(Σn+1)

as n→∞, because we have assumed that Lnψ(Σn) ≥ R eventually.

The next lemma will allow us to assume without loss of generality that
ψ satisfies the conditions of Lemma 18.

Lemma 19. Let {Ln} be a sequence of R-bounded gap ratios for x ∈
R \Q, and define Σn = L1 + · · ·+Ln. Let ψ be an approximating function.
There is an approximating function ψ̃ ≥ ψ such that Ln ψ̃(Σn) ≥ R and∑

q∈Q(x,ψ̃)

ψ̃(q)d−1 =∞ ⇒
∑

q∈Q(x,ψ)

ψ(q)d−1 =∞

for any d ≥ 3.
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Proof. Let ϕ be the approximating function defined by ϕ(q) = RL−1
n

where q ∈ (Σn−1, Σn] and define ψ̃(q) := max{ψ(q), ϕ(q)}. Let A = {q :
ψ(q) ≥ ϕ(q)} and B = N \A. Then

(5.1)
∑

q∈Q(x,ψ̃)

ψ̃(q)d−1 =
∑

q∈A∩Q(x,ψ)

ψ(q)d−1 +
∑

q∈B∩Q(x,ϕ)

ϕ(q)d−1.

The second sum is bounded by

(5.2)
∑

q∈Q(x,ϕ)

ϕ(q)d−1 =
∑
n∈N
|Q(x, ϕ) ∩ (Σn−1, Σn]|

(
R

Ln

)d−1

.

By Lemma 11,

|Q(x, ϕ) ∩ (Σn−1, Σn]| < 2R

Ln

/
`min <

2R

Ln

/ 1

Ln
= 2R,

so we can bound (5.2) by

2Rd
∑
n∈N

(
1

Ln

)d−1

,

which converges as long as d − 1 > 1. Now formula (5.1) shows that if∑
q∈Q(x,ψ̃) ψ̃(q)d−1 diverges, then so does

∑
q∈Q(x,ψ) ψ(q)d−1.

Remark. Besides our repeated applications of Gallagher’s Theorem,
Lemma 19 is the only other place where we need d ≥ 3. Notice that the sum∑

n∈N L
−1
n can diverge, for example, if x is badly approximable.

The following lemma should be compared with Lemma 18.

Lemma 20. Let {Ln} be a sequence of R-bounded gap ratios for x ∈
R \ Q, and define Σn = L1 + · · · + Ln. If ψ is an approximating function,
then

Σn−1∑
q=Σn−1

q∈Q(x,ψ)

1� Lnψ(Σn−1) as n→∞.

Proof. We bound above

Σn−1∑
q=Σn−1

q∈Q(x,ψ)

1 ≤ |{qx}Σn−1
q=Σn−1

∩ [0, ψ(Σn−1))|,

which by Lemma 11 can be bounded by

ψ(Σn−1)
/ 1

RLn
� Lnψ(Σn−1) as n→∞.

Lemma 21. If ψ is an approximating function such that
∑

q∈N ψ(q)d

converges, then ψ(q)� q−1/d.
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Proof. Since ψ is non-increasing, convergence of
∑

q∈N ψ(q)d is equiva-

lent to convergence of
∑

k∈N 2kψ(2k)d, therefore we know that the terms

2kψ(2k)d approach 0, meaning that for any c > 0, we eventually have
ψ(2k)d < c · 2−k, so ψ(q) � q−1/d on the sequence {2k}k∈N with some
implied constant C > 0. Now, every q is between some 2k and the next one,
so

2k < q ≤ 2k+1 and ψ(2k+1) ≤ ψ(q) < ψ(2k).

Combining these and our previous observations we find

ψ(q)d < ψ(2k)d ≤ C · 2−k ≤ C · 2/q,

and we have shown ψ(q)� q−1/d with implied constant (2C)1/d.

6. Proofs of divergence results. In this section, we work with approx-
imating functions ψ with

∑
q∈N ψ(q)d diverging. Our goal is to determine

when we can guarantee the divergence of

(6.1)
∑

q∈Q(x,ψ)

ψ(q)d−1

so that we can apply Gallagher’s extension of Khintchine’s Theorem to the
hyperplane passing through x ∈ R. To this end, define a subset A(x,R) ⊆ N
as the concatenation A(x,R) = {A(x,R)

1 , A
(x,R)
2 , . . .} of blocks

A
(x,R)
` = [Σα` , Σω` − 1] ∩ N.

We prove the following lemma.

Lemma 22. Let x ∈ R \Q. If there exists a number R ≥ 1 such that

(6.2)
∑

q∈A(x,R)

ψ(q)d

diverges, then (6.1) diverges.

Proof. We write partial sums of (6.1) along {ΣN} as

ΣN∑
q=1

q∈Q(x,ψ)

ψ(q)d−1 =
N−1∑
n=0

Σn+1∑
q=Σn+1
q∈Q(x,ψ)

ψ(q)d−1,

where ΣN = L1 + · · · + LN , and Σ0 = 0. Since ψ is non-increasing we can
bound this below by

N−1∑
n=0

ψ(Σn+1)d−1

Σn+1∑
q=Σn+1
q∈Q(x,ψ)

1,
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and Lemma 19 allows us to assume without loss of generality that Lnψ(Σn)
≥ 2 +R, so that we can apply Lemma 18 to see that the above is

�
N∑
n=1

Lnψ(Σn)d.

Rewriting along the subsequence {ωm − 1},
ωm−1∑
n=1

Ln ψ(Σn)d =
m∑
`=0

ω`−1∑
n=α`

Ln ψ(Σn)d +
m−1∑
`=0

Lω` ψ(Σω`)
d,

we can safely ignore the second sum because it converges as m→∞. Since
Ln+1 = Ln + 1, except when n = ω`,

m∑
`=0

ω`−1∑
n=α`

Lnψ(Σn)d �
m∑
`=0

ω`−1∑
n=α`

Ln+1 ψ(Σn)d ≥
m∑
`=0

ω`−1∑
n=α`

Σn+1−1∑
q=Σn

ψ(q)d

=

m∑
`=0

Σω`−1∑
q=Σα`

ψ(q)d,

and taking m → ∞, we have bounded (6.1) below by (6.2), which implies
the result.

The challenge now is to determine when we can find R ≥ 1 such that (6.2)
diverges.

6.1. Proofs of Theorems 3 and 4. Since
∑

q∈N ψ(q)d diverges, it is
sufficient to find A(x,R) with positive lower asymptotic density in N.

Lemma 23. We have

d(A(x,R)) > 0 ⇔ lim sup
m→∞

LRαm
ΣR
αm

< 1,

that is, A(x,R) has positive lower asymptotic density for some R ≥ 1 if and
only if x ∈ R \Q has the positive density property.

Proof. Since A(x,R) is made up of blocks of consecutive integers, the
lower asymptotic density is achieved by computing along the subsequence
corresponding to the points just before the left end-points of each block.
That is,

d(A(x,R)) = lim inf
m→∞

∑
`≤m|A`|

minAm+1 − 1
= lim inf

m→∞

∑
`≤m(Σω` −Σα`)
Σαm+1 − 1

= lim inf
m→∞

Σαm+1 −
∑

`≤m+1 Lα`
Σαm+1 − 1
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= lim inf
m→∞

Σαm+1 − (Lαm+1 + Lαm + · · ·+ Lα0)

Σαm+1 − 1

= 1− lim sup
m→∞

Lαm+1 + Lαm + · · ·+ Lα0 − 1

Σαm+1 − 1
,

and so d(A(x,R)) > 0 if and only if

lim sup
m→∞

Lαm+1 + Lαm + · · ·+ Lα0

Σαm+1

< 1;

but

lim
m→∞

Lαm + Lαm−1 + · · ·+ Lα0

Σαm+1

= 0,

so we have proved the claim.

Since divergent series diverge along subseries of positive lower asymptotic
density, this lemma all but solves the problem for fibers over points with the
positive density property. The following lemma shows that, at least for some
approximating functions, one can deal with fibers over base-points that do
not have the positive density property.

Lemma 24. For any x ∈ R \ Q and R ≥ 1 the set A(x,R) has positive
upper asymptotic density.

Proof. Since A(x,R) is made up of blocks of consecutive integers, the
upper asymptotic density is achieved by computing along the subsequence
corresponding to the right end-points of each block. That is,

d(A(x,R)) = lim sup
m→∞

∑
`≤m|A`|

maxAm
= lim sup

m→∞

∑
`≤m(Σω` −Σα`)
Σωm − 1

= lim sup
m→∞

Σωm −
∑

`≤m Lα`
Σωm − 1

= lim sup
m→∞

Σωm − (Lαm + Lαm−1 + · · ·+ Lα0)

Σωm − 1

= 1− lim inf
m→∞

Lαm + Lαm−1 + · · ·+ Lα0 − 1

Σωm − 1
,

and so d(A(x,R)) > 0 if and only if

lim inf
m→∞

Lαm + Lαm−1 + · · ·+ Lα1 + Lα0

Σωm
< 1;

but this is always the case.

We can now prove that almost every point on every fiber is ψ-approxim-
able if

∑
A ψ(q)d diverges for every A ⊆ N with positive upper asymptotic

density.
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Proof of Theorem 4. Lemma 24 tells us that for any x ∈ R \ Q and
R ≥ 1, the set A(x,R) has positive upper asymptotic density. By assump-
tion, then, (6.2) diverges. Therefore, by Lemma 22, so does (6.1). Since
d − 1 ≥ 2, Gallagher’s Theorem applies to the hyperplane {x} × Rd−1 and
the approximating function ψ.

These density considerations only give sufficient conditions for diver-
gence, and the following lemma serves to show that they are not necessary.

Lemma 25. For any R ≥ 1, there are uncountably many x ∈ R \ Q of
any given Diophantine type such that (6.2) diverges.

Proof. We offer a construction. Fix R ≥ 1. Let

Ψ(m) :=
m∑
`=0

Σω`−1∑
q=Σα`

ψ(q)d

be a partial sum of (6.2). The sequence {Ψ(m)} is increasing, and we can
make

Ψ(m)− Ψ(m− 1) =

Σωm−1∑
q=Σαm

ψ(q)d

as large as we wish by choosing ∆km−1 − 1 := km − km−1 − 1 arbitrarily
large, so we can make Ψ(m)→∞ simply by prescribing {km}.

To see that we can achieve any Diophantine type, we observe that at each
step, after having chosen km so that Ψ(m)− Ψ(m− 1) has the desired size,
we are free to choose akm+1 without affecting Ψ(m). Therefore we can ensure
that any given σ ∈ [1,∞) is the infimum of τ ∈ R satisfying qkm+1 � qτkm
as m→∞.

We are now prepared to prove the following theorem, from which Theo-
rem 3 immediately follows.

Theorem 26. Let d ≥ 3. If ψ is an approximating function such that∑
q∈N ψ(q)d diverges, then ∑

q∈Q(x,ψ)

ψ(q)d−1 =∞

for:

(a) Any x ∈ Q.
(b) Any x ∈ R \Q with the positive density property.
(c) Uncountably many x ∈ R \Q of any given Diophantine type.

Proof. (a) In the case of rational x = a/b, the set Q(x, ψ) contains the
arithmetic sequence {kb}k∈N. Then
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q∈Q(x,ψ)

ψ(q)d−1 �
∑
k∈N

bψ(kb)d−1 �
∑
q∈N

ψ(q)d−1 =∞.

We have used here that ψ is non-increasing. (Notice that this does not
require d ≥ 3.)

(b) If x ∈ R \ Q has the positive density property, then Lemma 23 im-
plies that there is some R ≥ 1 such that A(x,R) has positive lower asymp-
totic density. This implies that (6.2) diverges, which by Lemma 22 implies
that (6.1) diverges.

(c) By Lemma 25, there are uncountably many x ∈ R \ Q of any given
Diophantine type such that (6.2) diverges, and again Lemma 22 implies
that (6.1) diverges.

Proof of Theorem 3. Apply Gallagher’s Theorem to fibers over the base-
points in Theorem 26.

6.2. Proofs of Theorems 1 and 2. By the discussion in §2.7, the
proof of Theorem 1 reduces to the following lemma.

Lemma 27. If x ∈ R \Q is not Liouville, then (6.2) diverges for ψ(q) =
(q log q)−1/d.

Proof. If x has the positive density property, then there is some R ≥ 1
for which A(x,R) has positive lower asymptotic density, by Lemma 23. This
implies that (6.2) diverges.

On the other hand, if x does not have the positive density property, then

lim sup
m→∞

LRαm
ΣR
αm

= 1

no matter which R ≥ 1 we choose. Therefore, after fixing some R ≥ 1,
there is some sequence {mj} ⊆ N where the limit superior is achieved,
which means that on this sequence we have Lαmj ∼ Σαmj . The partial sums

of (6.2) are then bounded by
Σωm−1∑
q=Σαm

ψ(q)d ≥
Σωm�

Σαm

1

q log q
= log

logΣωm
logΣαm

;

but
logΣωmj
logΣαmj

∼
logΣωmj
logLαmj

Lem. 13

&
log qkmj−1qkmj−1

log qkmj−1+1
≥ 1 +

1

σ
as j →∞,

where σ ∈ [1,∞) is such that x /∈ W1(σ). This implies that there is some
δ > 0 such that

Σωm−1∑
q=Σαm

ψ(q)d ≥ δ

infinitely often. (We can take any δ < log(1 + 1/σ).) Hence (6.2) diverges.
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Proof of Theorem 1. We can now apply the divergence part of Gal-
lagher’s Theorem to any fiber over a non-Liouville base-point. The fibers
over Liouville base-points are covered by Khintchine’s transference principle,
in view of the remark at the end of §2.1.

The next two lemmas combine to form Theorem 30, which is more general
than Theorem 2. Note that for s ∈ N, we use logs to denote the logarithm
iterated s times.

Lemma 28. If x ∈ R \Q is not Liouville and there are ε > 0 and R ≥ 1

such that logs−1 ∆km
logs−1 km

≥ 1 + ε on a sequence of m’s, then (6.2) diverges for

the approximating function ψs,d.

Proof. Comparing sums to integrals we have∑
q∈Am+1

ψs,d(q) ≥ log
logsΣωm+1

logsΣαm+1

,

and we will show that this expression is bounded below by log(1 + ε) on the

sequence where logs−1 ∆km
logs−1 km

≥ 1 + ε.

On that sequence, we have

logsΣωm+1

logsΣαm+1

Lem. 13

&
logs q2

km+1

logs max {qkmqkm−1, qkm+1}
Lem. 9

&
logs (F (∆km) qkm+1)

logs qkm+1

Lem. 10

&
logs (F (∆km) qkm+1)

logs (R+ 1)σ
mkm

&
logs−1 (∆km + log qkm+1)

logs−1 km
& 1 + ε.

Therefore (6.2) diverges.

Lemma 29. If x ∈ R\Q is not Liouville, has essential Diophantine type
greater than 1, and ∆km ≤∗ km for some R ≥ 1, then there is a positive
lower asymptotic density sequence {`j} ⊆ N on which

Σω`�

Σα`

ψs,d(t)
d dt� ψs−2,d(`)

d,

where ψs,d(q) = (q log q log2 q . . . logs q)−1/d. Therefore, (6.2) diverges.

Proof. Let 1 < σ̃ < σ < ∞ be such that x ∈ Wess
1 (σ̃) \ W1(σ). We first

show that

(6.3)

Σω`�

Σα`

ψ1,d(t)
d dt = log

logΣω`
logΣα`

� 1

on a sequence {`j} ⊆ N of positive lower asymptotic density, by showing

that there is some ε > 0 such that
logΣω`
logΣα`

& 1 + ε on a sequence of `’s of

positive lower asymptotic density.
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By Lemma 13 we have Σωm+1 � qkm+1qkm and Σαm+1 � qkmqkm−1 +
qkm+1, and because x ∈ Wess

1 (σ̃) there is a sequence {mj} ⊆ N of positive
lower asymptotic density such that qσ̃kmj

< qkmj+1 . We now have

logΣωmj+1

logΣαmj+1

&
log qkmj+1qkmj

log(qkmj qkmj−1 + qkmj+1)
&

log qkmj+1qkmj
log max{qkmj qkmj−1, qkmj+1}

.

Whenever qkmj qkmj−1 ≤ qkmj+1, this becomes

log qkmj+1qkmj
log qkmj+1

=
log qkmj+1

log qkmj+1
+

log qkmj
log qkmj+1

≥ 1 +
1

σ
.

And whenever qkmj qkmj−1 ≥ qkmj+1, we get

log qkmj+1qkmj
log qkmj qkmj−1

>
log q1+σ̃

kmj

log q2
kmj

=
1 + σ̃

2
> 1

because σ̃ > 1. The sequence {`j} in the previous paragraph is `j = mj + 1,
and we have proved

logΣω`j
logΣα`j

& 1 + ε

with any fixed

0 < ε < min

{
1

σ
,
σ̃ − 1

2

}
,

and this establishes the comparison (6.3).
We now show that

(6.4)

Σω`j�

Σα`j

ψ2,d(t)
d dt� ψ0,d(`j).

Evaluating the integral gives

Σω`j�

Σα`j

ψ2,d(t)
d dt = log

log logΣω`j
log logΣα`j

≥ log

(
1 +

log(1 + ε)

log logΣα`j

)
.

Lemma 10 and the assumption that ∆km ≤∗ km imply

log logΣα`j � `j ,

and recalling the fact that log(1 + t) ∼ t as t→ 0, we have (6.4).
In the general case, we claim that for all s ∈ N,

logsΣω`j
logsΣα`j

& 1 +
log(1 + ε)

logsΣα`j logs−1Σα`j . . . log2Σα`j
= 1 + Csψs−2,d(`j)

d
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where Cs > 0. We have already proved the base case. In the inductive step,

logsΣω`j
logsΣα`j

& 1 +
log(1 + Cs−1ψs−3,d(`j)

d)

logsΣα`j

∼ 1 +
Cs−1ψs−3,d(`j)

d

logsΣα`j
= 1 + Csψs−2,d(`j)

d,

proving the claim. Evaluating the integral,

Σω`j�

Σα`j

ψs,d(t)
d dt = log

logsΣω`j
logsΣα`j

& log(1 + Csψs−2,d(`j)
d) ∼ Csψs−2,d(`j)

d � ψs−2,d(`j)
d,

we have proved the lemma.

Theorem 30. Let x ∈ R \Q be non-Liouville. If

(a) for some ε > 0 there is an s ∈ N such that logs−1 ∆km
logs−1 km

≥ 1 + ε for

infinitely many m ∈ N; or
(b) the essential Diophantine type of x is greater than 1 and ∆km ≤∗ km,

then

md−1(Wd(ψs,d) ∩ ({x} × Rd−1)) = full.

Proof. Part (a) follows from Lemma 28, and (b) from Lemma 29, both
after applying Lemma 22 and Gallagher’s Theorem.

Proof of Theorem 2. Any x ∈ R\Q that is not Liouville and has regular
Diophantine type greater than 1 satisfies assumption (b) of Theorem 30.
For any x of Diophantine type greater than d, the theorem is proved by the
remark on Khintchine’s transference principle at the end of §2.1.

6.3. Another point of view. Before moving to convergence results,
we offer another point of view on what we have done in this section.

The power set P(N) surjects onto [0, 1] by mapping a subset A ⊆ N to
the binary expansion 0.d1d2d3 . . . , where dq = 1A(q) is the indicator of A.
In fact, the set P∞(N) of infinite subsets of N can be identified with (0, 1]
by considering only binary expansions with infinitely many 1’s. With this
identification P∞(N) ∼= (0, 1] in mind, denote by

C(ψ) :=
{
A ∈ P∞(N) :

∑
q∈A

ψ(q) <∞
}
⊂ (0, 1]

and

D(ψ) :=
{
A ∈ P∞(N) :

∑
q∈A

ψ(q) =∞
}

= (0, 1] \ C(ψ)
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the sets of convergent and divergent subseries of
∑

q∈N ψ(q), respectively.

Šalát offers the following theorem.

Theorem 31 ([Sa]). If ψ : N → R is non-increasing and
∑

q∈N ψ(q)
diverges, then C(ψ) ⊂ (0, 1] has Hausdorff dimension 0.

At the beginning of this section we have explicitly defined a map A :
(R \ Q) × N → (0, 1] using our bounded ratio sequences

{
LRn
}

, and we

have spent our effort showing that A(x,R) ∈ D(ψd) for as many x’s as
possible, where ψ is some approximating function satisfying

∑
q∈N ψ(q)d

=∞. Theorem 31 says that this amounts to showing that the map A takes
values in a set whose complement has Hausdorff dimension 0.

It is tempting to hope that a closer analysis of the properties of the
map A will reveal that the preimage of C(ψd) must also have Hausdorff
dimension 0. This would prove the following statement:

Let d ≥ 3. If ψ is an approximating function such that
∑

q∈N ψ(q)d

diverges, then

md−1(Wd(ψ) ∩ ({x} × Rd−1)) = full for all x ∈ R \ E,

where the (possibly empty) set E of exceptions has Hausdorff
dimension zero.

We can reasonably expect this to be true (even with an empty E). In par-
ticular, we have already proved it for the prototypical ψ(q) = (q log q)−1/d,
in Theorem 1, and for ψ with the property that any convergent subseries of∑
ψ(q)d has asymptotic density zero, in Theorem 4.

7. Proofs of convergence results

7.1. Proof of Theorem 5. The following theorem is a counterpart to
Theorem 26, and Theorem 5 follows immediately.

Theorem 32. Let d ≥ 2. If ψ is an approximating function such that∑
q∈N ψ(q)d converges, then ∑

q∈Q(x,ψ)

ψ(q)d−1 <∞

for:

(a)

{
No x ∈ Q if

∑
q∈N ψ(q)d−1 diverges.

Every x ∈ R if it converges.

(b) Any x ∈ R \Q with the bounded ratio property.

Proof. (a) Suppose
∑

q∈N ψ(q)d−1 diverges. Let x = a/b be a rational
number. Then the sequence {kb}k∈N is contained in Q(x, ψ), so
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q∈Q(x,ψ)

ψ(q)d−1 ≥
∑
k∈N

ψ(kb)d−1,

and this diverges as in the proof of Theorem 26(a). On the other hand, if∑
q∈N ψ(q)d−1 converges, then it is obvious that so does

∑
q∈Q(x,ψ) ψ(q)d−1,

regardless of whether x is rational or irrational.

(b) We want to show that
∑

q∈Q(x,ψ) ψ(q)d−1 converges. Similar to the
proof of Theorem 26, we partition partial sums as

(7.1)

ΣN−1∑
q=1

q∈Q(x,ψ)

ψ(q)d−1 =

N∑
n=1

Σn−1∑
q=Σn−1

q∈Q(x,ψ)

ψ(q)d−1.

This is

≤
N∑
n=1

ψ(Σn−1)d−1
Σn−1∑
q=Σn−1

q∈Q(x,ψ)

1�
N∑
n=1

Ln ψ(Σn−1)d,

by Lemma 20. Now, as before, we have Ln = Ln−1 + 1 except when n = αm
for some m ≥ 2, so the above is

(7.2) �
N∑
n=1

Ln−1 ψ(Σn−1)d +
N∑
n=1

ψ(Σn−1)d +
∑
m∈N

(Bm+1 −Bm)ψ(Σωm)d

and recalling Lemma 21 we continue with

�
N∑
n=1

Ln−1 ψ(Σn−1)d +

N∑
n=1

ψ(Σn−1)d +
∑
m∈N

Bm+1 −Bm
Σωm

,

which converges for some R ≥ 1 if x has the bounded ratio property. There-
fore, (7.1) converges as N →∞, as desired.

Proof of Theorem 5. This follows from Theorem 32 in the same way that
Theorem 3 follows from Theorem 26. This time, instead of applying Gal-
lagher’s Theorem, we use the convergence part of Khintchine’s Theorem (or,
really, the Borel–Cantelli Lemma) to see that convergence of

∑
q∈N ψ̄(q)d−1

implies that the measure of Wd−1(ψ̄) is zero.

7.2. Proof of Corollaries 6–8. (This proof should be read as a contin-
uation of the proof of Theorem 32.) On the other hand, if ψ(q) ≤ q−(1+δ)/d

for some δ > 0, then we can continue (7.2) as

�
N∑
n=1

Ln−1 ψ(Σn−1)d +
N∑
n=1

ψ(Σn−1)d +
∑
m∈N

Bm+1 −Bm
Σ1+δ
ωm

.
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The first two terms converge, so let us look at the last one. Its convergence
is equivalent to that of

(7.3)
∑
m∈N

Lαm+1

Σ1+δ
ωm

,

so in particular it converges if x has the bounded ratio property, which
proves Corollary 6.

But by Lemma 13 we can compare the summand Lαm+1/Σ
1+δ
ωm to ratios

of continuants. An argument almost identical to that of Proposition 17 will
show that (7.3) converges if x meets the same restrictions on Diophantine
type as in that proposition. The only difference is that now we have taken
the denominators in the calculations to the power 1 + δ, which allows our
restrictions on Diophantine type to be inclusive, rather than exclusive.
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