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1. Introduction. Investigating the growth (or decay) of the absolute
value of the error term of the summatory function of an arithmetical function
is a classical question in number theory. Many results on such interesting
questions are available in the literature (for some of them, the readers may
refer to [4, Chapter 14]). Let φ(n) denote the Euler totient function which
is defined to be the number of positive integers ≤ n that are coprime to n.
Let us write ∑

n≤x

1

φ(n)
= A(log x+B) + E∗0(x),(1.1)

∑
n≤x

n

φ(n)
= Ax− log x+ E∗1(x),(1.2)

where

(1.3) A =
315ζ(3)

2π4
, B = γ0 −

∑
p

log p

p2 − p+ 1
.

Here ζ(s) and γ0 denote the Riemann zeta-function and the Euler–Masche-
roni constant respectively. The sum defining B extends over all primes p. In
[6, p. 184], E. Landau proved that

(1.4) E∗0(x)�
log x

x

as x→∞. Using a theorem of Walfisz based on Weyl’s inequality, R. Sitara-
machandrarao [15] established (by elementary methods) that

(1.5) E∗0(x)�
(log x)2/3

x
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as x→∞. In another paper [16], R. Sitaramachandrarao studied the discrete
average and integral average of these error terms E∗j (x) for j = 0, 1. In
particular, he proved by elementary methods that

(1.6)
x�

1

E∗1(t) dt = −
D

2
x+O(x4/5),

where

(1.7) D = γ0 + log(2π) +
∑
p

log p

p(p− 1)
.

As a consequence of (1.2) and (1.6) (see [16, Remark 4.1]), he derived that∑
n≤x

n

φ(n)
(x− n) =

x�

1

(∑
n≤u

n

φ(n)

)
du(1.8)

=
A

2
x2 − 1

2
x log x+

1−D
2

x+O(x4/5).

Equivalently, he established that the first Riesz mean satisfies the asymptotic
relation

(1.9)
∑
n≤x

n

φ(n)

(
1− n

x

)
=
A

2
x− 1

2
log x+

1−D
2

+O(x−1/5).

If we denote the error term of the first Riesz mean related to the arithmetic
function n/φ(n) in (1.9) by E1(x), then a conjecture of Sitaramachandrarao
(see [16, Remark 4.1]) is that

(1.10) E1(x)�
1

x3/4−δ

for every small fixed positive δ.
The aim of this article is to establish an improved upper bound for the

absolute value of the error term of the general kth Riesz mean related to the
arithmetic function n/φ(n) for any positive integer k ≥ 2. More precisely,
we write (for any integer k ≥ 1)

(1.11)
1

k!

∑
n≤x

n

φ(n)

(
1− n

x

)k
=Mk(x) + Ek(x)

where Mk(x) is the main term which is of the form Mk(x) = c1(k)x +
c2(k) log x+ c3(k), with c1(k), c2(k), c3(k) certain specific constants that de-
pend only on k, and Ek(x) is the error term of the sum under investigation.

We recall here a general conjecture proposed in [13]:

Conjecture. For every integer k ≥ 1,

(1.12) Ek(x)�
1

x3/4−δ
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for any small fixed positive constant δ, and the implied constant is indepen-
dent of k.

In [13], we proved:

Theorem A. Let x ≥ x0 where x0 is a sufficiently large positive number.
For any integer k ≥ 1,

(1.13) Ek(x)�
1

x1/2−δ

for any small fixed positive constant δ, and the implied constant is indepen-
dent of k.

Later, we refined certain arguments of [13], and with some extra inputs
we established in [14]:

Theorem B. Let x ≥ x0 where x0 is a sufficiently large positive number.
Let c∗ be any real number ≥ 10. For any integer k ≥ 1,

(1.14) E1(x)�
(log x)5/4(log log x)

x1/2
,

and for any integer k ≥ 2,

(1.15) Ek(x)�
max(4k, c∗2/3+ε) (log x)

xc∗k−1
+ c∗1/2

x−1/2(log x)1/4(log log x)

ek
,

where the implied constants are independent of k.

Theorems A and B use some ideas from [11] and [12]. For a related work
see also [5].

The aim of this article is to prove:

Theorem 1 (unconditional). Let x ≥ x0 where x0 is a sufficiently large
positive number and k is any integer ≥ 2. Then there exists a computable
constant c such that

Ek(x)�
x−1/2

k
exp

(
−c(log x)1/3

(log log x)1/3

)
.

In support of the above conjecture, we also prove:

Theorem 2 (conditional). Let x ≥ x0 where x0 is a sufficiently large
positive number and k is any integer ≥ 2. Then, on the assumption of the
Riemann Hypothesis, the inequality

Ek(x)�
x−3/4+δ

k

holds for any small positive constant δ.
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Remark. By choosing c∗ = 10 in Theorem B, from (1.15) it is not
difficult to see that the estimate

Ek(x)�
x−1/2(log x)1/4(log log x)

ek

holds uniformly for 2 ≤ k ≤ A1 log x for some effective positive constant A1.
It is also not difficult to see from the proof of Theorem B (see [14]) that for
all integers k ≥ 2,

Ek(x)� x−1/2.

It is plain that Theorem B is better than Theorem 1 when A2(log x)
1/3/

(log log x)1/3 ≤ k ≤ A3 log x, whereas Theorem 1 provides a stronger upper
bound estimate for instance when 2 ≤ k ≤ A2(log x)

1/3/(log log x)1/3 and
k ≥ (log x)1+ε.

The constants c1(k), c2(k) and c3(k) of the main termMk(x) were already
determined explicitly in [13]. It should be noted that although the conjecture
is still far from being resolved, Theorem 2 reveals that the conjecture is true
on the assumption of the Riemann Hypothesis with the implied k depen-
dence given explicitly. It is important to note that even if one assumes the
Riemann Hypothesis, we are unable to draw any stronger conclusion towards
the conjecture for E1(x).

2. Notation and conventions. Throughout the paper, s = σ+ it, the
parameters T and x are sufficiently large real numbers, and k is an integer
≥ 2.

δ and ε always denote sufficiently small fixed positive constants.
As usual, ζ(s) denotes the Riemann zeta-function and γ0 is Euler–Mas-

cheroni constant.
The implied constants may depend on ε and δ, and we do not mention

this fact explicitly.
The letters A,B,C and a, b, c with or without subscripts denote absolute

effective constants.

3. Some lemmas

Lemma 3.1 ([14, Lemma 3.1]). For <s > 1,

F (s) :=

∞∑
n=1

n

φ(n)ns
= ζ(s)ζ(s+ 1)

ζ(4s+ 4)

ζ(2s+ 2)
h(s)

where

h(s) :=∏
p

(
1+

1

ps+2

1

(1− 1/p)
− 1

p2s+3(1− 1/p)
+

1

p3s+4(1− 1/p)
− 1

p4s+4(1− 1/p)

)
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with h(s) absolutely and uniformly convergent in any compact set in the
half-plane <s ≥ −3/4 + δ for any fixed small positive δ.

Lemma 3.2 ([13, Lemma 3.2] or [3, p. 31, Theorem B]). Let k be an
integer ≥ 1. Let c and y be any positive real numbers, and T ≥ T0 where T0
is sufficiently large. Then

1

2πi

c+iT�

c−iT

ys

s(s+ 1) · · · (s+ k)
ds =

{
1
k!

(
1− 1

y

)k
+O(4kyc/T k) if y ≥ 1,

O(1/T k) if 0 < y ≤ 1.

Lemma 3.3 ([17, p. 116] or [4, pp. 8–12]). The Riemann zeta-function
ζ(s) is extended as a meromorphic function in the whole complex plane C
having a simple pole at s = 1 with residue 1, and it satisfies the functional
equation ζ(s) = χ(s)ζ(1− s) where

χ(s) =
π−(1−s)/2Γ

(
1−s
2

)
π−s/2Γ

(
s
2

) .

Also, in any bounded vertical strip, using Stirling’s formula, we get

χ(s) =

(
2π

t

)σ+it−1/2
ei(t+π/4)(1 +O(t−1))

as |t| → ∞. Thus, in any bounded vertical strip,

|χ(s)| � t1/2−σ(1 +O(t−1))

as |t| → ∞.

Lemma 3.4 ([4, p. 143, Theorem 6.1]). There is an absolute constant
C > 0 such that ζ(s) 6= 0 for

σ ≥ 1− C(log t)−2/3(log log t)−1/3 (t ≥ t0).
Lemma 3.5 ([4, pp. 144 and 310] or [17, pp. 134–137]). For |t| ≥ 2 and

σ ≥ 1− C(log t)−2/3(log log t)−1/3, we have

ζ(σ + it)� (log t)2/3(log log t)1/3, 1/ζ(σ + it)� (log t)2/3(log log t)1/3.

Lemma 3.6 ([17, p. 141, Theorem 7.2(A)]). We have
T�

1

|ζ(σ + it)|2 dt� T min

(
1

2σ − 1
, log T

)
uniformly for 1/2 ≤ σ ≤ 2.

Lemma 3.7 ([17, p. 337, equations 14.2.5 and 14.2.6]). Assuming the
Riemann Hypothesis,

ζ(s) = O(tε) and 1/ζ(s) = O(tε)

for every σ ≥ 1/2 + δ and t ≥ t0 where t0 is a sufficiently large number.
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4. Proof of Theorem 1. Let ε(T ) = (C/100)(log T )−2/3(log log T )−1/3

where C is as in Lemma 3.4. From Lemma 3.2, with c = 1+ 1
log x and writing

F (s) := ζ(s)ζ(s+ 1) ζ(4s+4)
ζ(2s+2)h(s), we obtain

S :=
1

k!

∑
n≤x

n

φ(n)

(
1− n

x

)k
(4.1)

=
1

2πi

c+i∞�

c−i∞
F (s)

xs

s(s+ 1)(s+ 2) · · · (s+ k)
ds

=
1

2πi

c+iT�

c−iT
F (s)

xs

s(s+ 1) · · · (s+ k)
ds+O

(
4kxc log x

T k

)
.

Now move the line of integration to <s = α := −1/2− ε(T ). In the rectan-
gular contour formed by the line segments joining the points c− iT , c+ iT ,
α + iT , α − iT and c − iT in the counter-clockwise sense, we observe that
s = 1 is a simple pole and s = 0 is a double pole of the integrand, thus we
get the main term from the sum of the residues coming from the poles s = 1
and s = 0, namely c1(k)x+ c2(k) log x+ c3(k). We note that

(4.2)
1

2πi

c+iT�

c−iT
F (s)

xs

s(s+ 1) · · · (s+ k)
ds

=
1

2πi

{ c+iT�

−1/2−ε(T )+iT

· · · +
−1/2−ε(T )+iT�

−1/2−ε(T )−iT

· · · +
−1/2−ε(T )−iT�

c−iT
· · ·
}

+ sum of the residues.

Let T ≥ T0 where T0 is a sufficiently large real number. The left vertical line
segment contributes the quantity

Q1,k :=
1

2π

T�

−T
F (α+ it)

xα+it

(α+ it)(α+ 1 + it) · · · (α+ k + it)
dt

=
1

2π

( �

|t|≤T0

+
�

T0<|t|≤T

)xα+itζ(α+ it)ζ(α+ 1 + it) ζ(4α+4+4it)
ζ(2α+2+2it)h(α+ it)

(α+ it)(α+ 1 + it) · · · (α+ k + it)
dt

� xα

(k − 1)!
+ xα

�

T0<|t|≤T

t(1/2−α)|ζ(1− α+ it)|t1/2−α−1|ζ(−α+ it)|
tk+1

×
∣∣∣∣ζ(4α+ 4 + 4it)

ζ(2α+ 2 + 2it)

∣∣∣∣ |h(α+ it)| dt

� xα

(k − 1)!
+ xα

�

T0<|t|≤T

t1+2ε(T )

∣∣∣∣ζ(1/2 + ε(T ) + it)

ζ(1− 2ε(T ) + 2it)

∣∣∣∣ dt

tk+1
.
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Using the bound in Lemma 3.5 and noticing that t2ε(T ) � tε and |ζ(σ + it)|
� t1/6+ε for σ ≥ 1/2, we obtain

Q1,k �
x−1/2−ε(T )

(k − 1)!
+ x−1/2−ε(T )

T�

1

t1/6+2ε(log t)2/3+ε
dt

tk
(4.3)

� x−1/2−ε(T )

k − 11/6− 3ε
.

Now we will estimate the contributions coming from the upper horizontal
line (the lower horizontal line is similar).

Lemma 4.1. Let T = x10. Then

Q2 :=

T�

T/2

∣∣∣∣ 1+1/log x�

−1/2−ε(T )

F (σ + it)xσ+it

(σ + it)(σ + 1 + it) · · · (σ + k + it)
dσ

∣∣∣∣ dt(4.4)

� 2k

x10(k−1)+1/2
exp

(
C1

(log x)1/3

(log log x)1/3

)
.

Proof. We note that

Q2 ≤
( T�

T/2

−1/2�

−1/2−ε(T )

+

T�

T/2

0�

−1/2

+

T�

T/2

1/2�

0

+

T�

T/2

1+1/log x�

1/2

)
∣∣∣∣ F (σ + it)xσ+it

(σ + it)(σ + 1 + it) · · · (σ + k + it)

∣∣∣∣ dσ dt
= I4 + I1 + I2 + I3 (say).

We observe that using Lemma 4.1 of [14] we get

I1 + I2 + I3 �
2k(log x)2/3+ε

x10(k−1)+1/2
.

Now we will estimate I4. We note that

I4 :=

T�

T/2

−1/2�

−1/2−ε(T )

∣∣∣∣ζ(σ + it)ζ(σ + 1 + it)
ζ(4σ + 4 + 4it)

ζ(2σ + 2 + 2it)

× xσ+ith(σ + it)

(σ + it)(σ + 1 + it) · · · (σ + k + it)

∣∣∣∣ dσ dt.
We observe that∣∣∣∣ 1

ζ(2σ + 2 + 2it)

∣∣∣∣� (log t)2/3+ε for −1/2− ε(T ) ≤ σ ≤ −1/2.

From the functional equation of ζ(s) (Lemma 3.3) and using the Cauchy–
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Schwarz inequality along with Lemma 3.6, we get

I4 �
−1/2�

−1/2−ε(T )

xσ
T�

T/2

t1/2−σt1/2−σ−1
∣∣∣∣ζ(1− s)ζ(−s)ζ(2s+ 2)

∣∣∣∣ dt dσ
� 2k(log T )2/3+ε

T k+1

−1/2�

−1/2−ε(T )

(
x

T 2

)σ T�

T/2

|ζ(−σ − it)| dt dσ

� 2k(log T )2/3+ε

T k+1

T (log T )1/2((x/T 2)−1/2 + (x/T 2)−1/2−ε(T ))

| log(x/T 2)|

� 2k(log T )7/6+ε

T k
(x/T 2)−1/2

|log(x/T 2)|
(
1 + (x/T 2)−ε(T )

)
.

Now fixing T = x10, we obtain

I4 �
2k(log x)7/6+ε

x10(k−1)x1/2 log x
(1 + x19ε(T ))(4.5)

� 2k

x10(k−1)+1/2
exp

(
19c1

log x

(log x)2/3(log log x)1/3

)
� 2k

x10(k−1)+1/2
exp

(
C1

(log x)1/3

(log log x)1/3

)
where C1 is some effective positive constant. Clearly I4 � I1+I2+I3. Hence
the lemma.

Recall that T := x10. Let

G(t) :=

1+1/log x�

−1/2−ε(T )

F (σ + it) xσ+it

(σ + it)(σ + 1 + it) · · · (σ + k + it)
dσ.

Then by Lemma 4.1, there exists a T ∗ ∈ [T/2, T ] such that |G(T ∗)| is mini-
mum and

|G(T ∗)| � 1

T

2k

x10(k−1)+1/2
exp

(
C1

(log x)1/3

(log log x)1/3

)
� 2k

x10k+1/2
exp

(
C1

(log x)1/3

(log log x)1/3

)
.

Hence using horizontal lines of height ±T ∗ to move the line of integration in
(4.1), we find that the total contribution of the horizontal lines in absolute
value is

(4.6) � 2k

x10k+1/2
exp

(
C1

(log x)1/3

(log log x)1/3

)
.

Now collecting the error estimates (4.1), (4.3), (4.6) and noting that c =
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1 + 1/log x, we get, for k ≥ 2,

Ek(x)�
4kx log x

T k
+

x−1/2−ε(T )

k − 11/6− 3ε
+

2k

x10k+1/2
exp

(
C1

(log x)1/3

(log log x)1/3

)
(4.7)

� x−1/2

k − 11/6− 3ε
exp

(
−C2

(log x)1/3

(log log x)1/3

)
� x−1/2

k
exp

(
−C2

(log x)1/3

(log log x)1/3

)
.

Note that the implied constant in Ek(x) is independent of k. This proves
Theorem 1 since the exact values of c1(k), c2(k) and c3(k) are already given
in [13].

Remark. We note that on the line σ = 1/2 we have

T (log T )1/4 �
T�

1

|ζ(1/2 + it)| dt� T (log T )1/4

(see for example [8]–[10]). For more general estimations of moments (some-
times unconditional and sometimes assuming the Riemann Hypothesis) of	T
1 |ζ(1/2+it)|

2k dt, one may refer to [2] and the recent works [7] or [1]. Using
these estimates, one can be very precise in powers of log x in the estimate
of I4, but we do not need it.

5. Proof of Theorem 2. Throughout this section we will assume the
Riemann Hypothesis. Similar to the proof of Theorem 1, here we will take
the left vertical line to be σ = −3/4 + δ =: β. Now the contribution from
the left vertical line is

(5.1) Q∗1,k :=
1

2π

T�

−T
F (β + it)

xβ+it

(β + it)(β + 1 + it) · · · (β + k + it)
dt

=
1

2π

( �

|t|≤T0

+
�

T0<|t|≤T

)xβ+itζ(β + it)ζ(β + 1 + it) ζ(4β+4+4it)
ζ(2β+2+2it)h(β + it)

(β + it)(β + 1 + it) · · · (β + k + it)
dt

� xβ

(k − 1)!
+ xβ

�

T0<|t|≤T

t1/2−β|ζ(1− β + it)|t1/2−β−1|ζ(−β + it)|

×
∣∣∣∣ζ(4β + 4 + 4it)

ζ(2β + 2 + 2it)

∣∣∣∣ dt

tk+1

� xβ

(k − 1)!
+ xβ

�

T0<|t|≤T

t3/2−2δ+2ε dt

tk+1
� x−3/4+δ

k − 3/2 + 2δ − 3ε
.
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Now we estimate the contribution from the upper horizontal line.

Lemma 5.1. Let T = x10. Then

Q3 :=

T�

T/2

∣∣∣∣1+1/log x�

−3/4+δ

F (σ + it)xσ+it

(σ + it)(σ + 1 + it) · · · (σ + k + it)
dσ

∣∣∣∣ dt(5.2)

� T ε

T k
T

x1/2 log x

T 1/2−2δ

x1/4 − δ
� 2k

x10(k−3/2−2ε+2δ)x3/4−δ log x
.

Proof. The proof is similar to the proof of Lemma 4.1 but here we take
the lower limit for σ to be −3/4 + δ =: β, and I1, I2, I3 are the same as in
Lemma 4.1. In place of I4, we have I∗4 given by

I∗4 :=

T�

T/2

−1/2�

−3/4+δ

∣∣∣∣ζ(σ + it)ζ(σ + 1 + it)
ζ(4σ + 4 + 4it)

ζ(2σ + 2 + 2it)

× xσ+it h(σ + it)

(σ + it)(σ + 1 + it) · · · (σ + k + it)

∣∣∣∣ dσ dt
�

−1/2�

−3/4+δ

xσ
T�

T/2

t1/2−σt1/2−σ−1
∣∣∣∣ζ(1− s)ζ(−s)ζ(2s+ 2)

∣∣∣∣ dt dσ
� 2k

T k+1

−1/2�

−3/4

(
x

T 2

)σ T�

T/2

t2ε dt dσ � 2k

T k+1
T 1+2ε (x/T

2)−1/2 + (x/T 2)−3/4+δ

|log(x/T 2)|

� 2kT 2ε

T k
(x/T 2)−1/2

| log(x/T 2)|
(
1 + (x/T 2)−1/4+δ

)
.

With T = x10, we find that

I∗4 �
2kT 2ε

T k
T

x1/2 log x

T 1/2−2δ

x1/4−δ
� 2k

T k−3/2−2ε+2δx3/4−δ log x

� 2k

x10(k−3/2−2ε+2δ)x3/4−δ log x
.

Clearly I∗4 � I1 + I2 + I3. This proves the lemma.

Let

G1(t) :=

1+1/log x�

−3/4+δ

F (σ + it)xσ+it

(σ + it)(σ + 1 + it) · · · (σ + k + it)
dσ.

Then by Lemma 5.1, there exists a T ∗ ∈ [T/2, T ] such that |G1(T
∗)| is

minimum and

|G1(T
∗)| � 1

T

2k

x10(k−3/2−2ε+2δ)x3/4−δ log x
� 2k

x10(k−1/2−2ε+2δ)

1

x3/4−δ log x
.
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Hence using horizontal lines of height ±T ∗ to move the line of integration in
(5.1), we find that the total contribution of the horizontal lines in absolute
value is

(5.3) � 2k

x10(k−1/2−2ε+2δ)

1

x3/4−δ log x
.

Now collecting the error estimates (4.1), (5.2), (5.3) and noting that c =
1 + 1/log x, we obtain, for k ≥ 2,

Ek(x)�
4kx log x

T k
+

x−3/4+δ

k − 3/2 + 2δ − 3ε
+

1

x10(k−1/2−2ε+2δ)

2k

x3/4−δ log x

(5.4)

� x−3/4+δ

k − 3/2 + 2δ − 3ε
.

We can very well take ε = δ/100. This proves Theorem 2.
Acknowledgements. The authors wish to thank the referee for some

useful comments.
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