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1. Introduction. For a given sequence S = (sn)n≥0, and k ∈ Z, we let
S + k denote the k-shifted sequence (sn + k)n≥0. Several classic problems in
number theory can be viewed as examining the occurrence of primes in such
shifted sequences. For example, if S = (2n)n≥0, then the question of whether
there are only finitely many Fermat primes is equivalent to asking whether
there are only finitely many primes in the shifted sequence S + 1. Also, the
conjecture that there exist infinitely many Mersenne primes is equivalent
to the statement that the shifted sequence S − 1 contains infinitely many
primes. Another famous conjecture in number theory states that there are
infinitely many primes in the shifted sequence P + k for any fixed positive
even integer k, where P is the sequence of prime numbers. The case k = 2
is known as the twin-prime conjecture, while the cases k > 2 are related to
Dickson’s conjecture (see [4]) and Schinzel’s hypothesis H (see [17]).

In 2014, Yitang Zhang [21] shocked the mathematical community by
proving unconditionally that there exists some k ≤ 70 000 000 such that
P+ k contains infinitely many primes. Since then, various researchers have
been chiseling away at Zhang’s upper bound. As of the writing of this paper,
the best known unconditional result is that k ≤ 246, due to the Polymath8
project [15], which was initiated by T. Tao.

We define a sequence S = (sn)n≥0 to be primefree if |sn| is not prime for
all n ≥ 0, and to rule out trivial situations, we require that no single prime
divides all terms of S. Many examples of primefree sequences exist in the
literature. One of the earliest is the shifted sequence (2n−7629217)n≥0, which
was found by Erdős [5] in 1950. Erdős actually constructed an arithmetic
progression of integer values of k such that each of the sequences (2n − k)n≥0
is primefree. This arithmetic progression of values of k provides infinitely
many counterexamples to a conjecture of Alphonse de Polignac. In 1849,
Polignac [14] conjectured that every odd integer > 1 can be written in the
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form 2n+p for some integer n ≥ 0 and some prime p. Polignac later realized
that this conjecture is false, and he found several counterexamples. Much
earlier, Euler had given the counterexample 959 in a letter to Christian
Goldbach [9].

Two other well-known primefree sequences in the literature are due, re-
spectively, to Hans Riesel and Wacław Sierpiński. In 1956, Riesel [16] found
infinitely many odd integers k in arithmetic progression such that the se-
quence (k · 2n − 1)n≥0 is primefree. Any such odd positive integer k is called
a Riesel number. It is conjectured that 509203 is the smallest Riesel num-
ber. For the current status of this conjecture, see www.prothsearch.net/
rieselprob.html. In 1960, Sierpiński [18] showed that there exist infinitely
many odd positive integers k in arithmetic progression such that the sequence
(k · 2n +1)n≥0 is primefree. Any such odd positive integer k is called a Sier-
piński number. It is conjectured that 78557 is the smallest Sierpiński number.
For the current status of this conjecture, see www.seventeenorbust.com.

At first glance, there might appear to be no connection among the se-
quences found by Erdős, Riesel and Sierpiński. However, it turns out that
the method used in any one of these situations to produce the values of k
can actually be used to produce values of k in the other situations as well.
Indeed, all three of these problems can be considered as constructing prime-
free shifted sequences of the form (2n + k)n≥0. For an explanation of this
connection, see [8].

A somewhat natural question to ask is whether there exist infinitely
many integers k such that, for each of these values of k, both of the shifted
sequences (2n + k)n≥0 and (2n − k)n≥0 are simultaneously primefree. The
affirmative answer to this question was first given by Brier [8, 20]. Along
these lines, we prove the following result.

Theorem 1.1. For any a ∈ Z, there exist infinitely many integers k such
that both of the shifted sequences Ua±k are primefree, where Ua is the Lucas
sequence (un)n≥0 of the first kind defined by

u0 = 0, u1 = 1, and un = aun−1 + un−2 for n ≥ 2.

Moreover, there exist infinitely many values of k such that every term in both
of the shifted sequences Ua ± k has at least two distinct prime factors.

Remark 1.2. We point out that showing there are infinitely many val-
ues of k such that both of the sequences U1 ± k are primefree (the shifted
Fibonacci numbers) was handled recently by Ismailescu and Shim [11].

The primefree part of Theorem 1.1 extends previous work [12] of the
author for the single shifted sequence Ua − k when a = 1 to all other values
of a, and establishes the following conjecture of Ismailescu and Shim [11] for
the specific sequences Ua.

www.prothsearch.net/rieselprob.html
www.prothsearch.net/rieselprob.html
www.seventeenorbust.com
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Conjecture 1.3. Let (xn)n≥0 be an integer sequence defined by a second
order recurrence relation xn+2 = axn+1 + bxn, where a and b are integers.
Further assume that limn→∞ |xn| = ∞. Then there exist integers k that
cannot be written in the form ±xn ± p for any n and any prime p.

Most calculations in this article were performed using Maple.

2. Preliminaries. While the common underlying process used in the
construction of the sequences of Erdős, Riesel and Sierpiński (as described
in Section 1) must be adapted somewhat to the individual sequence, there
are two basic ideas central to the general method. The first of these ideas is
a concept due to Erdős [5].

Definition 2.1. A (finite) covering system C, or simply a covering, of
the integers is a system of t <∞ congruences x ≡ ri (mod mi), with mi > 1
for all 1 ≤ i ≤ t, such that every integer n satisfies at least one of these
congruences. We write a covering C as a set of ordered pairs {(ri,mi)}.

A second crucial component used in this process is the notion of a prim-
itive divisor.

Definition 2.2. Let S be a sequence. A primitive divisor of the term
sn ∈ S is a prime number p such that sn ≡ 0 (mod p) but sm 6≡ 0 (mod p)
for all m < n.

Remark 2.3. Some authors allow a primitive divisor of sn to be any
divisor d > 1 of sn such that d is coprime to sm for all m < n. For example,
see [7]. Also, for Lucas (and Lehmer) sequences, Bilu, Hanrot and Voutier [2]
use a slightly modified version of Definition 2.2 which includes an additional
restriction. For example, in the Lucas sequence case, they require that a
primitive divisor p must satisfy (α− β)2 6≡ 0 (mod p), where α and β are
zeros of the characteristic polynomial. We do not require this additional
restriction in this paper.

Our main focus here is on certain Lucas sequences of the first kind.

Definition 2.4. Let a ∈ Z, and let Ua = (un)n≥0 denote the Lucas
sequence of the first kind defined by

u0 = 0, u1 = 1, and un = aun−1 + un−2 for n ≥ 2.

Remark 2.5. Note for a > 0, we have

un(−a) = (−1)n−1un(a),
where un(−a) is the nth term of U−a and un(a) is the nth term of Ua.

The following theorem is a special case of a much more general result
that is the culmination of work initiated by Carmichael [3] and completed
by others [2].
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Theorem 2.6. Let a ≥ 1 be an integer. Then every term un of Ua has a
primitive divisor with the following exceptions, which are indicated as ordered
pairs (a, n):

(a, 0), (a, 1), (1, 2), (1, 6), (1, 12), (3, 6).

It is well known that the sequence Ua is purely periodic modulo a prime [6].
The period of Ua modulo a prime p, which we denote Pp := Pp(a), is the
smallest positive integer h such that uh ≡ 0 (mod p) and uh+1 ≡ 1 (mod p).
We define the rank of apparition of p in Ua to be the least positive integer
r such that ur ≡ 0 (mod p), and we denote it as Rp := Rp(a). We refer to
the actual list of residues that occur modulo p from index 0 to index h − 1
as the cycle of Ua modulo p. For example, if a = 1 and p = 3, then P3 = 8
and the cycle of U1 modulo 3 is [0, 1, 1, 2, 0, 2, 2, 1]. We label the positions in
the cycle starting at 0, so that the residue at position 4 is 0 in our example.
Also, R3 = 4 here.

The following theorem is a generalization to Ua of a theorem for U1 due
to Vinson [19]. We omit the proof since it is identical to Vinson’s proof when
a 6≡ 0 (mod p), and obvious when a ≡ 0 (mod p).

Theorem 2.7. Let p be a prime. Then

(1) If a ≡ 0 (mod p), then Pp = Rp = 2.
(2) If a 6≡ 0 (mod p), then

Pp =


Rp = 3 if p = 2,
Rp if Rp ≡ 2 (mod 4) and p 6= 2,
2Rp if Rp ≡ 0 (mod 4) and p 6= 2,
4Rp if Rp ≡ 1 (mod 2) and p 6= 2.

Remark 2.8. Note that if p is a primitive divisor of un, then Rp = n.

To facilitate our approach in this article, it is convenient to make the
following definition.

Definition 2.9. Let x be a variable and let Ûx = (ûn)n≥0 be the se-
quence of polynomials in x defined by

û0 = 0, û1 = 1, and ûn = xûn−1 + ûn−2 for n ≥ 2.

For a monic polynomial f(x) ∈ Z[x], we define the generic period modulo
f(x) of Ûx, denoted P̂f , to be the smallest positive integer m, if it exists,
such that

ûm ≡ 0 (mod f(x)) and ûm+1 ≡ 1 (mod f(x)).

If such an integer m does not exist, we define P̂f =∞. When P̂f is finite, we
call the list of residues modulo f(x) that appear, in order starting at index 0
up to index P̂f − 1, the generic cycle of Ûx modulo f(x), and we denote



Primefree shifted Lucas sequences 291

it as Γf . For a given positive integer a, we also let Γf |x=a denote this generic
cycle specialized at x = a.

Remark 2.10. The polynomials ûn in Definition 2.9 are known as the
Fibonacci polynomials [13].

It is clear from Definition 2.9 that P̂f is finite if and only if f(x) divides
ûn for some n. However, as noted by Hoggatt and Long [10], not every
monic irreducible polynomial appears as a factor of some ûn. When f(x)
is a factor of ûn for some n, one can define the rank of apparition of f(x),
and a generic version of Theorem 2.7 holds modulo f(x). Although such a
complete generic theory is not required here, the following extension of the
definition of a primitive divisor is useful.

Definition 2.11. A generic primitive divisor of ûn is a monic irreducible
polynomial f(x) of positive degree such that ûn ≡ 0 (mod f(x)) but ûm 6≡
0 (mod f(x)) for all indices m < n.

Remark 2.12. The primitive divisors in Definition 2.11 are also known
as fibotomic polynomials [13].

Note that Theorem 2.6 guarantees the existence of a primitive divisor
of ûn, other than the possible exceptions listed there. In reality, the only
exceptions in the generic situation are n = 0 and n = 1, since we do see
that x, x2 + 1, x2 + 3 and x4 + 4x2 + 1 are primitive divisors of û2, û3, û6
and û12 respectively. It can also be shown that each term ûn has exactly
one primitive divisor [13], and so we denote it as fn(x). Consequently, the
primitive divisors of Ua occur as prime divisors of fn(a). Also, if we let p be
a prime divisor of fn(a), then Pp is a divisor of P̂f .

Finally in this section we present, without proof, a lower bound on linear
forms in logarithms, due to Baker [1]. This result is necessary to establish
the existence of infinitely many values of k in Theorem 1.1 such that every
term in both of the shifted sequences Ua ± k has at least two distinct prime
factors.

Theorem 2.13. Let ξ1, . . . , ξt ∈ C \ {0, 1} be algebraic numbers, and let
b1, . . . , bt be rational integers such that ξb11 · · · ξ

bt
t 6= 1. Then

|ξb11 · · · ξ
bt
t − 1| ≥ B−C ,

where B = max (|b1|, . . . , |bt|) and C is an effectively computable constant
depending on t and the heights of ξ1, . . . , ξt.

3. The proof of Theorem 1.1. Before we begin, we first describe, for
any integer a ≥ 1, a general process that can be used when searching for
infinitely many integers k such that the single sequence Ua + k is primefree.
The idea is to build a covering C = {(ri,mi)}, where mi = Pp for some
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primitive divisor p of uRp ∈ Ua, and ri is a position in the cycle of residues
modulo p. Then, when n ≡ ri (mod mi), we have

un + k ≡ uri + k (mod p).

Solving the congruence uri + k ≡ 0 (mod p) for k gives us a value of k such
that the term un + k in Ua + k is divisible by p whenever n ≡ ri (mod mi).
For k sufficiently large, un + k will be larger than p, and hence composite.

If the residue ρ that appears at location ri is repeated at another location,
say si, in a single cycle modulo p, then we can also use the congruence
(si,mi) in our covering since the resulting congruences for k modulo p will be
consistent. In fact, we can repeat the particular modulus mi in our covering
as many times as ρ appears in a single cycle modulo p. Note, however, that
the repeated use of a single modulus in this manner might not always be
beneficial in building the covering if the new locations produce congruences
that are redundant because of other congruences arising from other moduli.
If p and q are two primitive divisors of the same term, say uN ∈ Ua, then
N = Rp = Rq and Pp = Pq by Theorem 2.7. Thus, we can also reuse
the modulus mi = Pp in our covering as many times as there are distinct
primitive divisors of uN .

If we are fortunate enough to be able to build a covering using these ideas,
then we can use the Chinese remainder theorem to piece together the values
of k found for each prime to get an infinite arithmetic progression of values
of k modulo the product of the primitive divisors. Thus, for each of these
values of k in the arithmetic progression, every term in Ua + k is divisible
by at least one prime in the finite set Da of primitive divisors used. Since
for k sufficiently large in the arithmetic progression, every term of Ua + k
is larger than the largest prime in Da, we have successfully found infinitely
many integers k such that the sequence Ua + k is primefree. These methods
were employed in [12] and [11] for a = 1, and certainly this approach seems
plausible on a case-by-case basis for any particular value of a ≥ 1. However,
it is unclear whether this approach would be successful for every such value
of a. In particular, can a suitable covering be built for any integer a ≥ 1?

An additional complication here is that we also require the sequence
Ua − k to be primefree. Because of this added restriction, we need to build
two coverings: C+ = {(ri,mi)} for the sequence Ua + k, and C− = {(si, ti)}
for the sequence Ua − k. The coverings C+ and C− must be compatible in
the sense that if mi = ti, and we use the same primitive divisor p when we
solve for k using each of the congruences (ri,mi) and (si, ti), then we must
have

usi ≡ −uri (mod p).

As an example, suppose that a = 9, and that we use the primitive divisor
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p = 19. The cycle of U9 modulo p = 19 is

(3.1) [0, 1, 9, 6, 6, 3, 14, 15, 16, 7, 3, 15, 5, 3, 13, 6, 10, 1]

so that P19 = 18. Since the residue ρ = 6 appears at locations 3, 4 and 15,
we can use the three congruences (3, 18), (4, 18) and (15, 18) to build one of
the coverings C+ or C−. If we choose to use these congruences for C+, then
we can in fact use only (14, 18) for C− in this situation, since 14 is the only
location in the cycle (3.1) for which the residue −ρ = −6 ≡ 13 (mod 19)
appears.

Proof of Theorem 1.1. In light of Remark 2.5, we can restrict our at-
tention to a ≥ 0. We begin with the special case a = 0, where U0 =
(0, 1, 0, 1, . . .). Let k ≡ 21 (mod 2310). It is then easy to see that | ± k|
and |1 ± k| are all divisible by at least two distinct primes from the set
{2, 3, 5, 7, 11}, and so the theorem is true for a = 0.

We focus first on the primefree part of the theorem. As mentioned ear-
lier, the case a = 1 was handled recently by Ismailescu and Shim [11], so we
assume now that a ≥ 2. We use the ideas of generic cycle and generic prim-
itive divisor from Section 2 to construct two “generic” coverings Ĉ+ and Ĉ−.
These coverings are actual coverings of the integers, but they are generic
in the sense that they can be used to achieve the desired result for any
particular value of a with a ≥ 2. For each index Ni in the list

N = [2, 3, 4, 5, 8, 9, 12, 15, 20, 24, 36, 45, 60]

of 13 specific indices, we calculate the generic primitive divisor Fi := fNi(x)

of ûNi , and the generic period P̂i := P̂Fi , for each i with 1 ≤ i ≤ 13.
This information is provided in Table 1. Observe in the list N that we have
avoided the exceptional cases given in Theorem 2.6. In particular, we have
not used the index 6.

We now construct the coverings Ĉ+ and Ĉ− using as our moduli the
elements of the list

P̂ = [2, 12, 8, 20, 16, 36, 24, 60, 40, 48, 72, 80, 180, 120].

To do so, we examine for each i what residues appear, and where they appear,
in the generic cycle Γi := ΓFi of Ûx modulo Fi.

For example, for i = 2, we have N2 = 3, F2 = x2 + 1 and P̂2 = 12. Then

Γ2 = [0, 1, x, 0, x,−1, 0,−1,−x, 0,−x, 1].

Since the residue ρ = 0 appears in the following four locations: 0 (mod 12),
3 (mod 12), 6 (mod 12) and 9 (mod 12) in Γ2, we can, and do, use the
modulus 12 four times in Ĉ+ with the residues 0, 3, 6 and 9. Since −ρ = 0,
we can, and do, use the same congruences in Ĉ−.
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Table 1. Indices N , primitive divisors F and generic periods P̂

N F P̂
2 x 2
3 x2 + 1 12
4 x2 + 2 8
5 x4 + 3x2 + 1 20
8 x4 + 4x2 + 2 16
9 x6 + 6x4 + 9x2 + 1 36
12 x4 + 4x2 + 1 24
15 x8 + 9x6 + 26x4 + 24x2 + 1 60
20 x8 + 8x6 + 19x4 + 12x2 + 1 40
24 x8 + 8x6 + 20x4 + 16x2 + 1 48
36 x12 + 12x10 + 54x8 + 112x6 + 105x4 + 36x2 + 1 72
45 x24 + 24x22 + 252x20 + 1521x18 + 5832x16 + 14823x14 + 25298x12 180

+28743x10 + 21087x8 + 9393x6 + 2250x4 + 216x2 + 1

60 x16 + 16x14 + 105x12 + 364x10 + 714x8 + 784x6 + 440x4 + 96x2 + 1 120

As a second example, for i = 9, we have N9 = 20, F9 = x8+8x6+19x4+
12x2 + 1 and P̂9 = 40. The generic cycle Γ9 of Ûx modulo F9 is given in
Table 2, with the location in Γ9 of each generic residue.

Continuing in this manner, we build the coverings Ĉ+ and Ĉ−:
Ĉ+ = {(0, 2), (0, 12), (3, 12), (6, 12), (9, 12), (3, 8), (5, 8), (0, 20), (5, 20),

(10, 20), (15, 20), (7, 16), (9, 16), (17, 36), (19, 36), (7, 24),

(17, 24), (29, 60), (31, 60), (17, 40), (23, 40), (1, 48), (47, 48),

(25, 72), (47, 72), (41, 180), (139, 180), (47, 120), (73, 120)},
Ĉ− = {(0, 2), (0, 12), (3, 12), (6, 12), (9, 12), (1, 8), (7, 8), (0, 20), (5, 20),

(10, 20), (15, 20), (1, 16), (15, 16), (1, 36), (35, 36), (5, 24),

(19, 24), (1, 60), (59, 60), (3, 40), (37, 40), (23, 48), (25, 48),

(11, 72), (61, 72), (49, 180), (131, 180), (13, 120), (107, 120)}.
Since the exceptional cases given in Theorem 2.6 have been avoided, it

follows that for any positive integer a ≥ 2, there exists a primitive divisor
pi of the term uNi in Ua. This prime pi is a divisor of Fi(a), and therefore
the coverings Ĉ+ and Ĉ− can be applied to this specialized situation. This
process results in a system of congruences for k modulo each prime in the
finite set Da of primitive divisors used. Using the Chinese remainder theorem
to solve this system gives an arithmetic progression of values of k such that
each term in both sequences Ua±k is divisible by at least one prime from Da.
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Table 2. Generic residues in Γ9

Location Generic residue
0 0
1 1
2 x

3 x2 + 1

4 x3 + 2x

5 x4 + 3x2 + 1

6 x5 + 4x3 + 3x

7 x6 + 5x4 + 6x2 + 1

8 x7 + 6x5 + 10x3 + 4x

9 −x6 − 4x4 − 2x2

10 2x5 + 8x3 + 4x

11 x6 + 4x4 + 2x2

12 x7 + 6x5 + 10x3 + 4x

13 −x6 − 5x4 − 6x2 − 1

14 x5 + 4x3 + 3x

15 −x4 − 3x2 − 1

16 x3 + 2x

17 −x2 − 1

18 x

19 −1

Location Generic residue
20 0

21 −1
22 −x
23 −x2 − 1

24 −x3 − 2x

25 −x4 − 3x2 − 1

26 −x5 − 4x3 − 3x

27 −x6 − 5x4 − 6x2 − 1

28 −x7 − 6x5 − 10x3 − 4x

29 x6 + 4x4 + 2x2

30 −2x5 − 8x3 − 4x

31 −x6 − 4x4 − 2x2

32 −x7 − 6x5 − 10x3 − 4x

33 x6 + 5x4 + 6x2 + 1

34 −x5 − 4x3 − 3x

35 x4 + 3x2 + 1

36 −x3 − 2x

37 x2 + 1

38 −x
39 1

Since there are infinitely many values of k in this arithmetic progression such
that |un − k| > p and |un + k| > p for all n, where p = max{Da}, the proof
that the sequences Ua ± k are primefree is complete.

We turn to showing that there exist infinitely many values of k such that
every term of both of the sequences Ua ± k has at least two distinct prime
divisors. The case a = 0 has already been addressed, so assume that a ≥ 1 is
fixed, and that k is an element of an arithmetic progression such that both
sequences Ua ± k are primefree. If not every term of the sequences Ua ± k
has at least two distinct prime divisors, then we have k = |un±pm| for some
term un ∈ Ua, some prime p ∈ Da, the finite set of primitive divisors used to
construct the arithmetic progression containing k, and some integer m ≥ 2.
We can write

un = cαn + (−c)βn,
where α = (a +

√
a2 + 4)/2, β = (a −

√
a2 + 4)/2 and c = 1/(α − β). Note

that |β| < 1, and thus un = cαn + o(1). Therefore,

(3.2) k = |un ± pm| = cαn|1± c−1α−npm|+ o(1).
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If k is small, say k < .5max {cαn, pm}, then cαn ∈ (pm/2, 2pm). Hence,

(3.3) n � m.
If c−1α−npm = ±1, then

α2n = c−2p2m ∈ Q,

which is impossible for n 6= 0. Therefore, we can apply Theorem 2.13, with
ξ1 = ±c, ξ2 = α, ξ3 = p, b1 = −1, b2 = −n and b3 = m, to the expression
|1± c−1α−npm|, to get

(3.4) |1± c−1α−npm| > (max{m,n})−C

for some constant C. Thus, from (3.3), (3.2) and (3.4), we obtain

(3.5) k � αn

max{m,n}C
� max{αn, pm}

max{m,n}C
.

If T ≥ k, then log T � max{m,n} from (3.5), and so there are only
O((log T )2) such possibilities for k. Since k is in an arithmetic progression,
there are� T values for k up to T . Thus, for T sufficiently large, there exists
some value of k such that k 6= |un± pm| for all n,m and primes p ∈ Da, and
the proof is complete.

The following corollary is an immediate consequence of Theorem 1.1.

Corollary 3.1. For all integers a, Conjecture 1.3 is true for the Lucas
sequences Ua.

Remark 3.2. The type of plus/minus symmetry that appears in Table 2
for Γ9 only seems to occur when P̂f ≡ 0 (mod 4).

We give an example to illustrate the application of the first part of The-
orem 1.1.

Example 3.3 (a = 2; the Pell numbers). We use the coverings Ĉ+ and
Ĉ− with the list N and the list

P = [2, 5, 3, 29, 17, 197, 11, 269, 19, 1153, 73, 6481, 601]

of corresponding primitive divisors. Note that when uNi has more than one
primitive divisor, we have chosen the smallest primitive divisor of uNi for the
list P . Using the Chinese remainder theorem to solve the resulting system
of congruences

k ≡ 0 (mod 2), k ≡ 1 (mod 269),

k ≡ 0 (mod 5), k ≡ 5 (mod 19),

k ≡ 1 (mod 3), k ≡ 1152 (mod 1153),

k ≡ 0 (mod 29), k ≡ 47 (mod 73),
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k ≡ 1 (mod 17), k ≡ 2267 (mod 6481),

k ≡ 1 (mod 197), k ≡ 496 (mod 601),

k ≡ 7 (mod 11),

for k gives an arithmetic progression of values of k such that both of the
sequences U2 ± k are primefree. The smallest positive value of k in this
arithmetic progression is

k = 10124756384607912952120.

4. Final comments. Since the only primitive divisor of ûNi in Ûx is Fi,
we could only use a single primitive divisor for each Ni to build the coverings
Ĉ+ and Ĉ− in the proof of Theorem 1.1. However, this situation represents
a worst-case scenario in Ua. Quite often, in practice, Fi(a) will have more
than a single prime factor that is a primitive divisor of uNi in Ua. In this
case, we can reuse the modulus Pi with the new primitive divisor, which
yields a smaller covering system with a smaller least common multiple, and
quite possibly, a smaller positive value of k. Additionally, it can happen that
there are better choices for the residues in Γf |x=a with which to build the
covering. This phenomenon can also reduce the smallest positive value of k.

A natural question to ask is whether the “generic” process used in the
proof of Theorem 1.1 can be extended to handle more general Lucas se-
quences. Unfortunately, it appears that the generic periodicity used for the
sequences Ûx in the proof of Theorem 1.1 fails for more general situations.

Acknowledgements. The author thanks the referee for the many ex-
cellent suggestions, and especially for providing the argument to prove that
there exist infinitely many values of k such that every term in both of the
sequences Ua ± k has at least two distinct prime divisors.
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