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Tame kernels of cubic cyclic fields
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Haiyan Zhou (Nanjing)

1. Introduction. Let K/k be a Galois extension of number fields and
G its Galois group. The tame kernel of K, K2OK , is a G-module. This fact
can often be used to investigate the structure of K2OK . The tame kernels
of number fields have been investigated by many authors (see the list of
references). In particular, J. Browkin gave some explicit results for cubic
cyclic fields with exactly one ramified prime in [Br1]. In this paper, we
study cubic cyclic fields with only two ramified primes.

This paper is organized as follows. In Section 2, we study the 2-primary
part of tame kernels of cubic cyclic fields F . Section 3 applies reflection
theorems to study the ℓ-rank of K2OF . In particular, we obtain a bound
on the 3-rank of K2OF . Finally, we use the G-module structure of K2OF
to study the 3-primary and ℓ-primary parts of tame kernels of cubic cyclic
fields F where ℓ ≡ 5 (mod 6). Moreover, we obtain some results about the
3i-rank of K2OF , i > 1. In particular, we compute the structure of the
3-primary part of K2OF in the cases left open in [Br1]. Moreover, we prove
the following theorem for all cubic cyclic fields. In particular, Conjecture 4.6
in [Br1] is true.

Theorem. Let F be a cubic cyclic field and τ a generator of the Galois
group Gal(F/Q). If ℓ ≡ 5 (mod 6) is a prime, then

Sylℓ(K2OF ) = A′ × τ(A′)
for some subgroup A′ of the Sylow ℓ-subgroup of K2OF .

Let F be a cubic cyclic field with only two ramified primes. In Sects. 4–6
we investigate the tame kernel K2OF , where OF is the ring of integers of F .
Using the well-known Birch–Tate conjecture, it is easy to compute the order
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of K2OF . We discuss its divisibility by small primes. To get information on
the structure of the group K2OF we investigate its q-rank for q = 2, 3, 7, 13.
Acknowledgements. The author would like to thank Jerzy Browkin

for useful advice and correspondence. She would also like to express her
thanks to her supervisor, Hourong Qin, for useful discussions.

2. The 2-primary part of the tame kernel

2.1. The 2-rank of K2OF . Let F be a cubic cyclic field.
Lemma 2.1 ([Br1, (3.2)]). We have

2-rankK2OF =
{
3 + 2-rankCl(OF [1/2]) if 2 is inert in F ,
5 + 2-rankCl(OF [1/2]) if 2 splits in F .

Lemma 2.2. The 2-rank of Cl(OF [1/2]) is even.
Proof. Let V = 2Cl(OF [1/2]) and r = 2-rankCl(OF [1/2]), so V has 2r

elements. Let τ generate the Galois group Gal(F/Q). Then τ acts on V. Let
v ∈ V, v 6= 0 and let τ(v) = v. Therefore

v3 = (1 + τ + τ2)v = Norm(v),

where the norm is induced by the norm from F to Q. It is easy to see that
v3 = 0. But v2 = 0, so v = 0, contradiction. It follows that the orbit of every
v 6= 0 has three elements, so 2r ≡ 1 (mod 3). Therefore 2 | r. This completes
the proof.

Lemma 2.3. Let F be a cubic cyclic field with at least two ramified
primes. For a prime number q, let Aq be the Sylow q-subgroup of the class
group Cl(OF ) of F . Then
(i) The class number of F is divisible by 3.
(ii) 3-rankCl(OF ) = 1 if and only if 3 ‖#Cl(OF ).
(iii) If q ≡ 2 (mod 3), then Aq = Bq×τ(Bq) for some subgroup Bq of Aq.

The same holds if we replace OF by the ring OF,ℓ = OF [1/ℓ] of integers
of F localized at ℓ, where ℓ is a prime.

Proof. (i) follows from [CH, Theorem 9.3], (ii) follows from [CR, Corol-
lary] and (iii) follows from [Wa, Theorem 10.8]. The last statement follows
from Lemma 2.2.

Theorem 2.4. The 2-rank of K2OF is odd.
Proof. This follows from Lemmas 2.1 and 2.3.

2.2. Elements of order 2 in K2OF . Elements of order 2 in K2OF can
be described explicitly. Let ε1, ε2 be fundamental units of F. Changing sign
if necessary, we may assume that Nε1 = 1, and ε2 = τ(ε1), where τ is
a generator of the Galois group T = Gal(F/Q). In view of Lemma 2.3
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we can take independent generators of the group 2Cl(OF [1/2]) of the form
Cl(℘j), Cl(τ(℘j)), j = 1, . . . , t, where 2t = 2-rankCl(OF [1/2]), and ℘j are
prime ideals satisfying ℘j ∤ 2. Then the ideals ℘2j are principal, ℘

2
j = (γj)

for j = 1, . . . , t. We may assume that Nγj > 0. If 2 splits in F, (2) =
℘ · τ(℘) · τ2(℘), and the class Cl(℘) in Cl(OF ) has order r, then the ideal ℘r
is principal, ℘r = (γ). From [Br1, 3.2], we have the following result:

Theorem 2.5.

(i) If 2 is inert in F, then the subgroup of elements of order ≤ 2 in
K2OF is generated by

{−1,−1}, {−1, ε1}, {−1, τ(ε1)}, {−1, γj}, {−1, τ(γj)},
where j = 1, . . . , t.

(ii) If 2 splits in F, then the subgroup of elements of order ≤ 2 in K2OF
is generated by

{−1,−1}, {−1, ε1}, {−1, τ(ε1)}, {−1, γ}, {−1, τ(γ)},
{−1, γj}, {−1, τ(γj)},
where j = 1, . . . , t.

Theorem 2.6. For r ≥ 2 the 2r-rank of K2OF is even and if there are
n elements in the set {ε1, γ, γj : 1 ≤ j ≤ t} that are not totally positive,
then

4-rankK2OF ≤ 2-rankK2OF − (2n+ 1).
Proof. If an element α ∈ F ∗ is not totally positive, then applying the

three real Hilbert symbols of F to {−1, α} we see that {−1, α} is not a
square in K2F. In particular {−1,−1} is not a square. Since {−1, α} is a
power of some element of F ∗, {−1, τ(α)} is the same power of some element
of F ∗. It follows from Theorem 2.5 that the 2r-rank of K2OF is even, where
r ≥ 2. The inequality follows from the fact that if α is not totally positive,
then τ(α) is not totally positive.

3. The ℓ-primary parts of tame kernels for an odd prime ℓ

3.1. Notation. In this paper, we use the same notation as in [Br1]. Let
ℓ be an odd prime number, ζℓ a primitive ℓth root of unity, and G :=
Gal(Q(ζℓ)/Q). Then

G = {σa : 1 ≤ a ≤ ℓ− 1}
where σa(ζℓ) = ζ

a
ℓ . For a fixed primitive root k modulo ℓ the automorphism

σ := σk generates G.
Let ω be the ℓ-adic Teichmüller character of the group (Z/ℓZ)∗. Then, for

1 ≤ a ≤ ℓ− 1, the value ω(a) ∈ Z∗ℓ is uniquely determined by the conditions
ω(a)ℓ−1 = 1 and ω(a) ≡ a (mod ℓ). It is well known that ωj , 0 ≤ j ≤ ℓ− 2,
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are all irreducible characters of G = (Z/ℓZ)∗. The corresponding primitive
idempotents of the group ring Zℓ[G] are

(3.1) εj =
1

ℓ− 1

ℓ−1∑

a=1

ω(a)jσ−1a =
1

ℓ− 1

ℓ−2∑

i=0

ω(k)ijσ−i, 0 ≤ j ≤ ℓ− 2.

In particular, ε0 =
1
ℓ−1N, where N = 1 + σ + σ

2 + · · ·+ σℓ−2 = NQ(ζℓ)/Q is
the norm element in the group ring Zℓ[G].

For a Zℓ[G]-module M , we get a decomposition of M into a direct sum
of Zℓ[G]-submodules:

M =

ℓ−2⊕

j=0

εjM = NM ⊕
ℓ−2⊕

j=1

εjM.

The group µℓ of ℓth roots of unity has the natural structure of a Zℓ[G]-
module. We define the action of G on µℓ ⊗M by

(ζ ⊗m)σ = ζσ ⊗mσ, where ζ ∈ µℓ, m ∈M, σ ∈ G.
Since |G| = ℓ− 1, we have
(3.2) (µℓ ⊗M)G = ε0(µℓ ⊗M).
From [Br1],

(3.3) ε0(µℓ ⊗M) = µℓ ⊗ εℓ−2M.

In the following we always assume that E = F (ζℓ), where F is a cubic
cyclic field. Denote by λ : Cl(OE)→ Cl(OE [1/ℓ]) the homomorphism of the
class groups induced by the imbedding OE → OE [1/ℓ], and let A = AE
be the Sylow ℓ-subgroup of Cl(OE). Then λ(A) is the Sylow ℓ-subgroup of
Cl(OE [1/ℓ]) by the surjectivity of λ.
Since A is an ℓ-group on which G = Gal(Q(ζℓ)/Q) = Gal(E/F ) acts, we

have

A =
ℓ−2⊕

j=0

εjA.

Lemma 3.1. If ℓ does not ramify in F or ℓ = 3, then for j 6= 0 the
mapping λ : εjA→ εjλ(A) is an isomorphism.

Proof. If ℓ does not ramify in F, then the result follows from the same
proof as [Br1, Lemma 4.1]. If 3 ramifies in F and ℓ = 3, then 3 is totally
ramified in E = F (ζ3) since (2, 3) = 1. Thus σ(p) = p for every σ ∈ G,
where p is the prime ideal of E which divides 3. Therefore Ker(λ)∩A ⊂ ε0A.
Consequently, Ker(λ) ∩ εjA = 0 for j 6= 0. This completes the proof.
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Theorem 3.2. Let F be a cubic cyclic field and E = F (ζℓ). If ℓ does not
ramify in F or ℓ = 3, then

ℓ-rankK2OF = ℓ-rank εℓ−2AE .
Proof. The result follows from the same proof as [Br1, Theorem 4.3] and

Lemma 3.1.

3.2. The 3-primary part of the tame kernel of F . If ℓ = 3, then E =
F (ζ3), G = Gal(Q(ζ3)/Q) = 〈σ〉 where σ is the complex conjugation. So

ε0 =
1

2
(1 + σ), ε1 =

1

2
(1− σ).

By Theorem 3.2, 3-rankK2OF = 3-rank ε1AE . According to [Br2, Lemma
2.1], NE/F : AE → AF is surjective and Ker(NE/F ) = ε1AE . So we have
the following important theorem:

Theorem 3.3. 3-rankK2OF = 3-rankAE − 3-rankAF .
Weapply reflection theorems to prove some estimates of the 3-rankK2OF .

Let E/Q be a Galois extension with ζℓ ∈ E. Let L be the maximal un-
ramified and elementary abelian ℓ-extension of E with the Galois group
H := Gal(L/E). Then the Artin reciprocity map gives an isomorphism of
Gal(E/Q)-modules A/ℓ→ H.
By Kummer theory, L = E(B1/ℓ), where B is a subgroup of E∗ con-

taining E∗ℓ. Set B0 := B/E
∗ℓ. Then every principal ideal (b), where b ∈ B,

is the ℓth power of an ideal in E, since L/E is unramified. Moreover B0 is

isomorphic to the dual Ĥ of H as a Gal(E/Q)-module.

Define ℓA = {a ∈ A : aℓ = 1}. Then there is a homomorphism of
Gal(E/Q)-modules

ϕ : B0 → ℓA

such that ϕ(bE∗ℓ) = Cl(a), where the ideal a of OE is defined by the con-
dition (b) = aℓ.

Lemma 3.4.

(i) If 3 is ramified in F, then 3-rankAF − 1 ≤ 3-rank ε1AE .
(ii) If 3 does not ramify in F, then 3-rankAF ≤ 3-rank ε1AE .
Proof. It is obvious that F is the maximal real subfield of E = F (ζ3).

And we know that if 3 does not ramify in F, then F (ζ9)/E is totally ramified.
Thus the lemma follows from [Wa, Theorem 10.11].

Proposition 3.5.

(i) If 3 is ramified in F, then

3-rankAF − 1 ≤ 3-rankK2OF ≤ 3-rankAF + 2.
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(ii) If 3 does not ramify in F, then

3-rankAF ≤ 3-rankK2OF ≤ 3-rankAF + 2.

Proof. By the above arguments, we have A = ε0A ⊕ ε1A. Note that
H ∼= A/3 as G-modules. So εiH ∼= εi(A/3) for i = 0, 1. Let h ∈ εiH.
Then σah = h

ωi(a) for all a ∈ (Z/3)∗, where σ1 = 1, σ2 = σ and ω is the
Teichmüller character of the group (Z/3)∗. Let b ∈ εkB0. Then

〈h, b〉ω(a) = 〈h, b〉σa = 〈hωi(a), bωk(a)〉 = 〈h, b〉ωi+k(a)

for all a. If i + k 6≡ 1 (mod 2), then 〈h, b〉 = 1. Since the pairing between
B = ε0B⊕ ε1B and H = ε0H ⊕ ε1H is nondegenerate, it follows easily that
the induced pairing

εiH × εjB → µ3, i = 0, j = 1 or i = 1, j = 0

is nondegenerate. Hence we have

ε0B0 ∼= ε1H ∼= ε1(A/3) as abelian groups.

Now the reflection map ϕ : B0 → 3A is G-linear, so

ϕ : ε0B0 → ε0(3A).
Therefore we have the exact sequence

0→ Ker(ϕ) ∩ ε0B0 → ε0B0 → AF .
We also have

Ker(ϕ) ∩ ε0B0 ∼= subgroup of ε0(UE/U3E).
Thus by Theorem 3.2 and Dirichlet’s unit theorem, we have

3-rankK2OF = 3-rank ε1AE = 3-rank ε0B0
≤ 3-rankAF +Ker(ϕ) ∩ ε0B0
≤ 3-rankAF + 3-rankUF /3
≤ 3-rankAF + 2.

The proposition now follows from Lemma 3.4.

Theorem 3.6. Let F be a cubic cyclic field with r ramified primes and
r ≥ 2. Then 3-rankK2OF ≤ 2r. Moreover , if 3 does not ramify in F, then
1 ≤ 3-rankK2OF ≤ 2r.

Proof. Suppose T = Gal(F/Q) and 3-rankATF = s. By the well-known
fact that 3-rankATF is one less than the number of ramified primes, we have
s = r − 1. From the proof of [CR, Proposition 5], we have the following
cases:
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Case 1. If AF is an elementary 3-group, then

AF ∼=
s⊕

i=1

(Z/3)ai , where ai ≤ 2.

Thus 3-rankAF ≤ 2(r − 1).
Case 2. If AF contains an element of order 9, then

AF /3 ∼= (Z/3)2 ⊕
s⊕

i=2

(Z/3)bi , where bi ≤ 2.

So, 3-rankAF ≤ 2 + 2(r − 2) = 2(r − 1). Therefore the result follows from
Lemma 2.3 and Proposition 3.5.

Corollary 3.7. Let F be a cubic cyclic field with at least two ramified
primes. If 3 does not ramify in F and 3 ‖#K2OF , then 3 ‖#AF .
Theorem 3.8. Let p | 3 be the prime ideal of E. If 3 is ramified in F,

then

3-rankK2OF =
{
3-rankK2OE − 3-rankAF if p is principal ,

3-rankK2OE − 3-rankAF − 1 otherwise.
Proof. Since 3 is ramified in F, it is totally ramified in E. By [Ke, Corol-

lary 3.9], we have 3-rankK2OE = 3-rankCl(OE [1/3]). If p is principal, then
AE = Cl(OE [1/3]). Otherwise, 3-rankCl(OE [1/3]) = 3-rankAE − 1. Thus
the assertion follows from Theorem 3.3.

Let F be a cubic cyclic field and T = Gal(F/Q). Denote by τ a gen-
erator of G. Let K/E be an extension of number fields. Denote by tr the
transfer homomorphism tr : K2K → K2E. Let j : K2E → K2K be the
homomorphism induced by the inclusion map E ⊂ K. Let M be a finite
abelian group and p a prime number. Denote by (M)p the p-primary part
of M.

Lemma 3.9. If K2OF has an element of order 9, then
3-rankK2OF ≥ 1 + 3-rank (K2OF )G.

Proof. It is well known that K2Z ∼= Z/2. Note that j · tr =∑g∈G g. The
lemma follows from [CR, Proposition 5].

Corollary 3.10. The 3-primary part of K2OF is cyclic if and only if
3 ‖#K2OF .
Proof. Since G is a 3-group, it is easy to see that ((K2OF )3)G 6= 0. So

by Lemma 3.9, the presence of an element of order 9 implies 3-rank ≥ 2.
This completes the proof.

From Propositions 6 and 7 of [CR], we have the following results:
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Corollary 3.11. The 3-primary part of K2OF cannot be the sum of
three summands each cyclic of order divisible by 9.

Corollary 3.12. If 3i- rankK2OF ≥ 2r + 1, then 3i−1- rankK2OF ≥
2(r + 1). In particular , if 3i- rankK2OF ≥ 1, then 3i−1- rankK2OF ≥ 2.
As an application of Corollary 3.12, we determine the structure of the 3-

primary parts of thoseK2OF which are left open in [Br1], for p = 1747, 2593,
3061, 3583, 4789. Now, using the GP/PARI, we compute the 3-primary part
of Cl(OE), and obtain the following table:

p (K2OF )3 (Cl(OE))3

1747 Z/9× Z/9 Z/3 × Z/9
2593 Z/27× Z/27 Z/3 × Z/9
3061 Z/9× Z/9 Z/9 × Z/9
3583 Z/9× Z/9 Z/3 × Z/9
4789 Z/9× Z/27 Z/3 × Z/9

where E = F (ζ3).

3.3. The ℓ-primary part of K2OF , where ℓ ≡ 5 (mod 6) is a prime
Theorem 3.13. The ℓi-rank of K2OF is even, where i > 0.
Proof. Let B be the Sylow ℓ-subgroup of K2OF and V = Bℓ

i−1

/Bℓ
i

. So
ri := ℓ

i-rankK2OF = dimV and V has ℓri elements. Suppose v ∈ V, v 6= 0
and τ(v) = v. Then

v3 = vτ(v)τ2(v) = j(tr(v)),

where j is induced by the inclusion Q ⊂ F and tr is the transfer homomor-
phism of K2. Note that K2Z ∼= Z/2. Therefore, v3 = 0. But ℓ ∤ 3, so v = 0,
contradiction. It follows that τ(v) 6= v, so ℓri ≡ 1 (mod 3). Therefore 2 | ri.
This completes the proof.

Corollary 3.14. Let F be a cubic cyclic field and τ a generator of the
Galois group Gal(F/Q). If ℓ ≡ 5 (mod 6) is a prime, then

Sylℓ(K2OF ) = A′ × τ(A′)
for some subgroup A′ of the Sylow ℓ-subgroup of K2OF .
Proof. The corollary follows easily from Theorem 3.13.

Remark. Conjecture 4.6 in [Br1] follows from Corollary 3.14.

4. Orders of tame kernels

4.1. Basic information on the field F . In the following, let F be a cubic
cyclic field with only two primes p > 7, q > 7 ramified in F . From [Co,
Theorem 6.4.6], it follows that p ≡ 1 (mod 6) and q ≡ 1 (mod 6), and the
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discriminant of F is p2q2. We describe such a field in detail as follows. By
the conductor-discriminant formula [Wa, Theorem 3.11], the conductor of F
is pq. So F is a cubic subfield of the cyclotomic field Q(ζpq). We may assume
that g, h ∈ Z satisfy:

• g is a primitive root modulo p, and g ≡ 1 (mod q),
• h is a primitive root modulo q, and h ≡ 1 (mod p).
For a ∈ Z with (a, pq) = 1 denote by σa the automorphism of the field

Q(ζpq) satisfying σa(ζpq) = ζ
a
pq. Then the Galois group Gal(Q(ζpq)/Q) is

generated by σg and σh; and there are four subgroups of index 3: H1 =
〈σ3g , σh〉, H2 = 〈σg, σ3h〉, H3 = 〈σ3g , σgσh〉, H4 = 〈σ3g , σgσ−1h 〉.
Denote by Fi the fixed field of Hi, i = 1, 2, 3, 4. It is obvious that

F1 ⊂ Q(ζp) and F2 ⊂ Q(ζq). Then F is F3 or F4. In what follows we
consider only the field F = F3, the arguments for the field F4 are similar.
Define the Gauss sums:

α1 =

p−1∑

j1=1

q−1∑

j2=1
j2≡j1 (mod 3)

ζg
j1hj2
pq ,(4.1)

α2 = σg(α1) =

p−1∑

j1=1

q−1∑

j2=1
j2≡j1 (mod 3)

ζg
j1+1hj2
pq ,(4.2)

α3 = σ
2
g(α1) =

p−1∑

j1=1

q−1∑

j2=1
j2≡j1 (mod 3)

ζg
j1+2hj2
pq .(4.3)

Then F = Q(αj), j = 1, 2, 3, and α1, α2, α3 are conjugate in F. Moreover,
by Section 1 of [Gr], the minimal polynomial for the Gauss sums is

f(X) = X3 −X2 − pq − 1
3
X +
pq(A+ 3)− 1

27
∈ Z[X]

where 4pq = A2 + 27B2, A,B ∈ Z, A ≡ 1 (mod 3), B > 0.
Remark. It is well known that there are only two pairs A,B ∈ Z such

that 4pq = A2 + 27B2, A ≡ 1 (mod 3), B > 0. Thus F3 and F4 are the
corresponding splitting fields of f(x) according to the value of A.

Substituting X 7→ 1
3 (X + 1) we get another polynomial with the same

splitting field:

(4.4) g(X) = X3 − 3pqX +Apq.
Now we state some known facts on the class group of the field F. Let

T = Gal(F/Q), and let τ be the restriction of σg to the subfield F.



302 H. Y. Zhou

4.2. Orders of tame kernels. By the Birch–Tate conjecture, we can ac-
tually compute the order of the group K2OF . Recall that the conjecture
states that whenever L is a totally real number field,

#K2OL = w2(L)|ζL(−1)|,
where ζL is the Dedekind zeta function of the field L and w2(L) is the max-
imal order of a root of unity belonging to the compositum of all quadratic
extensions of L. The conjecture is known to be true when L is abelian over
Q and is known to be true in general up to a power of 2. (See [Ko], [MW]
and [Wi].)

Now, in our case, w2(F ) = 24.

Recall that the Dedekind zeta function of an abelian number field F is
the product of L-series:

ζF (s) =
∏

χ

L(s, χ),

where χ runs over the linear characters of the Galois group Gal(F/Q).

In our case there are two nontrivial cubic Dirichlet characters χ and χ,
where

χ(a) =

{
ζk3 if (a, pq) = 1, σa ∈ σgkH, k = 0, 1, 2,
0 if p | a or q | a,

and χ is the complex conjugate character of χ. Hence

ζF (s) = ζ(s)L(s, χ)L(s, χ).

Applying the formula (see [Wa, Theorem 4.2])

L(−1, χ) = −B2,χ/2,
where Bn,χ is the generalized Bernoulli number corresponding to a Dirichlet
character χ of conductor f , since ζ(−1) = −1/12 and Bn,χ = Bn,χ, we get

ζF (−1) = ζ(−1)
B2,χ ·B2,χ
4

= − 1
48
|B2,χ|2.

Hence

#K2OF =
1

2
|B2,χ|2.

So it is necessary to compute B2,χ.

For k = 0, 1, 2, we define Tk := {j : 1 ≤ j ≤ pq − 1, σj ∈ σgkH} and

Sk :=
1

pq

∑

j∈Tk

j2.

Since j ∈ Tk iff j ≡ g3r+k+ihi (mod pq) for some r, 0 ≤ r < (p − 1)/3,
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and i, 0 ≤ i < q − 1, we have
∑

j∈Tk

j2 ≡ g2k
(p−4)/3∑

r=0

g6r
q−2∑

i=0

(gh)2i

= g2k · g
2(p−1) − 1
g6 − 1 · (gh)

2(q−1) − 1
(gh)2 − 1

≡ 0 (mod pq),
hence the Sk are integers. Moreover

S0 + S1 + S2 =
1

pq

( pq−1∑

n=1

n2 − p2
q−1∑

n=1

n2 − q2
p−1∑

n=1

n2
)

= 16 ((pq − 1)(2pq − 1)− p(q − 1)(2q − 1)− q(p− 1)(2p− 1))
= 16 (p− 1)(2pq + 1)(q − 1).

By [Wa, Exercise 4.2(a)], it is easy to get

B2,χ =
1

pq

pq−1∑

j=1

χ(j)j2 = S0 −
1

2
(S1 + S2) +

√
3

2
i(S1 − S2).

Consequently,

#K2OF = 12 |B2,χ|2(4.5)

= 14 ((S0 − S1)2 + (S1 − S2)2 + (S2 − S0)2)
= 12 ((S0 + S1 + S2)

2 − 3(S0S1 + S1S2 + S2S0))
= 12
((
1
6 (p−1) · (2pq+1) · (q−1)

)2− 3(S0S1+S1S2+S2S0)
)
.

In the following, we use another method to compute #K2OF . We know
that the Dedekind zeta function ζF (s) of the field F can be defined by the
Euler product

ζF (s) =

(
1− 1
ps

)−1(
1− 1
qs

)−1

×
∏

ℓ splits

(
1− 1
ℓs

)−3 ∏

ℓ is inert

(
1− 1
ℓ3s

)−1
.

By the functional equation we have

ζF (−1) = −
(
pq

2π2

)3
ζF (2).

Therefore,

#K2OF =
3(pq)3

π6
ζF (2).
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From the above formula for ζF (s) it follows that 1 < ζF (2) < ζ(2)
3, where

ζ(s) is the Riemann zeta function. Consequently

(4.6)
3

π6
(pq)3 < #K2OF <

1

72
(pq)3.

Theorem 4.1. If we fix a prime number p, then

lim
q→∞
#K2OF =∞.

Proof. This follows from (4.6).

Theorem 4.2. Let vp(m) be the p-adic valuation of m. Then

(i) v2(#K2OF ) is odd.
(ii) For every prime number q ≡ −1 (mod 6), the number vq(#K2OF )
is even. Moreover q |#K2OF iff S0 ≡ S1 ≡ S2 (mod q).

(iii) S0 ≡ S1 ≡ S2 (mod 2).
(iv) v3(#K2OF ) ≥ 1.
(v) 3 ‖#K2OF iff S1, S2, S3 are distinct modulo 3. In this case we have
#K2OF ≡ 6 (mod 9). Moreover ,

32 |#K2OF iff S0 ≡ S1 ≡ S2 (mod 3).
Proof. Part (iv) follows from (4.5) since 9 | (p− 1) · (q − 1).
Other parts can be proved analogously to [Br1, Theorem 2.4].

Remark. (i) also follows from Theorem 2.3, and (iv) can be obtained
from Theorem 3.6.

4.3. The 2-rank of K2OF
Lemma 4.3. 2 splits in F if and only if A is even.

Proof. The polynomial defined by (4.4) satisfies g(X) ≡ X3 + X + A
(mod 2). Hence by the Hensel lemma g(X) splits in Q2[X] iff A is even iff 2
splits in F.

Corollary 4.4. We have

2-rankK2OF = 2-rankCl(OF,2) +
{
3 if A is odd ,

5 if A is even.

Proof. By Lemmas 2.1 and 4.3.

4.4. The 3-rank of K2OF
Proposition 4.5. 1 ≤ 3-rankK2OF ≤ 4.
Proposition 4.6. 3-rankAE ≥ 2. Moreover , 3-rankAE = 2 if and only

if 3 ‖#K2OF .
Proof. This result easily follows from Theorem 3.3, Lemma 2.3, Corollary

3.7 and Proposition 4.5.
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4.5. The case ℓ = p or q. Suppose ℓ = p. Let E = F (ζp), where F is the
cubic cyclic field defined above.

Lemma 4.7. Let f be the order of p (mod q). If 3 | f and q − 1 is not
divisible by 9, then for j 6= 0, λ : εjA→ εjλ(A) is an isomorphism.
Proof. Since the inertia index of p in Q(ζpq) is f , we have f | q − 1. If

3 | f , then f ∤ q−13 . As [E : Q(ζp)] = 3, the inertia index of p in E is 3. Thus
prime divisors ℘ of p in F are not split in E. It follows that σ℘ = ℘ for
every σ ∈ Gal(Q(ζp)/Q).
Since λ commutes with the action of σ, we have λ(εjA) = εjλ(A), i.e. λ is

surjective. Moreover, the group Ker(λ) is generated by the classes containing
prime ideals ℘ of E which divide p. Consequently, Ker(λ)∩A ⊂ AG = ε0A.
Therefore Ker(λ) ∩ εjA = 0 for j 6= 0, and the lemma follows.
Lemma 4.8. Let f be the order of p (mod q). If f = q−1, then for j 6= 0,

λ : εjA→ εjλ(A) is an isomorphism.

Proof. Since f = q − 1 and p does not split in E, it follows that prime
divisors ℘ of p in F do not split in E. Consequently, by the same proof of
Lemma 4.7, the lemma follows.

Theorem 4.9. Under the conditions of Lemma 4.7 or Lemma 4.8,

p-rankK2OF = p-rank εp−2AE .
Proof. Since there is an exact sequence

0→ (µp ⊗ Cl(OE [1/p]))G → K2OF /p→
⊕

p∈S′

µp → 0

(see [Ke, Theorem 5.4], and [Ge]), the theorem follows from (3.2), (3.3),
Lemma 4.7 or Lemma 4.8, and [Br1, Lemma 4.2].

5. Some estimates of the ℓ-rank of K2OF . Let E = F (ζℓ). Let L
be the maximal unramified and elementary abelian ℓ-extension of E with
the Galois group H := Gal(L/E). Let B0 := B/(E

∗)ℓ. By the arguments
in Section 3, for every b ∈ E∗ and b0 := b(E∗)ℓ, we have b0 ∈ B0 iff b is
singular primary, i.e. (b) = ℘ℓ for some ideal ℘ of E and

(5.1) xℓ ≡ b (mod ℓ(1− ζℓ)) for some x ∈ E∗

(see [Wa, Exercise 9.3]).

Let UE be the group of units of OE , and denote by U ′E its subgroup of
units u satisfying (5.1). Such a u is called a singular primary unit. It is easy
to see that U ℓE ⊆ U ′E and Ker(ϕ) = U ′E/U ℓE , where ϕ is defined in Section 3
(see [Br2, (3.1)]).



306 H. Y. Zhou

Theorem 5.1. Let F be as above and let E = F (ζℓ). For ℓ 6= p, q, we
have

ℓ-rank ε2(U
′
E/U

ℓ
E) ≤ ℓ-rankK2OF
≤ ℓ-rank ε2AE + ℓ-rank ε2(U ′E/U ℓE).

Proof. See the proof of [Br1, Theorem 5.3].

Corollary 5.2. Under the conditions of Theorem 5.1, if ℓ-rankAE = 0,
then ℓ-rankK2OF = ℓ-rank ε2(U ′E/U ℓE).
In Theorem 5.1, we give some estimates of the ℓ-rank ofK2OF in terms of

the ℓ-ranks of some subgroups of the class group and of the group of singular
primary units (modulo ℓth powers) of the field E = F (ζℓ). Unfortunately,
for large prime numbers ℓ, the degree (E : Q) = 3(ℓ − 1) is large, and it is
difficult to determine its class group and the group of units, and the action of
the Galois group Gal(E/Q) on them. By part 5 of [Br1], E can be replaced
by its proper subfields.

Recall that σ, τ are generators ofG := Gal(Q(ζℓ)/Q) and T := Gal(F/Q),
respectively, where ℓ ≡ 1 (mod 6). For every subfield L of E we define U ′L
to be the group of singular primary units in L, i.e.

U ′L = U
′
E ∩ L.

Theorem 5.3. Let t = (ℓ− 1)/2, r = (ℓ− 1)/6, and let Ej be the sub-
field of E fixed by the group Tj = 〈σt, σrjτ−1〉, where j = 0, 1, 2. If ℓ 6= p, q,
then

max
0≤j≤2

ℓ-rank ε2(U
′
Ej/U

ℓ
Ej ) ≤ ℓ-rankK2OF

≤
2∑

j=0

ℓ-rank ε2AEj +
2∑

j=0

ℓ-rank ε2(U
′
Ej/U

ℓ
Ej ).

Moreover , if the class number of the field Q(ζℓ) is not divisible by ℓ, and in
the field L0 := E1 ∩E2 we have U ′L0/U ℓL0 = 1, then

2∑

j=0

ℓ-rank ε2(U
′
Ej/U

ℓ
Ej ) ≤ ℓ-rankK2OF

≤
2∑

j=0

ℓ-rank ε2AEj +
2∑

j=0

ℓ-rank ε2(U
′
Ej/U

ℓ
Ej ).

6. Application. Using PARI-GP, we apply the above results and the
following two lemmas (see [Br1, Lemmas 6.1 and 7.1]) to determine the
structure of K2OF , where F is a cubic cyclic field with two ramified primes
p, q, 7 ≤ p, q ≤ 100.
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6.1. Important lemmas

Lemma 6.1. Let a cyclic group G = 〈σ〉 of order 6 act on an elementary
abelian 7-group A, and let a ∈ A.
(i) If

(6.1) (1 + σ + σ2)a = 1

then εja = 1 for j = 0, 1, 3, 5.
(ii) Moreover ,

σ(a) = a2 iff (ε2a = a and (6.1) holds),

σ(a) = a4 iff (ε4a = a and (6.1) holds).

Lemma 6.2. Let a cyclic group G = 〈σ〉 of order 12 act on an elementary
abelian 13-group A, and let a ∈ A.
(i) If

(6.2) (1 + σ2 + σ4)a = 1 and (1 + σ3)a = 1,

then εja = 1 for 0 ≤ j ≤ 11, j 6= 2, 10.
(ii) Moreover ,

σ(a) = a4 iff (ε2a = a and (6.2) holds),

σ(a) = a10 iff (ε10a = a and (6.2) holds).

6.2. Computation of the 2-rank and 3-rank of K2OF . The structure of
the 2-primary part of K2OF can be determined by Corollary 4.4, except for
the following four cases: p = 19, q = 61, A = −44; p = 37, q = 61, A = 46;
p = 7, q = 97, A = 4; p = 13, q = 73, A = 58. However, for the above
four fields, 2-rankCl(OF,2) = 0 and the fundamental unit ε1 is not totally
positive by GP. Thus we can apply the inequality of Theorem 2.6.

To determine the structure of the 3-primary part of K2OF we use The-
orem 3.3. For p = 7, q = 79, A = −5 and p = 43, q = 79, A = −95, we
obtain 9-rank (K2OF ) = 2 by Corollary 3.12.
6.3. Computation of the 7-rank of K2OF . We compute the 7-rank of

K2OF via the 7-ranks of other groups appearing in Theorem 5.3. The argu-
ments are similar to those in Section 6 of [Br1], so we omit some details.
For fixed primitive roots g modulo p, and h modulo q, where p, q ≡ 1

(mod 6) are primes, we have defined the Gauss sums

α1 =
∑

j∈H

ζj , α2 =
∑

j∈aH

ζj , α3 =
∑

j∈a2H

ζj .

If we replace g by g−1 and h by h−1 then α2 and α3 permute, hence the
number (α1 − α2)(α2 − α3)(α3 − α1) changes sign.
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We shall assume henceforth that primitive roots g modulo p and h mod-
ulo q are chosen in such a way that

(α1 − α2)(α2 − α3)(α3 − α1) > 0.
In particular, for the prime 7, we choose the primitive root 3. Then the
Gauss periods are

γ1 = ζ7 + ζ
−1
7 = 1.24, γ2 = ζ

3
7 + ζ

−3
7 = −1.80, γ3 = ζ27 + ζ−27 = −0.44,

hence (γ1 − γ2)(γ2 − γ3)(γ3 − γ1) > 0, and γ1, γ2, γ3 are the roots of the
polynomial f(X) = X3 +X2 − 2X − 1.
We denote by σ the automorphism of the field Q(ζ7) satisfying σ(ζ7)

= ζ37 . Then σ(γi) = γi+1, where the indices are taken modulo 3.
We recall that the field F is generated by any root βi of the polynomial

g(X) = X3 − 3pqX +Apq.
From our assumption on primitive roots it follows that

(β1 − β2)(β2 − β3)(β3 − β1) = 27(α1 − α2)(α2 − α3)(α3 − α1) > 0.
Moreover, the automorphism τ ∈ Gal(Q(ζpq)/Q) given by τ(ζpq) = ζapq
satisfies τ(βi) = βi+1, where the indices are taken modulo 3.
It then follows from [Br1, 6.1] that E0 = Q(ζ7)

+ = Q(γi), E1 = Q(̺1),
E2 = Q(̺2), where

̺1 = γ1β1 + γ2β3 + γ3β2, ̺2 = γ1β1 + γ2β2 + γ3β3.

Applying the Viète formulas one can verify that the minimal polynomials
for ̺1 and ̺2 are, respectively,

g1(X) = X
3 − 21pqX + 7pq A− 27B

2
,

g2(X) = X
3 − 21pqX + 7pq A+ 27B

2
.

If p, q 6= 7, then A2 − B2 ≡ A2 + 27B2 = 4pq 6≡ 0 (mod 7). So A 6≡
±B (mod 7). Hence, gj(X) is an Eisenstein polynomial with respect to 7.
Consequently, every unit u = a0 + a1x + a2x

2 ∈ UEj is a singular primary
unit iff u ≡ 1 (mod 7x) or equivalently,

a0 ≡ 1 (mod 49), a1 ≡ a2 ≡ 0 (mod 7)
where x := ̺j (see [Br1, 6.4]). Finally, we can determine the 7-rank ofK2OF
in terms of Theorem 5.3 and Lemma 6.1, except for p = 7, q = 73, A = −44
and p = 7, q = 97, A = 4. The results of the computations are given in
Table 3, where we used the following shorthand notation, for j = 1, 2:

v7 := v7(#K2OF ), dj := 7-rank ε2(U
′
Ej/U

7
Ej ), hj := 7-rank ε2AEj ,

and (K2OF )7 is the 7-primary part of K2OF .
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6.4. Computation of the 13-rank of K2OF . The arguments are similar
to those in Section 7 of [Br1], so we omit some details.

Let γj = ζ
2j

13 + ζ
−2j

13 , 1 ≤ j ≤ 6. Then E0 = Q(γj). Define

̺1 = γ1β1 + γ5β2 + γ3β3, ̺2 = γ1β1 + γ3β2 + γ5β3.

Then Ej = Q(̺j) for j = 1, 2. Assume

λ1 = (γ1 + γ4)β1 + (γ2 + γ5)β2 + (γ3 + γ6)β3,

λ2 = (γ1 + γ4)β1 + (γ3 + γ6)β2 + (γ2 + γ5)β3.

Then Fj := Q(λj) is a cubic subfield of Ej , j = 1, 2.

There are three fields F corresponding to primes 7 ≤ p, q < 100 such
that 132 |#K2OF . Namely,

p = 31, q = 43, A = − 38,
p = 31, q = 61, A = − 83,
p = 37, q = 43, A = − 71.

In the above list, there are no nontrivial singular primary units in Fj . Sim-
ilarly, we can determine the 13-rank of K2OF in terms of Theorem 5.3 and
Lemma 6.2. The results of the computations are given in Table 4, where we
used the following shorthand notation, for j = 1, 2:

v13 := v13(#K2OF ), uj := 13-rank ε2(U ′Ej/U
13
Ej ), wj := 13-rank ε2AEj ,

and (K2OF )13 is the 13-primary part of K2OF .

6.5. Description of the tables. The field F in Table 1 is the fixed field
of H3, and F in Table 2 is the fixed field of H4, where H3, H4 are defined
in Section 4. The first and second columns of Tables 1 and 2 list all primes
p, q ≡ 1 (mod 6), 7 ≤ p, q < 100, and the third the corresponding values
of A. The fourth and fifth columns give the orders of K2OF ; moreover the
fifth column provides information about the structure of the group K2OF .
We use the same convention as in [Br1]. That is, if the order of a group is
written in the form (n1)

k1(n2)
k2 . . . , it means that the group is isomorphic

to the product of k1 copies of Z/n1, k2 copies of Z/n2, etc. However, if a

factor (n
kj
j ) is written in bold type, it means that there is a direct summand

of order n
kj
j , but its structure is unknown. Thus (2)

2 means Z/2×Z/2, and

(22) means Z/4, but (312) means a group of order 312, i.e. one of the groups
Z/31× Z/31 and Z/312.

The sixth column of Tables 1 and 2 gives the class group of E = F (ζ3),
and the seventh column the class group of F . We use the same convention
here, e.g. (2)2 means Z/2× Z/2.
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Table 1

p q A #K2OF K2OF Cl(OE) Cl(OF )

7 13 −11 3624 (2)3(3)(151) (6)(6) (3)

7 19 −17 11112 (2)3(3)(463) (6)(6) (3)

7 31 25 54168 (2)3(3)(37)(61) (6)(6) (3)

7 37 19 65544 (2)3(3)(2731) (21)(3) (3)

7 43 31 127032 (2)3(3)(67)(79) (12)(12) (3)

7 61 −41 256200 (2)3(3)(5)2(7)(61) (57)(3) (3)

7 67 43 339768 (2)3(3)(9)(11)2(13) (21)(3)(3) (3)

7 73 −44 1048992 (2)5(3)(72)(223) (21)(3) (3)

7 79 −5 898776 (2)3(32)2(19)(73) (6)(6)(3) (3)

7 97 −23 1462344 (2)3(3)(13)(43)(109) (42)(6) (3)

13 19 4 161376 (2)5(3)(41)2 (6)(6) (3)

13 31 37 299544 (2)3(3)(7)(1783) (12)(12) (3)

13 37 −14 897504 (2)5(3)(9349) (39)(3) (3)

13 43 7 864024 (2)3(3)(7)(37)(139) (42)(6) (3)

13 61 −38 3805344 (2)5(3)2(73)(181) (9)(3)(3) (3)

13 67 28 5986944 (2)3(4)2(3)2(5197) (9)(3)(3) (3)

13 73 −23 2859192 (2)3(3)(9)(7)(31)(61) (9)(9)(3) (3)

13 79 −56 12362784 (2)5(3)(7)(18397) (42)(6) (3)

13 97 34 21712608 (2)5(3)2(75391) (42)(6)(3) (21)

19 31 13 958488 (2)3(3)(39937) (42)(6) (3)

19 37 52 2743200 (2)5(3)3(5)2(127) (3)(3)(3)(3) (3)

19 43 55 2931864 (2)3(3)(13)(9397) (12)(12) (3)

19 61 −44 13558272 (2)3(8)2(3)(7)(13)(97) (21)(3) (3)

19 67 58 15608544 (2)5(3)(7)(23227) (39)(3) (3)

19 73 −65 10502424 (2)3(3)2(199)(733) (57)(3)(3) (3)

19 79 46 36295296 (2)3(4)2(3)(31)(3049) (12)(12) (3)

19 97 −80 75614112 (2)5(3)2(37507) (6)(6)(3) (3)

31 37 −5 5670168 (2)3(3)(7)(33751) (57)(3) (3)

31 43 −38 25812384 (2)5(3)(132)(37)(43) (42)(6) (3)

31 61 −83 23147592 (2)3(3)(133)(439) (309)(3) (3)

31 67 −71 29962728 (2)3(3)2(416149) (63)(3)(3) (3)

31 73 67 37733928 (2)3(3)(1572247) (33)(33) (3)

31 79 61 77666904 (2)3(3)(9)(7)(31)(1657) (12)(12)(3) (3)

31 97 −11 135219048 (2)3(3)(192)(15607) (222)(6) (3)

37 43 −71 14313624 (2)3(3)(132)(3529) (291)(3) (3)

37 61 46 88948224 (2)3(8)2(3)2(97)(199) (21)(3)(3) (3)

37 67 −68 122215776 (2)5(3)(151)(8431) (111)(3) (3)

37 73 79 64652472 (2)3(3)3(299317) (57)(3)(3)(3) (3)

37 79 −80 225283488 (2)5(3)(1303)(1801) (777)(3) (21)

37 97 118 344603616 (2)5(3)(7)(512803) (111)(3) (3)

43 61 85 67778232 (2)3(3)(307)(9199) (93)(3) (3)

43 67 −101 82812192 (2)5(3)(862627) (222)(6)(2)(2) (6)(2)

43 73 109 114663192 (2)3(3)(7)(682519) (219)(3) (3)

43 79 −41 190302936 (2)3(3)(19)(417331) (294)(6) (3)
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Table 1 (cont.)

p q A #K2OF K2OF Cl(OE) Cl(OF )

43 97 103 378152664 (2)3(3)(43)(61)(6007) (114)(6) (3)

61 67 124 741179616 (2)5(3)(7720621) (78)(6) (3)

61 73 −125 458621016 (2)3(3)(7)(2729887) (84)(12) (3)

61 79 −32 864177792 (2)3(4)2(3)(67)(33589) (219)(3) (3)

61 97 −50 1908361824 (2)5(3)(19)(283)(3697) (201)(3) (3)

67 73 139 538985976 (2)3(3)(22457749) (156)(12) (3)

67 79 −2 1235010912 (2)5(3)(43)(299179) (291)(3) (3)

67 97 88 2137877664 (2)5(3)(13)(1713043) (291)(3) (3)

73 79 19 628182888 (2)3(3)(67)(241)(1621) (651)(3) (3)

73 97 −107 1284024696 (2)3(3)(97)(551557) (489)(3) (3)

79 97 148 5012047584 (2)5(3)(9)(5800981) (42)(6)(3)(3) (3)(3)

Table 2

p q A #K2OF K2OF Cl(OE) Cl(OF )

7 13 16 5856 (2)5(3)(61) (3)(3) (3)

7 19 10 20256 (2)5(3)(211) (3)(3) (3)

7 31 −29 34632 (2)3(3)2(13)(37) (9)(3)(3) (3)

7 37 −8 188448 (2)5(3)(13)(151) (6)(6) (3)

7 43 −23 103128 (2)3(3)(4297) (21)(3) (3)

7 61 40 677664 (2)5(3)2(13)(181) (3)(3)(3) (3)

7 67 −38 818592 (2)5(3)(8527) (21)(3) (3)

7 73 37 498408 (2)3(3)(19)(1093) (39)(3) (3)

7 79 22 1326048 (2)5(3)(19)(727) (21)(3) (3)

7 97 4 2784768 (2)3(8)2(3)(72)(37) (6)(6)(2)(2) (6)(2)

13 19 31 49704 (2)3(3)(13)(109) (21)(3) (3)

13 31 −17 234312 (2)3(3)(13)(751) (57)(3) (3)

13 37 −41 516264 (2)3(3)(7)2(439) (12)(12) (3)

13 43 −47 566568 (2)3(3)(9)(43)(61) (21)(3)(3) (3)

13 61 43 1709016 (2)3(3)(71209) (129)(3) (3)

13 67 −53 2515416 (2)3(3)(163)(643) (39)(3) (3)

13 73 58 6418944 (2)3(8)2(3)2(7)(199) (6)(6)(6)(2) (6)(2)

13 79 −29 3594264 (2)3(3)(31)(4831) (15)(15) (3)

13 97 61 7078344 (2)3(3)(72)(13)(463) (147)(3) (21)

19 31 −41 739176 (2)3(3)(19)(1621) (39)(3) (3)

19 37 25 1839744 (2)3(4)2(3)2(1597) (12)(12)(3) (6)(2)

19 43 1 1819608 (2)3(3)(7)(10831) (57)(3) (3)

19 61 37 5262936 (2)3(3)(7)(31327) (129)(3) (3)

19 67 −23 6756504 (2)3(3)(43)(6547) (147)(3) (3)

19 73 16 21341088 (2)5(3)2(74101) (21)(3)(3) (3)

19 79 73 12409944 (2)3(3)(517081) (129)(3) (3)

19 97 −53 20646792 (2)3(3)(9)(61)(1567) (63)(3)(3) (3)
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Table 2 (cont.)

p q A #K2OF K2OF Cl(OE) Cl(OF )

31 37 49 7427616 (2)5(3)(72)(1579) (156)(12) (6)(2)

31 43 70 21462912 (2)3(4)2(3)2(31)(601) (6)(6)(6)(2) (6)(2)

31 61 79 25413864 (2)3(3)(7)(151273) (129)(3) (3)

31 67 91 30947424 (2)5(3)(31)(10399) (258)(6)(2)(2) (6)(2)

31 73 −95 43262232 (2)3(3)(13)(138661) (903)(3) (21)

31 79 7 51167256 (2)3(3)(7)(151)(2017) (687)(3) (3)

31 97 −65 101213592 (2)3(3)(4217233) (183)(3) (3)

37 43 −17 21571224 (2)3(3)(193)(4567) (42)(6) (3)

37 61 −35 46722312 (2)3(3)(9)(7)(13)(2377) (63)(3)(3) (3)

37 67 13 49912152 (2)3(3)(61)(103)(331) (471)(3) (3)

37 73 −2 166536288 (2)5(3)2(578251) (21)(3)(3) (3)

37 79 −107 115300248 (2)3(3)(7)(61)(11251) (186)(6) (21)

37 97 91 259724472 (2)3(3)(7)(43)(157)(229) (84)(12) (3)

43 61 −77 64650600 (2)3(3)2(5)2(72)(733) (63)(9)(3) (3)

43 67 61 78701064 (2)3(3)(13)(31)(79)(103) (399)(3) (3)

43 73 −53 99880008 (2)3(3)(4161667) (453)(3) (3)

43 79 −95 146562696 (2)3(32)2(7)(79)(409) (93)(3)(3) (3)

43 97 49 253136184 (2)3(3)(7)(43)(67)(523) (813)(3) (3)

61 67 −119 335806632 (2)3(3)2(7)(31)(21493) (126)(6)(3) (3)

61 73 118 952235808 (2)5(3)(97)(102259) (114)(6) (3)

61 79 49 429057312 (2)5(3)(4469347) (222)(6)(2)(2) (6)(2)

61 97 31 664492968 (2)3(3)2(9229069) (219)(3)(3) (3)

67 73 −104 1305878496 (2)5(3)(13)(103)(10159) (24)(24) (3)

67 79 −83 479092632 (2)3(3)(19962193) (579)(3) (3)

67 97 7 953343384 (2)3(3)(7)(5674663) (741)(3) (3)

73 79 100 1710388608 (2)3(4)2(3)(283)(15739) (84)(12) (6)(2)

73 97 −26 2789750688 (2)5(3)(571)(50893) (201)(3) (3)

79 97 175 1737265608 (2)3(3)2(13)(19)(97687) (1953)(3)(3)(3) (21)(3)

Table 3

p q A v7 d1 d2 h1 h2 7-rankK2OF (K2OF )7

13 37 −41 2 1 1 0 0 2 (7)2

13 97 61 2 0 1 0 0 1 (72)

31 37 49 2 0 1 0 0 1 (72)

43 61 −77 2 1 0 0 0 1 (72)

Table 4

p q A v13 u1 u2 w1 w2 13-rankK2OF (K2OF )13

31 43 −38 2 0 1 0 0 1 (132)

31 61 −83 3 1 0 0 0 1 (133)

37 43 −71 2 0 1 0 0 1 (132)
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