Sequences with bounded l.c.m. of each pair of terms II

by

Li-Xia Dai and Yong-Gao Chen (Nanjing)

1. Introduction. Let A_{x} be a set of positive integers with the least common multiple of each pair of terms not exceeding x and $\left|A_{x}\right|$ being the largest. In 1951, P. Erdős [5] (see also Guy [7]) proposed the following problem: what is the value of $\left|A_{x}\right|$? It is known that

$$
\sqrt{\frac{9}{8} x}+O(1) \leq\left|A_{x}\right| \leq \sqrt{4 x}+O(1)
$$

For a proof see Erdős [6]. Choi [3] improved the upper bound to $1.638 \sqrt{x}$, and later [4] to $1.43 \sqrt{x}$. Let B_{x} be the union of the set of positive integers not exceeding $\sqrt{x / 2}$ and the set of even integers between $\sqrt{x / 2}$ and $\sqrt{2 x}$. It is clear that the least common multiple of each pair of terms of B_{x} does not exceed x. By calculation we have

$$
\left|B_{x}\right|=\sqrt{\frac{9}{8} x}+O(1)
$$

Chen [1] gave an asymptotic formula for $\left|A_{x}\right|$ and showed that A_{x} is almost the same as B_{x}, that is,

$$
\left|A_{x} \backslash B_{x}\right|=o(\sqrt{x})
$$

In particular,

$$
\left|A_{x}\right|=\left|B_{x}\right|+o(\sqrt{x})=\sqrt{\frac{9}{8} x}+o(\sqrt{x})
$$

In this paper we study the asymptotic formula for $\left|A_{x}\right|$ and give the following explicit bound on the remainder for $\left|A_{x}\right|$:

Theorem. Let x be a large real number. Then

$$
\left|A_{x}\right|=\sqrt{\frac{9}{8} x}+R(x)
$$

[^0]where
$$
-2 \leq R(x) \leq 45 \sqrt{\frac{x}{\log x}} \log \log x
$$

Remark. The constant 45 can be improved.
For $R(x)$ we have the following conjecture.
Conjecture. $R(x) \rightarrow \infty$ as $x \rightarrow \infty$.
2. Preliminary lemmas. In this section we give several lemmas.

Lemma 1 (Brun's pure sieve [8, P.50(2.14)]). Let \mathcal{A} be a finite sequence of integers and let $|\mathcal{A}|$ denote the number of terms of the sequence. Let \mathcal{P} be a set of primes and $\overline{\mathcal{P}}$ be its complement with respect to the set of all primes. For any real number $z \geq 2$, let

$$
P(z):=\prod_{p<z, p \in \mathcal{P}} p
$$

Define the sieving function by

$$
S(\mathcal{A} ; \mathcal{P}, z):=|\{a: a \in \mathcal{A},(a, P(z))=1\}|
$$

For every square-free positive integer d, let

$$
\left|\mathcal{A}_{d}\right|:=|\{a: a \in \mathcal{A}, a \equiv 0(\bmod d)\}| .
$$

Let $\omega(d)$ be a multiplicative function and X be a close approximation to $|\mathcal{A}|$. Define the remainder term by

$$
r_{d}:=\left|\mathcal{A}_{d}\right|-\frac{\omega(d)}{d} X \quad(u(d) \neq 0)
$$

Let A_{0}, A_{1} and λ be positive numbers. If

$$
\begin{gathered}
\left|r_{d}\right| \leq \omega(d) \quad \text { if } u(d) \neq 0,(d, \overline{\mathcal{P}})=1 \\
\omega(p) \leq A_{0}, \quad 0 \leq \omega(p) / p \leq 1-A_{1}^{-1} \\
0<\lambda e^{1+\lambda} \leq 1 \\
\sum_{p<z} \frac{1}{p} \leq 1+\log \log z
\end{gathered}
$$

then

$$
\begin{aligned}
S(\mathcal{A} ; \mathcal{P}, z)= & X W(z)\left\{1+\theta\left(\lambda e^{1+\lambda}\right)^{\left(A_{0} A_{1} / \lambda\right)(\log \log z+1)}\right\} \\
& +\theta^{\prime}\left(1+\sum_{p<z} \omega(p)\right)^{\left(A_{0} A_{1} / \lambda\right)(\log \log z+1)}
\end{aligned}
$$

for some θ, θ^{\prime} with $|\theta| \leq 1,\left|\theta^{\prime}\right| \leq 1$.

Lemma 2. For any positive number $z \geq 2$ we have

$$
\sum_{p \leq z} \frac{1}{p} \leq 0.9+\log \log z
$$

This follows from a result of Rosser-Schoenfeld [9]

$$
\sum_{p \leq x} \frac{1}{p}<\log \log x+B+\frac{1}{(\log \log x)^{2}}, \quad x>1
$$

where $B=0.26149 \ldots$. It can also be deduced from Chen-Sun [2, Lemma 3].
Lemma 3. Let $x \geq e^{e}, M$ be an integer with $M \geq 5$ and $a_{i}, b_{i}(1 \leq i \leq$ $t \leq M / 5)$ be integers with $\left(a_{i}, b_{i}\right)=1(1 \leq i \leq t)$. Let c_{1} be a real number and $\varepsilon=(2 M \log \log x)^{-1}$. If each prime factor of $\prod_{i=1}^{t}\left(a_{i} n+b_{i}\right)$ exceeds M for any integer n, then there exists an integer $k \in\left(c_{1}, c_{1}+2 x^{1 / 2-\varepsilon}\right)$ such that each prime factor of $\prod_{i=1}^{t}\left(a_{i} k+b_{i}\right)$ exceeds x^{ε} / M.

Proof. If $x^{\varepsilon} / M \leq M$, then the assertion is trivial. Now we assume that $x^{\varepsilon} / M>M$. We employ Brun's pure sieve. Set

$$
\begin{gathered}
\mathcal{A}=\left\{\prod_{i=1}^{t}\left(a_{i} k+b_{i}\right): k \in\left(c_{1}, c_{1}+2 x^{1 / 2-\varepsilon}\right)\right\}, \\
z=x^{\varepsilon} / M, \quad X=2 x^{1 / 2-\varepsilon}, \quad A_{0}=M / 5, \quad A_{1}=5 / 4, \quad \lambda=1 / 4
\end{gathered}
$$

Let \mathcal{P} be the set of all primes, and $\omega(p)$ the number of solutions of

$$
\prod_{i=1}^{t}\left(a_{i} n+b_{i}\right) \equiv 0(\bmod p)
$$

Then we have $\left|r_{d}\right| \leq \omega(d)$ if $\mu(d) \neq 0, \omega(p) \leq t \leq M / 5=A_{0}, 0 \leq \omega(p) / p \leq$ $1 / 5=1-A_{1}^{-1}$ and $0<\lambda e^{1+\lambda} \leq 1$. Since $z=x^{\varepsilon} / M>M \geq 5$, we obtain

$$
1+\sum_{p<z} \omega(p) \leq 1+\frac{M}{5} \sum_{p<z} 1 \leq M z
$$

Thus by Lemmas 1 and 2 we have

$$
\begin{aligned}
S(\mathcal{A} ; \mathcal{P}, z)= & X W(z)\left(1+\theta\left(\lambda e^{1+\lambda}\right)^{\left(A_{0} A_{1} / \lambda\right)(\log \log z+1)}\right) \\
& +\theta^{\prime}\left(1+\sum_{p<z} \omega(p)\right)^{\left(A_{0} A_{1} / \lambda\right)(\log \log z+1)} \\
\geq & 2 x^{1 / 2-\varepsilon} \prod_{p<z}\left(1-\frac{\omega(p)}{p}\right) \cdot\left(1-\left(\frac{e^{5 / 4}}{4}\right)^{M(\log \log z+1)}\right) \\
& -(M z)^{M(1+\log \log z)} \\
\geq & x^{1 / 2-\varepsilon} \prod_{M<p<z}\left(1-\frac{M}{5 p}\right)-(M z)^{M(1+\log \log z)} .
\end{aligned}
$$

It is sufficient to prove that the right hand side is positive. This is equivalent to proving

$$
\frac{1}{2} \log x>\varepsilon \log x+\sum_{M<p<z} \log \left(1-\frac{M}{5 p}\right)^{-1}+M(1+\log \log z) \log (M z)
$$

Since

$$
\begin{gathered}
\log (M z)=\varepsilon \log x \\
\log \log z<\log \log x+\log \varepsilon<\log \log x-2
\end{gathered}
$$

and

$$
\begin{aligned}
\sum_{M<p<z} \log \left(1-\frac{M}{5 p}\right)^{-1} & \leq \frac{2}{5} M \sum_{M<p<z} \frac{1}{p} \leq \frac{2}{5} M \int_{M}^{z} \frac{1}{t} d t \\
& \leq \frac{2}{5} M \log z \leq \frac{2}{5} M \varepsilon \log x
\end{aligned}
$$

we have

$$
\begin{aligned}
& \varepsilon \log x+\sum_{M<p<z} \log \left(1-\frac{M}{5 p}\right)^{-1}+M(1+\log \log z) \log (M z) \\
& \leq \frac{1}{5} M \varepsilon \log x+\frac{2}{5} M \varepsilon \log x+M(\log \log x-1) \varepsilon \log x \\
&<M \varepsilon \log x \log \log x=\frac{1}{2} \log x
\end{aligned}
$$

This completes the proof of Lemma 3.
Lemma 4. Let $x \geq e^{e}, x^{\varepsilon} \geq M^{2}$ and M be an integer with $M \geq 5$. Let D be an integer with $0<|D| \leq(M x)^{M(M-5) / 100}$ and with each prime factor of D exceeding x^{ε} / M, where $\varepsilon=(2 M \log \log x)^{-1}$. Then

$$
|\{a: a \in(0, \sqrt{M x}],(a, D)>1\}| \leq \frac{1}{25} M^{9 / 2} x^{1 / 2-\varepsilon} \log \log x .
$$

Proof. Let $|D|=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$ be the prime factorization of $|D|$. Then

$$
r \log \frac{x^{\varepsilon}}{M} \leq \sum_{i=1}^{r} \log p_{i} \leq \log |D| \leq \frac{M(M-5)}{100}(\log x+\log M)
$$

For $x^{\varepsilon / 2} \geq M$ we have

$$
\frac{M(M-5)}{100} \log M<\frac{M}{25} \log x
$$

Thus

$$
\frac{1}{2} r \varepsilon \log x \leq \frac{M^{2}}{100} \log x
$$

that is,

$$
r \leq \frac{1}{25} M^{3} \log \log x
$$

Hence

$$
\begin{aligned}
\sum_{\substack{a \in(0, \sqrt{M x}] \\
(a, D)>1}} 1 & \leq \sum_{i=1}^{r} \sum_{\substack{a \in(0, \sqrt{M x}] \\
p_{i} \mid a}} 1 \leq \sum_{i=1}^{r} \frac{\sqrt{M x}}{p_{i}} \leq r \sqrt{M x} \frac{M}{x^{\varepsilon}} \\
& \leq \frac{1}{25} M^{9 / 2} x^{1 / 2-\varepsilon} \log \log x
\end{aligned}
$$

This completes the proof of Lemma 4.
For an interval $I=(a, b]$, let

$$
\left|I \sqrt{x} \cap A_{x}\right|=\alpha(I)|I| \sqrt{x}
$$

where $|X|$ denotes the number of elements of X or the length of an interval X. Let $\mathcal{I}=\left\{I_{1}, \ldots, I_{l}\right\}$ be a set of pairwise disjoint intervals with $I_{i}=\left(a_{i}, b_{i}\right], 0<a_{1}<\cdots<a_{l}$ and b_{l}^{2} being an integer. Let

$$
\alpha_{i}=\alpha\left(I_{i}\right), \quad M=5 b_{l}^{2}
$$

Suppose that $\left|I_{i}\right| \geq M^{-3 / 2}(i=1, \ldots, l)$.
Lemma 5. Let $x \geq e^{e}, x^{\varepsilon} \geq M^{5}$, and $\varepsilon=(2 M \log \log x)^{-1}$. Let $r_{i j}(j=$ $\left.1, \ldots, k_{i}, i=1, \ldots, l\right)$ be distinct integers with

$$
\left|r_{i j}-r_{u v}\right| \leq a_{i} a_{u}
$$

Then

$$
\sum_{i=1}^{l} k_{i} \alpha_{i} \leq 1+\frac{3}{25} M^{9 / 2} x^{-\varepsilon / 2} \log \log x
$$

Proof. We follow the proof of Chen [1, Lemma 3].
Let $K=\sum_{i=1}^{l} k_{i}$. If $K=0$ or 1 , then by the definition of α_{i} the assertion is true. In the following we assume that $K \geq 2$. Let $\delta=x^{-\varepsilon / 2}$ and let

$$
I_{i}(t)=\left(a_{i}+t \delta, a_{i}+(t+1) \delta\right]
$$

For the (index) set

$$
\left\{t_{i j}: 0 \leq t_{i j} \leq\left|I_{i}\right| / \delta-1, t_{i j} \in \mathbb{Z}, j=1, \ldots, k_{i}, i=1, \ldots, l\right\}
$$

we first show that

$$
\left|\bigcup_{i, j}\left(I_{i}\left(t_{i j}\right) \sqrt{x} \cap A_{x}\right)\right| \leq \delta \sqrt{x}+\frac{2}{25} M^{9 / 2} x^{1 / 2-\varepsilon} \log \log x
$$

To do this we consider the set

$$
\Delta(a)=\bigcup_{i, j}\left\{M!l_{i j}+r_{i j}+a\right\}
$$

where $l_{i j}$ are integers which will be determined later such that

$$
\begin{equation*}
\left(a_{i}+t_{i j} \delta\right) \sqrt{x} \leq M!l_{i j}+r_{i j} \leq\left(a_{i}+t_{i j} \delta\right) \sqrt{x}+2 x^{1 / 2-\varepsilon} \tag{1}
\end{equation*}
$$

for $j=1, \ldots, k_{i}$ and $i=1, \ldots, l$. For convenience we rewrite $\Delta(0)$ as

$$
\Delta(0)=\left\{M!l_{1}+r_{1}, M!l_{2}+r_{2}, \ldots, M!l_{K}+r_{K}\right\} .
$$

Since $M=5 b_{l}^{2}$, we have $a_{i} a_{u}<b_{i} b_{u} \leq M / 5(i, u=1, \ldots, l)$. Then by the conditions of Lemma 5 we have

$$
\left|r_{i}-r_{j}\right|<M / 5, \quad i, j=1, \ldots, K
$$

whence $K \leq M / 5$. Now we take l_{1} satisfying (1). Suppose that we have chosen $l_{1}, \ldots, l_{u}(u<K)$. By Lemma 3 there exists an l_{u+1} satisfying (1) such that each prime factor of

$$
\prod_{i=1}^{u}\left(\frac{M!}{r_{u+1}-r_{i}} l_{u+1}-\frac{M!}{r_{u+1}-r_{i}} l_{i}+1\right)
$$

exceeds x^{ε} / M. Thus by induction we have determined all $l_{u}(1 \leq u \leq K)$. Let

$$
D=\prod_{1 \leq v<u \leq K}\left(\frac{M!}{r_{u}-r_{v}} l_{u}-\frac{M!}{r_{u}-r_{v}} l_{v}+1\right)
$$

Then each prime factor of D exceeds x^{ε} / M. By (1) and since $K \leq M / 5$ we have

$$
\begin{aligned}
|D| & \leq \prod_{1 \leq v<u \leq K}\left|M!l_{u}+r_{u}-M!l_{v}-r_{v}\right| \\
& \leq\left(2 b_{l} \sqrt{x}\right)^{K(K-1) / 2} \leq(\sqrt{M x})^{M(M-5) / 50} .
\end{aligned}
$$

Thus by Lemma 4 we have

$$
\left|\left\{a:(a, D)>1, a \in\left(0, b_{l} \sqrt{x}\right]\right\}\right| \leq \frac{1}{25} M^{9 / 2} x^{1 / 2-\varepsilon} \log \log x
$$

Let

$$
B=\left\{a: a \in \bigcup_{i=1}^{l}\left(I_{i} \sqrt{x} \cap \mathbb{Z}\right),(a, D)=1\right\}
$$

If $a \in(0, \delta \sqrt{x}]$ and

$$
M!l_{u}+r_{u}+a \in B, \quad M!l_{v}+r_{v}+a \in B
$$

then for $u \neq v$ we have

$$
\begin{aligned}
\left(M!l_{u}+r_{u}+a, M!l_{v}+r_{v}+a\right) & =\left(M!l_{u}+r_{u}+a, M!\left(l_{v}-l_{u}\right)+r_{v}-r_{u}\right) \\
& =\left(M!l_{u}+r_{u}+a, r_{v}-r_{u}\right) \leq\left|r_{u}-r_{v}\right|
\end{aligned}
$$

Thus for $a \in(0, \delta \sqrt{x}]$ with

$$
\begin{aligned}
& M!l_{i j}+r_{i j}+a \in B \\
& M!l_{u v}+r_{u v}+a \in B, \quad(i-u)^{2}+(j-v)^{2} \neq 0
\end{aligned}
$$

by (1) and the conditions of Lemma 5 we have

$$
\begin{aligned}
\text { l.c.m. }\left\{M!l_{i j}\right. & \left.+r_{i j}+a, M!l_{u v}+r_{u v}+a\right\} \\
& =\frac{\left(M!l_{i j}+r_{i j}+a\right)\left(M!l_{u v}+r_{u v}+a\right)}{\left(M!l_{i j}+r_{i j}+a, M!l_{u v}+r_{u v}+a\right)} \\
& >\frac{\left(a_{i}+t_{i j} \delta\right)\left(a_{u}+t_{u v} \delta\right) x}{\left|r_{i j}-r_{u v}\right|} \geq \frac{\left(a_{i}+t_{i j} \delta\right)\left(a_{u}+t_{u v} \delta\right) x}{a_{i} a_{u}} \geq x
\end{aligned}
$$

So $\left|\Delta(a) \cap B \cap A_{x}\right| \leq 1$. Since (see (1))

$$
\begin{aligned}
I_{i}\left(t_{i j}\right) \sqrt{x} \cap \mathbb{Z} \subseteq & \left(\left(M!l_{i j}+r_{i j}, M!l_{i j}+r_{i j}+\delta \sqrt{x}\right]\right. \\
& \left.\cup\left(\left(a_{i}+t_{i j} \delta\right) \sqrt{x},\left(a_{i}+t_{i j} \delta\right) \sqrt{x}+2 x^{1 / 2-\varepsilon}\right]\right) \cap \mathbb{Z} \\
\subseteq & \left(\bigcup_{0<a \leq \delta \sqrt{x}}\left\{M!l_{i j}+r_{i j}+a\right\}\right) \\
& \cup\left(\left(\left(a_{i}+t_{i j} \delta\right) \sqrt{x},\left(a_{i}+t_{i j} \delta\right) \sqrt{x}+2 x^{1 / 2-\varepsilon}\right] \cap \mathbb{Z}\right)
\end{aligned}
$$

we have

$$
\begin{aligned}
\bigcup_{i, j}\left(I_{i}\left(t_{i j}\right) \sqrt{x} \cap \mathbb{Z}\right) \subseteq & \left(\bigcup_{0<a \leq \delta \sqrt{x}} \bigcup_{i, j}\left\{M!l_{i j}+r_{i j}+a\right\}\right) \\
& \cup\left(\bigcup_{i, j}\left(\left(\left(a_{i}+t_{i j} \delta\right) \sqrt{x},\left(a_{i}+t_{i j} \delta\right) \sqrt{x}+2 x^{1 / 2-\varepsilon}\right] \cap \mathbb{Z}\right)\right) \\
\subseteq & \left(\bigcup_{0<a \leq \delta \sqrt{x}} \Delta(a)\right) \\
& \cup\left(\bigcup_{i, j}\left(\left(\left(a_{i}+t_{i j} \delta\right) \sqrt{x},\left(a_{i}+t_{i j} \delta\right) \sqrt{x}+2 x^{1 / 2-\varepsilon}\right] \cap \mathbb{Z}\right)\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \left|\bigcup_{i, j}\left(I_{i}\left(t_{i j}\right) \sqrt{x} \cap A_{x} \cap B\right)\right| \\
& \quad \leq \delta \sqrt{x}+\sum_{i, j} 2 x^{1 / 2-\varepsilon} \leq \delta \sqrt{x}+2 K x^{1 / 2-\varepsilon} \leq \delta \sqrt{x}+\frac{2}{5} M x^{1 / 2-\varepsilon}
\end{aligned}
$$

whence

$$
\begin{aligned}
& \left|\bigcup_{i, j}\left(I_{i}\left(t_{i j}\right) \sqrt{x} \cap A_{x}\right)\right| \\
& \quad \leq\left|\bigcup_{i, j}\left(I_{i}\left(t_{i j}\right) \sqrt{x} \cap A_{x} \cap B\right)\right|+\left|\left\{a: a \in\left(0, b_{l} \sqrt{x}\right],(a, D)>1\right\}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leq \delta \sqrt{x}+\frac{2}{5} M x^{1 / 2-\varepsilon}+\frac{1}{25} M^{9 / 2} x^{1 / 2-\varepsilon} \log \log x \\
& \leq \delta \sqrt{x}+\frac{2}{25} M^{9 / 2} x^{1 / 2-\varepsilon} \log \log x
\end{aligned}
$$

Since I_{1}, \ldots, I_{l} are pairwise disjoint, we have

$$
\begin{align*}
\left|\bigcup_{i \leq l-1} \bigcup_{j}\left(I_{i}\left(t_{i j}\right) \sqrt{x} \cap A_{x}\right)\right|+\mid \bigcup_{j=1}^{k_{l}} & \left(I_{l}\left(t_{l j}\right) \sqrt{x} \cap A_{x}\right) \mid \tag{2}\\
& \leq \delta \sqrt{x}+\frac{2}{25} M^{9 / 2} x^{1 / 2-\varepsilon} \log \log x
\end{align*}
$$

Now let $K_{l}=\left[\left|I_{l}\right| / \delta\right]$. Since $\left|I_{l}\right| / \delta \geq M^{-3 / 2} x^{\varepsilon / 2} \geq M \geq K \geq k_{l}$, we have $K_{l} \geq k_{l}$. Suppose that $k_{l} \geq 1$. Then by (2) we have

$$
\begin{gathered}
\binom{K_{l}}{k_{l}}\left|\bigcup_{i \leq l-1} \bigcup_{j}\left(I_{i}\left(t_{i j}\right) \sqrt{x} \cap A_{x}\right)\right|+\binom{K_{l}-1}{k_{l}-1}\left|\bigcup_{0 \leq t \leq\left|I_{l}\right| / \delta-1}\left(I_{l}(t) \sqrt{x} \cap A_{x}\right)\right| \\
\leq\binom{ K_{l}}{k_{l}} \delta \sqrt{x}+\binom{K_{l}}{k_{l}} \frac{2}{25} M^{9 / 2} x^{1 / 2-\varepsilon} \log \log x
\end{gathered}
$$

Since

$$
\binom{K_{l}}{k_{l}}=\frac{K_{l}}{k_{l}}\binom{K_{l}-1}{k_{l}-1} \leq \frac{\left|I_{l}\right|}{k_{l} \delta}\binom{K_{l}-1}{k_{l}-1}
$$

we have

$$
\begin{aligned}
\left.\left|\bigcup_{i \leq l-1} \bigcup_{j}\left(I_{i}\left(t_{i j}\right) \sqrt{x} \cap A_{x}\right)\right|+\frac{k_{l} \delta}{\left|I_{l}\right|} \right\rvert\, & \bigcup_{0 \leq t \leq\left|I_{l}\right| / \delta-1}\left(I_{l}(t) \sqrt{x} \cap A_{x}\right) \mid \\
& \leq \delta \sqrt{x}+\frac{2}{25} M^{9 / 2} x^{1 / 2-\varepsilon} \log \log x
\end{aligned}
$$

By (2) this inequality is also true for $k_{l}=0$. Noting that

$$
\begin{aligned}
\left|\bigcup_{0 \leq t \leq\left|I_{l}\right| / \delta-1}\left(I_{l}(t) \sqrt{x} \cap A_{x}\right)\right| & =\left|I_{l} \sqrt{x} \cap A_{x}\right|-\theta_{l} \delta \sqrt{x} \quad\left(0 \leq \theta_{l} \leq 2\right) \\
& =\alpha_{l}\left|I_{l}\right| \sqrt{x}-\theta_{l} \delta \sqrt{x}
\end{aligned}
$$

we have

$$
\begin{aligned}
\mid \bigcup_{i \leq l-1} \bigcup_{j}\left(I_{i}\left(t_{i j}\right) \sqrt{x}\right. & \left.\cap A_{x}\right) \mid+k_{l} \alpha_{l} \delta \sqrt{x} \\
& \leq \delta \sqrt{x}+\theta_{l} \frac{k_{l} \delta^{2}}{\left|I_{l}\right|} \sqrt{x}+\frac{2}{25} M^{9 / 2} x^{1 / 2-\varepsilon} \log \log x \\
& \leq \delta \sqrt{x}+2 k_{l} M^{3 / 2} \delta^{2} \sqrt{x}+\frac{2}{25} M^{9 / 2} x^{1 / 2-\varepsilon} \log \log x
\end{aligned}
$$

Continuing this procedure we have

$$
\begin{aligned}
\sum_{i=1}^{l} k_{i} \alpha_{i} \delta \sqrt{x} & \leq \delta \sqrt{x}+2\left(\sum_{i=1}^{l} k_{i}\right) M^{3 / 2} \delta^{2} \sqrt{x}+\frac{2}{25} M^{9 / 2} x^{1 / 2-\varepsilon} \log \log x \\
& \leq \delta \sqrt{x}+2 K M^{3 / 2} \delta^{2} \sqrt{x}+\frac{2}{25} M^{9 / 2} x^{1 / 2-\varepsilon} \log \log x \\
& \leq \delta \sqrt{x}+\frac{2}{5} M^{5 / 2} x^{1 / 2-\varepsilon}+\frac{2}{25} M^{9 / 2} x^{1 / 2-\varepsilon} \log \log x \\
& \leq \delta \sqrt{x}+\frac{3}{25} M^{9 / 2} x^{1 / 2-\varepsilon} \log \log x
\end{aligned}
$$

Therefore

$$
\sum_{i=1}^{l} k_{i} \alpha_{i} \leq 1+\frac{3}{25} M^{9 / 2} x^{-\varepsilon / 2} \log \log x
$$

This completes the proof of Lemma 5.
Similarly to the proof of Lemmas 4-8 in Chen [1] we have the following Lemma 6. The proof is omitted.

Lemma 6. Let

$$
\sum_{i=1}^{l} k_{i j} \alpha_{i} \leq 1+\frac{3}{25} M^{9 / 2} x^{-\varepsilon / 2} \log \log x, \quad j=1, \ldots, r
$$

be relations obtained by using Lemma 5 (not necessarily from the same $\left.r_{i j}\right)$. Let $\beta_{1}, \ldots, \beta_{l}, \delta_{1}, \ldots, \delta_{r}$ be nonnegative real numbers with

$$
\sum_{i=1}^{t} \beta_{i} \leq \sum_{i=1}^{t} \sum_{j=1}^{r} \delta_{j} k_{i j}, \quad t=1, \ldots, l
$$

Then

$$
\sum_{i=1}^{l} \beta_{i} \alpha_{i} \leq \sum_{j=1}^{r} \delta_{j}+\frac{3}{25} M^{9 / 2} \sum_{j=1}^{r} \delta_{j} \cdot x^{-\varepsilon / 2} \log \log x
$$

3. Proof of the Theorem. We recall some definitions from Chen [1]. Let x be a large real number. Let S be an integer with

$$
2^{S} \leq \frac{1}{11} \frac{\sqrt{\log x}}{\log \log x}<2^{S+1}
$$

Let $L=2^{2 S}, T=2 L S-1, q=2^{1 /(2 L)}$ and

$$
I_{i}=\left(q^{i}, q^{i+1}\right], \quad i=-T,-T+1, \ldots, T, \quad M=5 q^{2(T+1)}=5 \cdot 2^{2 S}
$$

Lemma 7. $1-q^{-1} \leq 2^{-2 S-1}$ and $\left|I_{i}\right| \geq M^{-3 / 2}$.

Proof. Since $q=2^{1 /(2 L)}$ we have

$$
(q-1)^{-1}=q^{2 L-1}+q^{2 L-2}+\cdots+q+1
$$

and

$$
1 \leq q^{i}<2 \quad(0 \leq i \leq 2 L-1)
$$

Then

$$
2 L<(q-1)^{-1}<4 L, \quad 1-q^{-1}<\frac{1}{2 L}=2^{-2 S-1}
$$

Thus

$$
\left|I_{i}\right|=q^{i}(q-1) \geq q^{-T-1}(q-1) \geq 2^{-S}(4 L)^{-1}>M^{-3 / 2}
$$

This completes the proof of Lemma 7.
Lemma 8. $x^{-\varepsilon / 2} \log \log x \leq 2^{-11(S+1)}$.
Proof. It is enough to prove that

$$
(11 \log 2)(S+1)+\log \log \log x \leq \frac{1}{2} \varepsilon \log x
$$

Since

$$
2^{S} \leq \frac{1}{11} \frac{\sqrt{\log x}}{\log \log x}<2^{S+1}
$$

we have

$$
\frac{1}{2} \varepsilon \log x=\frac{\log x}{4 M \log \log x}=\frac{1}{5} \frac{\log x}{2^{2 S+2} \log \log x} \geq 5.5 \log \log x
$$

$(11 \log 2)(S+1)+\log \log \log x \leq 5.5 \log \log x-10 \log \log \log x-11 \log 5.5$ $<5.5 \log \log x$.

This completes the proof of Lemma 8.
For positive real numbers α, β, let

$$
\begin{aligned}
B(\alpha, \beta)= & \{a: a \in \mathbb{Z}, 1 \leq a \leq \alpha \beta\} \\
& \cup\left\{a: a \in \mathbb{Z},-\min \left\{\alpha \beta, \alpha^{-1} \beta-1\right\} \leq a \leq 0\right\}, \\
A_{i j}= & \begin{cases}B\left(q^{j}, q^{i}\right) & \text { if } i \geq j \\
\emptyset & \text { if } i<j\end{cases}
\end{aligned}
$$

In the following we make the convention that $\sum_{a \in \emptyset} h(a)=0$ for any function $h(t)$.

Let

$$
\begin{aligned}
\alpha & =(10-7 \sqrt{2}) / 32, \\
k_{i j} & =\left|A_{i j} \backslash A_{(i-1) j}\right|, \quad-T \leq i \leq T,-T \leq j \leq L-1 \\
k_{i L} & =0 \quad(-T \leq i \leq T, i \neq 0), \quad k_{0 L}=1 \\
\beta_{i} & =q^{i}(q-1), \quad-T \leq i \leq L-1 \\
\beta_{i} & =(1+\alpha) q^{i}(q-1), \quad L \leq i \leq T \\
\delta_{j} & =q^{j}(q-1), \quad-T \leq j \leq-1 \\
\delta_{j} & =\frac{1}{2}(q-1)\left(q^{j}-q^{-j-1}\right), \quad 0 \leq j \leq L-1 \\
\delta_{L} & =1-q^{-1}
\end{aligned}
$$

By Lemma 8 we have $x^{\varepsilon} \geq M^{5}$. Similarly to Lemmas $10-12$ in Chen [1] we have the following lemmas.

Lemma 9. For $-T \leq j \leq L$ we have

$$
\sum_{-T \leq i \leq T} k_{i j} \alpha_{i} \leq 1+\frac{3}{25} M^{9 / 2} x^{-\varepsilon / 2} \log \log x
$$

Lemma 10. There exists an L_{0} such that if $L \geq L_{0}$, then

$$
\sum_{i=-T}^{t} \beta_{i} \leq \sum_{i=-T}^{t} \sum_{j=-T}^{L} \delta_{j} k_{i j}, \quad t=-T,-T+1, \ldots, T
$$

Lemma 11. Let G be a positive integer and $x \geq 2 G$. Then

$$
\left|(\sqrt{G x}, x] \cap A_{x}\right| \leq \frac{2 \sqrt{x}}{\sqrt{G}}+\log _{2} \frac{2 \sqrt{x}}{\sqrt{G}}
$$

Proof of the Theorem. By Lemmas 6-10 we have

$$
\begin{aligned}
& \sum_{-T \leq i \leq L-1} q^{i}(q-1) \alpha_{i}+(1+\alpha) \sum_{L \leq i \leq T} q^{i}(q-1) \alpha_{i} \\
& \quad=\sum_{-T \leq i \leq T} \beta_{i} \alpha_{i} \leq \sum_{-T \leq j \leq L} \delta_{j}+\frac{3}{25} M^{9 / 2} \sum_{-T \leq j \leq L} \delta_{j} \cdot x^{-\varepsilon / 2} \log \log x \\
& \\
& \leq \sqrt{\frac{9}{8}}-q^{-T}+1-q^{-1}+\frac{3}{25} M^{9 / 2}\left(\sqrt{\frac{9}{8}}-q^{-T}+1-q^{-1}\right) x^{-\varepsilon / 2} \log \log x \\
& \\
& \leq \sqrt{\frac{9}{8}}-q^{-T}+2^{-2 S-1}+\frac{9}{25} M^{9 / 2} x^{-\varepsilon / 2} \log \log x \\
& \\
& \leq \sqrt{\frac{9}{8}}-q^{-T}+2^{-2 S-1}+\frac{9}{25} 5^{9 / 2} 2^{9 S} 2^{-11 S-11} \\
& \\
& \leq \sqrt{\frac{9}{8}}-q^{-T}+2^{-2 S}
\end{aligned}
$$

Hence

$$
\begin{aligned}
&\left|\left(q^{-T} \sqrt{x}, \sqrt{2 x}\right] \cap A_{x}\right|+(1+\alpha)\left|\left(\sqrt{2 x}, q^{T+1} \sqrt{x}\right] \cap A_{x}\right| \\
& \leq \sqrt{\frac{9}{8} x}-q^{-T} \sqrt{x}+2^{-2 S} \sqrt{x}
\end{aligned}
$$

So

$$
\left|[1, \sqrt{2 x}] \cap A_{x}\right|+(1+\alpha)\left|\left(\sqrt{2 x}, 2^{S} \sqrt{x}\right] \cap A_{x}\right| \leq \sqrt{\frac{9}{8} x}+2^{-2 S} \sqrt{x}
$$

Thus

$$
\left|\left[1,2^{S} \sqrt{x}\right] \cap A_{x}\right| \leq \sqrt{\frac{9}{8} x}+2^{-2 S} \sqrt{x}
$$

Since $2^{2 S+2} \leq \log x \leq x$, by Lemma 11 we have

$$
\left|\left(2^{S} \sqrt{x}, x\right] \cap A_{x}\right| \leq 2^{-S+1} \sqrt{x}+\log _{2}\left(2^{-S+1} \sqrt{x}\right)
$$

Thus, for all sufficiently large x we have

$$
\begin{aligned}
\left|A_{x}\right| & \leq \sqrt{\frac{9}{8} x}+2^{-2 S} \sqrt{x}+2^{-S+1} \sqrt{x}+\log _{2}\left(2^{-S+1} \sqrt{x}\right) \\
& \leq \sqrt{\frac{9}{8} x}+45 \sqrt{\frac{x}{\log x}} \log \log x
\end{aligned}
$$

Since $\left|A_{x}\right| \geq\left|B_{x}\right| \geq \sqrt{\frac{9}{8} x}-2$, the proof of the Theorem is complete.

References

[1] Y. G. Chen, Sequences with bounded l.c.m. of each pair of terms, Acta Arith. 84 (1998), 71-95.
[2] Y. G. Chen and X. G. Sun, On Romanoff's constant, J. Number Theory 106 (2004), 275-284.
[3] S. L. G. Choi, The largest subset in $[1, n]$ whose integers have pairwise l.c.m. not exceeding n, Mathematika 19 (1972), 221-230.
[4] -, The largest subset in $[1, n]$ whose integers have pairwise l.c.m. not exceeding n, II, Acta Arith. 29 (1976), 105-111.
[5] P. Erdős, Problem, Mat. Lapok 2 (1951), 233.
[6] -, Extremal problems in number theory, in: Theory of Numbers, Proc. Sympos. Pure Math. 8, Amer. Math. Soc., 1965, 181-189.
[7] R. K. Guy, Unsolved Problems in Number Theory, 2nd ed., Springer, New York, 1994.
[8] H. Halberstam and H. E. Richert, Sieve Methods, Academic Press, London, 1974.
[9] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94.

Department of Mathematics
Nanjing Normal University
Nanjing 210097, P.R. China
E-mail: ygchen@njnu.edu.cn

[^0]: 2000 Mathematics Subject Classification: 11B75, 11B83.
 Key words and phrases: least common multiple, Brun's pure sieve, Erdős problem.
 Supported by the National Natural Science Foundation of China, Grant No. 10471064.

