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The Galois relation x; = =5 + x5 and Fermat over finite fields
by

KURT GIRSTMAIR (Innsbruck)

1. Introduction and results. Let K be a field of characteristic 0 and
f=2"+c1Z" 1+ .4¢, € K[Z] an irreducible polynomial of degree n over
K. By x1,...,x, we denote the zeros of f in some algebraic closure of K,
and by G the Galois group of f;so G = Gal(L/K), where L = K(z1,...,xy)
is the splitting field of f. The group G acts as a transitive permutation group
on xy,...,x,. This action is completely described by the pair (G, H), where
H is the stabilizer G, = {s € G : s(x1) = x1}. But this pair yields more: it
also determines the set of possible linear relations

(1) a1x1+ -+ anx, =0, ai,...,ayn € K,

between the zeros of f (see [3]). The said paper develops a framework for a
basic understanding of this set. In quite a number of cases this framework
allows an explicit description of all possible relations (1) (see also [11]).

It seems more difficult, however, to walk in the converse direction. By
this we mean that a relation like

(2) T = X9 + 23

is given, and that we classify the pairs (G, H) for which (2) is possible.
Starting with J. Browkin, a number of people have been interested in this
particular relation (see [2], [10]). One of the few satisfactory answers about
(2) concerns the abelian case. So G is an abelian group, and, since G acts
faithfully on x1,...,z,, the stabilizer H is the trivial subgroup 1 of G. In
this situation, the relation (2) is possible if, and only if, the group order |G|
is divisible by 6 (see [3]; basically, this was shown in [2] already).

In the present paper we consider, more generally, regular permutation
groups, i.e., arbitrary groups G but trivial stabilizers H = 1. This situation
occurs just if f is a mormal polynomial, i.e., L = K(x1). We need some
additional terminology in order to be able to enounce our results: For the
time being, let G be an arbitrary finite group (so it need not be the Galois
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group of a polynomial f). We consider the group ring

K[G] = {Zass tag € K}
seG

of G over K. An element « € K[G] is called admissible if there is an element
7 € KJ[G] such that ar = 0 but G, = {s € G : sT = 7} equals 1 (see [3,
Section 1]). Admissible elements of the group ring form the right concept for
our purpose: Each admissible element represents a linear relation (1) that
may actually occur if GG is the Galois group of f and G;, = 1; and, conversely,
each actually occurring relation is obtained in this way. This assertion has
been proved in [3] in a more general context. In order to keep this paper
reasonably self-contained, we shall give a short proof at the beginning of Sec-
tion 2. For the moment, however, we ask the reader to believe this assertion.

In the terminology of the group ring K[G], the relation (2) is represented
by an element of the shape

(3) a=1-s—t s teG~{l},s#t.

The following “inclusion lemma” will show that an element « of this shape
is admissible in many cases.

PROPOSITION 1. Let G be a finite group, G' # 1 a subgroup of G and «
an admissible element of the group ring K|G']. Then « is also an admissible
element of the group ring K[G].

By the aforementioned result on abelian groups, the group ring K[G'] of
the cyclic group G’ = Cp of order 6 contains an admissible element (3). In
[3, Example 9|, the same was shown for G’ = Ss3, the symmetric group of
three elements, and in [10, Section 2|, for G’ = A4, the alternating group of
four elements. Accordingly, Proposition 1 yields

COROLLARY. Let G be a finite group that contains a subgroup isomorphic
to Cg, S3, or Ay. Then K[G] contains an admissible element of the shape (3).

The corollary says that there is a good chance that the relation (2) is
possible for a normal polynomial f as soon as the order of its Galois group
is divisible by 6 (as was asked in [10]). What about groups G of order not
divisible by 67 Proposition 1 suggests looking for small subgroups G’ such
that K[G’] contains an admissible element (3). Since 61|G’|, such a group G’
cannot be abelian, so a group G’ that normalizes a cyclic subgroup C,, of G,
p a prime > 5, would be a natural candidate. In many cases this candidate
is a solvable group of prime degree, i.e., a subgroup of the affine group
AGL(1, p) of the field IF,, of p elements. An example of A. Dubickas (privately
communicated in 2001) shows that K[G’| contains an admissible element of
the shape (3) if G’ is the group AGL(1,p) itself, and, more generally, if
G = AGL(1,q), g = p° (a detailed discussion of this example can be found
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at the end of Section 2). Hence it is reasonable to study transitive subgroups
of AGL(1,¢). Our main result (Theorem 1) gives an exhaustive answer for
these groups.

In what follows, ¢ may be an arbitrary prime power (in particular, we
include cases like ¢ = 2,3). The elements of AGL(1, ¢) are represented as

aX +b, acF; bel,

where aX + b stands for the (affine) mapping F, — F, :  — ax +b. A tran-
sitive subgroup G of AGL(1, q) is always a semidirect product G = HF'. The
normal subgroup F' = {X + b : b € F,} is the group of all translations of
Fy, and H is the stabilizer {s € G : s(0) = 0} of 0 € F,. We consider H as
a subgroup of IFqX: since each s € H has the form s = aX, a € IFqX, we may
identify aX € H with a € F7.

THEOREM 1. Let G = HF be a transitive subgroup of AGL(1,q) with
H C Fy as above. Then K[G] contains an admissible element of the shape
(3) if, and only if, there are elements a,b € H such that a+b = 1.

From Theorem 1 the connection between 1 = x9 + x3 and the Fermat
equation over Fy is obvious: Let m denote the indezx of H in F;, so H =
{z™ .z € IE‘;} Then there are a,b € H with a + b =1 if, and only if,
holds for some z,y, z € F, with zyz # 0.

We briefly highlight some special cases of Theorem 1: If G = AGL(1, q),
then H = F. As soon as ¢ > 2, there are always elements a,b € F such
that a+b = 1, so K[G] contains admissible elements (3) (which we mentioned
already). As the groups AGL(1,3) and AGL(1,4) are isomorphic to S3 and
Ay, respectively, Theorem 1 covers these special cases considered above. For
an odd prime p and G = ASL(1,p) (the subgroup of index 2 of AGL(1,p)),
we have H = {22 : x € Fy}. It is easy to check that a +b = 1 has a solution
in H if, and only if, this holds for a — b = 1, or, in other words, if there are
at least two consecutive quadratic residues mod p. This is known to be true
for p > 7 (see, for instance, [4, p. 174 f.]) but false for p = 3,5. Accordingly,
the group rings of C3 and ASL(1,5) = D5 (the dihedral group of order 10)
do not contain admissible elements (3). For the last-mentioned group this
was shown in [3, Example 9].

Proposition 1 and Theorem 1 will be proved in the next two sections.
Section 4 supplies some additional information about Fermat over F, and
its connection with 1 = x9 + x3. We think that this relation is possible for
every non-abelian simple Galois group G in the regular case. This will also
be discussed in Section 4 (see Proposition 2).

Historically, the first paper about linear relations between zeros of poly-
nomials seems to be [8]. The same author wrote a number of papers about
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linear relations in cases where the group G is that of our Theorem 1; his sta-
bilizer, however, is the above group H itself, so the situation is quite different
from the present one (see, for instance, [9]).

2. Some explanations and proofs. We begin with the justification
of our concept of admissible elements. Let G be the Galois group of a
polynomial f as above. We consider L = K(z1,...,2,) as a left K[G]-
module in the usual way: For a = )  _~ass € K[G] and y € L we put
ay =Y .cqass(y). In a naive sense, a relation between w1, ..., 2, is just a
vector (ai,...,a,) € K™ such that (1) holds. Suppose now G5, = 1. Then
the map

G—A{zr1,...,xn} s — s(x1)

is bijective. Therefore, we may identify (ai,...,a,) € K™ with an element
a =3 cqass of K[G], on putting as = a; if s(z1) = x;. In particular, a
relation (ai,...,a,) between xy,...,z, corresponds to an a € K[G] such
that axz; = 0. The normal basis theorem says that there is a y € L such that

¢:K[Gl—L:a— p(a)=ay

is a K[G]-linear isomorphism. Suppose now that a € K[G] is a relation
between x1,...,Ty, ie., ar; = 0. Put 7 = ¢ !(z1). Then ar = 0 and,
because G, = 1, we also have G, = 1. Hence « is an admissible element of
K|[G]. Conversely, let o € K[G] be admissible, i.e., ar = 0 for some 7 € K[G]
with G; = 1. Put z = (7). Then Gz = 1 and aZ = 0, so « is a relation
between the zeros of the irreducible normal polynomial

F=T1(z- @) € K2
seG

Proof of Proposition 1. Let G’ # 1 be a subgroup of G and suppose
a € K[G'] is admissible. Let 7 € K[G'] be such that a7 = 0 and G~ = 1. We
show that every s € G lies in G'. Then it lies in G/, = 1, and since ar = 0,
« is an admissible element of K[G].

If 7 = 0, then G’ = G. = 1, which we have excluded. Hence 7 =
Y ey cit # 0, and there is an element v € G’ with ¢, # 0. If s € G
stabilizes 7, we have 7 = s7 = ), o ¢st; in particular, c,su must be
equal to an element ¢;t for some t € G’. This, however, requires su = t and
se€eG'. m

REMARK 1. Proposition 1 shows that, as a rule, many relations are pos-
sible if the Galois group G of f acts regularly on x4, ..., x,. For instance, if
p is a prime dividing |G|, then G contains a cyclic subgroup G’ of order p.
Since o = Y~ v s € K[G'] is admissible, it is also an admissible element of
K|[G]. This shows that both x; + 9 = 0 and x; + x2 + 23 = 0 are possible
relations in the regular case if |G| is divisible by 6. It does not show, however,
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that these relations hold stmultaneously: We cannot conclude that there is
an element x; € L with G, = 1 such that 1 = —23 and z; = —x3 — 24
for K-conjugates zo, x3, x4 of 1. If this were true, the relation (2) would be
possible in the regular case whenever 6| |G].

As concerns the proof of Theorem 1, we start with the simpler direction
now (the more complicated one is postponed to Section 3). Let G = HF be
a transitive subgroup of AGL(1, ¢) with F' and H as above. We consider the
K-vector space K[F,] with basis Fy. In order to avoid confusion, we write
(a) if we consider a € F as a basis vector of K[[F,] (which is actually rather
different from a as an element of the finite field ;). Accordingly,

K[F] = @ K(a).
aclFy
Now K[F,] is a K[G]-module in a natural way: In particular, s = aX+b € G
acts on K[F,] by

(aX +b) Z re(c) = Z re(ac+0b), 1. € K.
cely cely
Note that K[Fy] is just the K[G]-module that is usually attached to the
permutation representation of G on Fy; in particular, H C F is the stabilizer
of (0) € K[F,].

Now suppose a,b € H are such that a+b = 1. Consider z = (0)— (a™ 1) €
K[F;] and a = (X) — (aX) — (bX +1) € K[G]. If s € G stabilizes z, it must
fix the basis vectors (0) and (a~!) and, hence, the elements 0 and a~! € F,.
But an element s € G with two fixed points in [, equals 1 (a well-known fact,
which can be checked directly for the fixed points in question). Moreover,

a2 = (0)=(a~)=(@0) +(@a™)=(b-0+ D+ (ba'+1) = —(a ) +(ba~+D),

since the other terms obviously cancel each other. The equation a~! =

b-a~ !+ 1, however, is equivalent to 1 = a + b, which we assumed to be
true. Thus, ax = 0.

The K[G]-module K[F] is cyclic, since the basis vector (c), ¢ € Fg, arises
from (0) by (¢) = (X 4 ¢)(0) for X + ¢ € F C G. Then Maschke’s theorem
shows that K[[F,] is isomorphic to a (left) K[G]-submodule V' of K[G]. Any
K[G]-linear isomorphism K[F,] — V maps our above x onto an element
7 € K[G] with G; = 1 and ar = 0. This implies that « is an admissible
element of K[G].

REMARK 2. Our first attempt to prove the converse direction of The-
orem 1 was based on the assumption that for an admissible element @ =
1 — s —t as in (3) there must be an x € K[F,] such that ez = 0 and
x = (i) — (j) for some elements i, j € Fy, ¢ # j. Such an z will henceforth
be called a simple difference in K[F,]. The existence of a simple difference
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that is annihilated by an « of this kind requires, indeed, that a +b = 1 has
a solution in H. The said assumption is false, however: In general there are
admissible elements (3) that do not annihilate any simple difference, as we
shall show in Section 4 (and so our first attempt failed).

REMARK 3. At this point we should say some words about Dubickas’
example: He only considered the case AGL(1,5), but his idea remains valid
if only the action of the Galois group G on the zeros x1,...,x, of f is
doubly transitive. Define y;; = x; — x; (a simple difference of zeros), where
i,7, © # j, run through all elements of {1,...,n}. Because of the double
transitivity, the elements y;; are all conjugate, so ]7: H#J-(Z — y4j) is an
irreducible polynomial over K with Galois group G. Since y12 —y32 —y13 = 0,
we have a relation of type (2).

In this way one also obtains examples quite different from the regular
case; for instance, if G = 5,,, the stabilizer of y;5 is isomorphic to S, _s.

In the case G = AGL(1,q), ¢ > 2, this technique is essentially identical
with what we have done in the above proof: We may assume that f has the
zeros T4, a € Fy, and that an element s € G acts on x4 by $(74) = Tg(q)-
Put y = 29 — 21 and choose a € F, a # 1. Moreover, let s,t € GG be such
that s(0) = a, s(1) = 1, t(0) = 0, t(1) = a. Then (1 — s —t)y = 0 and
s=(1—-a)X +a,t=aX. Since 1 —a # 0, the equation a + b = 1 has the
solution a,b=1—ain H =F.

REMARK 4. In the example of Remark 3 we have y19 = y32 + y13 and,
simultaneously, y12 = —w91. This situation differs from the following case:
Let p = 3 mod 4, p > 7, and suppose G = ASL(1,p) is the Galois group
of f. Then there is an irreducible normal polynomial fe K|[Z] with group G
such that y; = yo + y3 holds for the zeros y1, ..., yn of f (see introduction).
However, yr = —y1 cannot be true for any k, 2 < k < n. Otherwise, there
would be an s € G with s(y1) = yx and s(yx) = s(—y1) = —yr = y1.
As yy generates the splitting field of f, s would be an involution, which is
impossible since n = |G| =p(p — 1)/2 is odd.

3. Proof of the converse direction. Let the notations of Section 2
hold, in particular, G = HF is a transitive subgroup of AGL(1,q), ¢ = p°.
We assume that there is an admissible element o« = 1 — s — ¢t € K|[G],
s,t € G {1}, s # t. We have to show that this implies a + b = 1 for certain
elements a,b € H, H CF7.

The plan of this proof is as follows: First we construct a certain simple
K[G]-submodule V' of K[G] which contains an element g # 0 with ap = 0
(recall that K[G]-modules are always left modules!). Then we construct a
K-basis of V' such that the matrix of the K-linear map V — V : o — «ap
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can easily be read off. Since the determinant of this matrix must vanish, we
have a condition that implies the desired equation in H.

Let ¢ denote a primitive p(q — 1)th root of unity (in some algebraic
closure of K). We put K’ = K(£). Then « is also an admissible element of
K'[G]; indeed, if 7 € K[G] is such that a7 = 0 and G, = 1, then « does not
loose these properties if it is considered as an element of K'[G]. Therefore,
we may assume, without loss of generality, that K contains £&. Under this
assumption the K-irreducible characters of GG are absolutely irreducible, so
we simply speak of “irreducible characters” of G. These characters fall into
two categories (see [6, p. 239]): First, 1-dimensional characters 1 of the cyclic
group G/F = H, considered as characters of G by means of the canonical
map G — G/F. Second, characters induced by nontrivial 1-dimensional
characters x : FF — K of the group F. Hence we distinguish between two
categories of simple K[G]-modules, namely, those belonging to irreducible
characters of the first and of the second category, respectively. This leads to
the decomposition

K[G =1/,

where I is the sum of the K[G]-submodules of K[G] of the first and J the
sum of those of the second category.
We now define the K-vector space

S ={o € K[G] : ac = 0}.
We shall show that there is a simple K[G]-submodule V' of J such that
SNV #£0. To this end we use the following

LEMMA 1. In the above setting, let W be a K[G]-submodule of K|G| and
(4) W=Viag -V
a direct decomposition of W into arbitrary K[G]-submodules. Then

WnS=Wns) e & (Vpns).

Proof. Let 0 € W NS. Then 0 = o1 + --- + g5 with g; € V; for each
j=1...,k. Now ac = 0 = ap1 + -+ + apgy, and since V; is a (left)
K[G]-module, we have ap; € V}, j =1,...,k. The decomposition (4) being
direct, we conclude avp; =0, j =1,...,k, so each g; liesin V; N S. u

The lemma shows

S=({InS)®d(JNS).

Suppose J NS = 0. We know that there is an element 7 € K[G] such that
at = 0 and G, = 1. In particular, 7 # 0. Since J NS =0, 7 liesin I N S.
However, the group F acts trivially on I: Each simple K[G]-submodule V'
of I belongs to the first category. Therefore, it has K-dimension 1, and for
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alue Gand p eV,

uo = (u)o,
where ¢ : G — K* is a group homomorphism with ¢ (F) = 1. Accordingly,
G, contains the group F, a contradiction.

Hence we have JNS #0. Let J = V1 ® - @B Vi be a decomposition of V'
into simple K'[G]-submodules. Since J NS # 0, Lemma 1 entails V; NS # 0
for some j € {1,...,k}. In particular, there is a simple submodule V of J
with V NS # 0, as desired.

In the next step we choose a suitable K-basis of this module V and study
the matrix of the K-linear map

V-=V:io—ap

with respect to this basis (where « is our admissible element). The irreducible
character connected with V' is induced by some character x : F — KX,
X # 1. Since F' = [, is an elementary-abelian p-group, the values of x are
pth roots of unity.

A K[G]-module V' isomorphic to V' can be constructed in the following
way (see [6, p. 216]): The group H is cyclic, so H = (v) for some v of order
m = |H| =[G : F|, m|qg—1. Let K - ¢ be the 1-dimensional K[F]-module
belonging to x, i.e., u € F acts on K - ¢ by

(5) u-e=x(u)-e.
Then V' has the K-basis v/ @ ¢, j = 1,...,m. Each element of G has the

shape vFu, where k € {1,...,m} and u € F are uniquely determined. Since
F' is a normal subgroup of G, we may write

(6) wluw=u" e F
for each w € H and u € F. The action of G on V' is now defined by
(1) vPu- (o) =" ou e =0k @ x(u?) e = x(u”) T @ e

(in other words, we first apply the “exchange rule” uv? = viu®’ contained in
(6) and then (5)). Let ¢ : V! — V be a K[G]-linear isomorphism. Then ¢
maps the basis vectors v/ ® ¢ onto basis vectors ojof V,57=1,...,m. The
action of G on these vectors can be read off from (7), namely,

(8) vkugj zx(u”j)gk+j, k,je{l,...,m},ueF

(observe that the subscript k& + j has to be understood mod m, i.e., as an
element of {1,...,m}).

Let § € K[G]. We consider the m x m-matrix M (3) that belongs to the
K-linear map V' — V : p — Bp; the elements b;; of its jth column are given

by
Boj = bijoi.
=1
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In the special case § = u € F, equation (8) yields

m

9) M (u) = diag(x(u"), x(u™), ..., x(u"™)),

and for = v* we obtain

(10) M (") = ;

1

the nonzero entries of this matrix (all of them = 1) are placed at the positions
(k+1,1),(k+2,2),...,(m,m —k), and at (1,m —k+1),(2,m — k + 2),
ey (Bym).

With these tools at hand it is no more difficult to establish M («) for our
admissible element @« = 1 — s —t € K|[G|. Because VNS # 0, there is a
vector o € V, o # 0, such that ap = 0 and, thus, det M («) must vanish.
Regrettably, M («) may take a number of different forms:

CASE 1: s,t € F. Here we read off from (9):
M(a) = diag(1 = x(s") = x(t"),..., 1= x(s"") = x(t""))-

This matrix is singular only if 1 — X(svj) — X(t“j) =0forsome j=1,...,m.
Since the values of x are pth roots of unity, this is impossible: It is an exercise
to show that 1 — n — 1’ = 0 can hold for roots of unity 7, 1’ only if 1 has

order 6 and i’ = n~!.

CASE 2: s € F, t ¢ F. Observe that G is a normal subgroup of AGL(1, q).
Hence conjugation by elements of AGL(1, q) defines an automorphism of G.
Such an automorphism can be considered as an automorphism of K[G]. It
maps o onto an admissible element of the shape 1 — s’ — ¢'; here s’ remains
in the characteristic subgroup F of G and ¢’ can be chosen equal to v*,
1 < k < m — 1. We may, therefore, assume o = 1 — s — v*, which yields

(11) M(a) = diag(1 — x(sY),...,1 = x(s"")) = M(v5),
with M (v¥) asin (10). The entries of M («) lie in Z[(,], where ¢, is a primitive
pth root of unity. Consider the prime ideal p = (1 — (p) of Z[(] (which lies
over p) and the residue class field R = Z[(,]/p. Since 1 — x(s¥") € p for all
j=1,...,m, (11) yields the identity

M(a) = =M (vk) € R™*™

of matrices over R (the bar denotes residue classes mod p, not complex
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conjugation). Thus, inspection of (10) gives det M (a) = +det M (vF) =
+1 € R, and, in particular, det M («) # 0. So this case is also impossible.

CASE 3: Both s,t ¢ F'. Here the conjugation argument of Case 2 shows
that we may assumes:vk,t:vlu, withue Fand 1 <k <[l<m-1.
We distinguish two subcases:

SUBCASE 1: u = 1. Then k < [ (recall s # t) and M (a) = I,, — M (v*) —
M (v!), where I,,, is the m x m unit matrix. But in this case M () is a cyclic
group matrix, whose determinant is well known. Indeed, put

1 if # = 0 mod m,
bj=< -1 ifi=kori=1[modm,
0 otherwise.

Then M(a) = (bi—j)ij=1,.,m and det M(a) = ][, (1 — n* — '), where n
runs through all mth roots of unity. The argument of Case 1 shows that
det M(«) = 0 only if 6|m (and £ = —! mod 6). But then H contains an
element r of order 6 and 7 +r~! =1 is a solution of a +b =1 in H.

SUBCASE 2: u # 1. Again we consider the prime ideal p and the field R
of Case 2. Since M (u) = I,,,, we have M (vtu) = M (v!) M (u) = M(v') and

M(a) = M(k,l) € R™™™,

with M(k,1) = I, — M(v*) — M(v!). This matrix is essentially the group
matrix of Subcase 1, with the only difference that the case k = [ is not

excluded now. We obtain det M («) = det M (k, 1), where

(12) det M(k, 1) = J[ A =n*—1) ez
nm=1

Now det M («) vanishes, hence det M (k,l) = 0 mod p, and det M (k,l) € Z
requires det M (k, ) = 0 mod p (recall pNZ = Zp). Let (,, denote a primitive
mth root of unity and B a prime ideal of Z[(,,] lying over p. The residue
class degree f,, of P equals the order of p mod m (see [13, p. 14]). Since
m|q—1, p° =1 mod m, so f,|e and Z[(y]/P is a subfield of Fy (up to
an isomorphism). From p| M (k,l) and (12) we infer that 1 — 7* — 7' must
vanish in Z[(;,] /P for some mth root of unity 7, hence also in F,. However,
H={aeF,;:a™ =1} Soa=n*and b=n form a solution of a +b =1
in H. This concludes the proof of the converse direction of Theorem 1.

4. Additional remarks. Here we compile some additional informa-
tion that may be of interest for the reader. First consider the determinant
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det M (k,1) of (12). It can be written
det M(k, 1) = ] [ Na(1 = ¢ = G3),

dlm
where (4 is a primitive dth root of unity and Ny : Q({y) — Q is the norm of
the dth cyclotomic field. We call

Wy = Na(1 = ¢ = ¢3)
the Wendt factor of order d that belongs to {k,} (note that k = [ is possible).
The number Wg’l is a divisor of Wendt’s determinant, which has chiefly been

studied in connection with the Fermat equation over F, (see, for instance,
[12]). If H C F7 is as in Section 3, |H| = m, then the equation a +b =1 is
solvable in H only if there is a Wendt factor W d|m, such that p| Wcl;’l.
Conversely, suppose p | Wcl;’l. Then Wf’l is divisible by ¢’ = p/r.d, where Ipa
is the order of p in (Z/dZ)*. Since p® = 1 mod d, f, q| e and F is a subfield
of F,. Moreover, the discussion at the end of Section 3 shows that a+b =1
has a solution in the subgroup of order d of F’;, and, in particular, in HQF;,.

For a fixed number m there are only finitely many primes p dividing a
Wendt factor W;’l, d|m. For such a p we consider ¢ = p°, where e must
be a multiple of f, 4 and m must divide ¢ — 1. Let G = HF', |H| = m, be
the uniquely determined subgroup of AGL(1,q) of order gm. By the above,
K|[G] contains an admissible element « of the shape (3).

In order to find all these primes p one may proceed as follows: Fix a
divisor d of m. The definition of Wf’l shows that it suffices to consider
subsets {k,l} of {1,...,d —1}. We may further assume that these subsets
are primitive, i.e., (k,l,d) = 1. Indeed, for any common divisor r of k, [, d
we have

Wéf’l — (W://:vl/ryp(d)/w(?”)'

Two numbers Wf’l, Wfl’ll coincide if the sets {k,(} and {k’,l'} arise from
each other under the action of the group (Z/dZ)*, i.e., {k',I'} = {jk, jl} for
some integer j, (j,d) = 1 (jk, jl must be understood mod d). Accordingly,
one has to establish a set of representatives of the orbits of (Z/dZ)* on the
primitive subsets of {1,...,d—1} with at most two elements. If {k, [} is such
a representative, Wf’l can easily be computed by means of the identity

W;’l = H (1-r*—ryez/pz,
rd=1
where p is a (sufficiently large) prime number, p = 1 mod d, and r runs
through all dth roots of unity in Z/pZ.

ExAMPLE. Take m = 16. The group (Z/167Z)* has 13 orbits of primitive
subsets of {1, ..., 15} with one or two elements. They yield the Wendt factors
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Wllél = 257, Wllé2 =49 and Wllé?’ = 17. The Wendt factors belonging to the
remaining ten orbits either coincide with these or are equal to 1. Whereas
fpae = 1 for p = 17,257, we have f716 = 2. The seven orbits of (Z/8)*
produce the Wendt factors 17, 9 and fi78 = 1, f3g = 2. In the case d = 4
we have three orbits yielding the Wendt factor 5, and for d = 2 there is one
orbit yielding 3. Altogether, the prime 3 occurs twice and in different roles:
as a divisor of W81’2 and of Wzl’l, corresponding to the identity r + 72 = 1
that holds for a certain generator r of Fy, and to 2+2 = 1 € F3, respectively.

We now return to Remark 2 of Section 2 (about simple differences).
In the (most interesting) Subcase 2 of Section 3, @ € K[G] has the shape
a=(X)—(aX)—(bX+c) witha,be H CF;,ce€Fy Ifat+b=1, thereisa
simple difference z = (i) — (j) € K[F,] such that ax = 0, and this proves the
admissibility of « (which is, essentially, what we did in Section 2). Conversely,
it is not hard to check that ax = 0 can hold for a simple difference x only if
a+ b = 1. The K-vector space K[F,] has a natural nondegenerate bilinear

form defined by
(3 ai(). D bili)) = D agy.

j€F, j€F, j€F,

We consider the K-linear map K[F,] — K[F,] : y — ay. By abuse of
terminology, this map is called « again. Let o™ be the adjoint map of « with
respect to (—, —). One readily verifies that a* is the K-linear map defined
by

of = (X) - (aX)' = (bX +¢)7 L,

the inverse elements being taken in AGL(1,q). So a* = (X) — (a7 1X) —
(b71X + ), ¢ € F,. The linear map « and its adjoint o* have the same
rank. Therefore, a+b = 1 implies that there must be a y € K[F,] \ {0} such
that o*y = 0. However, the identity a=! + b~! = 1 is false in general, and
then y cannot be a simple difference. One can show that a* is, nevertheless,
admissible at least if m = |H| is a prime number.

The above discussion of the matrix M (k,[) and the factors WCI; L of its
determinant shows that from p|det M (k,[) one cannot immediately read off
a solution of a+b = 1in H. The matrix M («) of Section 3 seems to contain
much more information about possible solutions. We know, for our present «,
that det M («) vanishes if, and only if, det M (a*) vanishes. In general this
happens only if a +b =1 or a= ' + b~ = 1, i.e., in the cases one expects.
There are, however, also some unexpected cases: for instance m = 5, ¢ = 31,
a=(X)-(4X)-(4X+1),orm=28,¢=17,a = (X)— (8X) — (16X + 1),
where det M («) vanishes although none of the said identities holds. These
cases seem to be rare, but it would, nevertheless, be interesting to know why
they occur.
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Although M () looks quite similar to the cyclic group matrix M (k,[) to
which it is congruent mod p (one just has to replace m entries —1 of M (k,1)
by certain values —C;f), M () is, in general, not a cyclic group matrix—whose
eigenvalues would lie in a cyclotomic field. Even if det M (a)) = 0, the Galois
group of the characteristic polynomial of M («) may be S,,—1 or Sy,—o (over
the field of definition Q((,) of M(«)). This happens, for instance, in the
above case m =8, ¢ = 17, a = (X) — (8X) — (16X + 1), where this group
is Sg.

Finally, we return to the inclusion lemma (Proposition 1), which offers
an easy way to prove the possibility of z; = z9 + x3 in the regular case.
Another example for this fact is the following

PRrROPOSITION 2. Let G be a finite simple linear group, i.e., G =
PSL(n,q), ¢ = p°, n > 3 orn = 2 and q > 4. Then K[G] contains an
admissible element o of the shape (3).

Proof. If n > 3, we consider the embedding

AGL(1,q) — SL(n,q) : aX + b+ a”t

Since PSL(n,q) = SL(n,q)/{c- I, : ¢ = 1}, we see that AGL(1,q) is
isomorphic to a subgroup of PSL(n, q). For G’ = AGL(1, q) the group ring
K|[G'] contains an admissible element if ¢ > 2 (see Remark 3 of Section 2).
In the case ¢ = 2 we have

PSL(n, q) = GL(n,q) 2 GL(3,q) = PSL(2,7) D ASL(1,7)

(see [5, p. 183]), which concludes the proof in this case (observe 4 + 4 =
1 € F7). In the case n = 2 we use PSL(2,q) 2 ASL(1,q), which proves
the assertion for p > 7,e > 1 (see introduction) and p = 2,e > 2 (where
ASL(1,q) = AGL(1,q)). In the remaining cases one can use PSL(2,5) =
A5 2 A4 and PSL(2,3) = A4 (lbld) ]

The Atlas of Finite Groups [1] gives the impression that a finite sim-
ple non-abelian group always contains a subgroup = S3 or = Ay, with the
exception of the Suzuki groups Sz(q), ¢ = 22"*!. These, however, contain
AGL(1,5), as can be extracted from [7, p. 190]. So it seems realistic that
the assertion of Proposition 2 remains true for all finite simple nonabelian
groups.



370

K. Girstmair

Acknowledgements. The author gratefully acknowledges the support

by the Austrian Science Fund (FWF Project P16641-N12).

[1]
2]
(3]
[4]
[5]
[6]
[7]
(8]

[9]

[10]
[11]
[12]

[13]

References

J. H. Conway et al., Atlas of Finite Groups, Clarendon Press, Oxford, 1985.

M. Drmota and M. Skalba, Relations between polynomial roots, Acta Arith. 71
(1995), 65-77.

K. Girstmair, Linear relations between roots of polynomials, ibid. 89 (1999), 53-96.
L. K. Hua, Introduction to Number Theory, Springer, Berlin, 1982.

B. Huppert, Endliche Gruppen I, Springer, Berlin, 1967.

—, Character Theory of Finite Groups, de Gruyter, Berlin, 1998.

B. Huppert and N. Blackburn, Finite Groups III, Springer, Berlin, 1982.

V. A. Kurbatov, On equations of prime degree, Mat. Sb. 43 (1957), 349-366 (in
Russian).

V. A. Kurbatov and A. N. Novogrudskaya, Linear relations of conjugate elements
in the Galois field of a solvable equation of degree p?, Sverdlovsk. Gos. Ped. Inst.
Uchen. Zap. 54 (1967), 104-114 (in Russian).

F. Lalande, La relation linéaire a = b+ c+ ---+t entre les racines d’un polynéme,
preprint, 10 pp.

M. Lederer, Relationenmoduln fiir konjugierte algebraische Zahlen, Dissertation,
Innsbruck, 2004.

A. Similarides, Upper bounds for prime divisors of Wendt’s determinant, Math.
Comp. 71 (2002), 415-427.

L. C. Washington, Introduction to Cyclotomic Fields, Springer, New York, 1982.

Institut fiir Mathematik
Universitat Innsbruck
Technikerstr. 25/7

A-6020 Innsbruck, Austria

E-mail: Kurt.Girstmair@Quibk.ac.at

Received on 8.3.2006
and in revised form on 19.4.2006 (5157)



