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1. Introduction. The aim of this work is to give a very explicit way
to estimate the rank of an elliptic curve over Q using 3-descent. We will
suppose that the elliptic curve has a rational 3-torsion subgroup. This al-
lows us to pick an affine model of the form y2 = x3 + D(ax + b)2. After
introducing the descent maps, we explain in Section 2 how to use 3-descent.
Then we show how to compute principal homogeneous spaces in the case
D = 1 in Section 3. We do the same in Section 4 for the case D 6= 1,
which is a bit more technical. Sections 5 and 6 include all the results needed
for local solubility. For the sake of brevity we do not include all the de-
tails of the calculations, they are of course available upon request. In Sec-
tion 7, one finds several examples of families where we find the Q-rank,
and we also give some applications, such as prime values of certain cubic
forms.

The main strategy here is improving on [2, Section 8.4], where this ex-
plicit way of doing descent is explained for 2-descent. The 3-Selmer group
has also been studied in [17] and [5]. See for example [3, 4, 10] and their ref-
erences for a more general treatment. For some other articles on the subject
one could refer to [1, 6, 13, 15, 11].

1.1. The geometric setting. We recall a few facts about descent on el-
liptic curves. Let E/k be an elliptic curve over a number field k and let
n ≥ 2 be an integer. First, using Galois cohomology, we have the short
exact sequences:

0 // E(k)/nE(k)

��

δ // H1(k,E[n])

Q
v resv

��

//

ϕ

''PPPPPPPPPPPP H1(k,E)[n]

Q
v resv

��

// 0

0 //
Y
v

E(kv)/nE(kv)
Q

v δv //
Y
v

H1(kv, E[n]) //
Y
v

H1(kv, E)[n] // 0
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We recall the definition of the n-Selmer group:

Sel(n)(k,E) := Ker
(
ϕ : H1(k,E[n])→

∏
v

H1(kv, E)[n]
)
.

We also recall the definition of the Tate–Shafarevich group:

X(k,E) := Ker
(
H1(k,E)→

∏
v

H1(kv, E)
)
.

This leads to the following short exact sequence:

0→ E(k)/nE(k)→ Sel(n)(k,E)→X(k,E)[n]→ 0,

where one can show that every term is a finite group, so that

|Sel(n)(k,E)| = |E(k)/nE(k)| |X(k,E)[n]|,
which gives

nrk(E/k) =
|Sel(n)(k,E)|

|E(k)tors/nE(k)tors| |X(k,E)[n]|
.

Thus, to get the exact value of the rank rk(E/k), we must compute the
n-Selmer group and the n-torsion part of the Tate–Shafarevich group.

Recall that a twist of an object X defined over k is an object Y defined
over k that is isomorphic to X over k̄.

Since Sel(n)(k,E) ⊂ H1(k,E[n]), if we find a geometric object X such
that Autk̄(X) ∼= E[n], we can interpret the elements of the n-Selmer group as
twists of the object X. This idea gives rise to different interpretations of the
elements of the n-Selmer group, as is clearly explained in [3, 4]. In the present
paper we are going to describe explicitly the geometrical interpretation of
those elements that we now recall. First, if O denotes the identity element of
E, the complete linear system given by |n.O| induces a morphism E → Pn−1.

Definition 1.1. A diagram [C → S] is a morphism from a torsor C
under E to a variety S. We will say that two diagrams [C1 → S1] and
[C2 → S2] are isomorphic if the following diagram is commutative:

C1
//

∼=
��

S1

∼=
��

C2
// S2

We will define a Brauer–Severi diagram [C → S] to be a twist of the diagram
X = [E → Pn−1]. In particular, S is a twist of Pn−1, called a Brauer–Severi
variety .

Following [4], we interpret an element of the n-Selmer group of E as a
Brauer–Severi diagram [C → S] such that the curve C has points everywhere
locally, hence one can take S = Pn−1.
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We now specialize to the case n = 3. In this particular case, the Brauer–
Severi diagrams we are looking for are of the type [C → P2], the curve C
being a plane cubic with points everywhere locally, given with an action of
E[3] on it by linear automorphisms.

1.2. The arithmetic setting. For the proofs of all the results given in this
section, we refer to [2, Section 8.4], although there are other pointers in the
literature. The 3-Selmer group in this particular case has also been studied
in [17] and [5].

Let E be an elliptic curve defined over Q and having a rational 3-torsion
subgroup that we denote {O, T,−T}. Let us stress here that the point T
does not need to be rational itself. It is easy to see that E can be given by
an affine equation of the type

y2 = x3 +D(ax+ b)2

with a, b, and D in Q, and the discriminant of E is 16b3D2(4Da3− 27b), so
we must have b and D nonzero and 4Da3 − 27b 6= 0. The 3-torsion point T
is equal to (0, b

√
D), so is rational if and only if D ∈ Q∗2.

Lemma 1.2. There exists a unique equation of E of the form y2 =
x3 +D(ax+ b)2, where a, b, and D are in Z, D is a fundamental discrim-
inant (including 1), b > 0, and if we write b = b1b

3
3 with b1 cubefree then

(a, b3) = 1.

Proof. We can write uniquely D = D0f
2, where D0 is a fundamen-

tal discriminant and f ∈ Q∗, so our initial equation can be written y2 =
x3+D0(a′x+b′)2 with a′ = fa and b′ = fb. Changing (x, y) into (x/u2, y/u3)
changes (a′, b′) into (ua′, u3b′), so it is clear that we may assume that a and
b are in Z, and if b = b1b

3
3 and g = (b3, a), changing (x, y) into (xg2, yg3)

changes (a, b) into (a/g, b/g3), hence (a, b3) into (a/g, b3/g), so ensures that
(a, b3) = 1. Finally, changing (a, b) into (−a,−b) ensures that b > 0. Unique-
ness is immediate and left to the reader.

From now on, we will always assume that the equation of our curve
is given and satisfies the conditions of the above lemma (although we will
mainly use the fact that D is a fundamental discriminant), and we will
denote by K the field K = Q(

√
D) of discriminant D, which will be equal

to Q if D = 1 and to a quadratic field otherwise.
Given such a curve E, our aim is to give an estimate for the rank of E,

and if possible the rank itself, using 3-descent. We first recall the definition
and main properties of the 3-descent maps.

Definition 1.3. Let E be an elliptic curve defined over Q, choose an
affine model given by an equation y2 = x3+D(ax+b)2 with D a fundamental
discriminant, and let T = (0, b

√
D) be a 3-torsion point.
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(1) The 3-descent map α is a map from E(Q) to the subgroup G3 of
classes of elements of K∗/K∗3 whose norm is a cube (or G3 =
Q∗/Q∗3 if D = 1) defined by α(O) = 1, α((0, b)) = 1/(2b) when
D = 1, and in general by α((x, y)) = y − (ax+ b)

√
D.

(2) The curve Ê is defined by a similar equation y2 =x3 + D̂(âx+ b̂)2,
where D̂ = −3D, â = a, and b̂ = (27b−4a3D)/9, and the correspond-
ing 3-descent map is denoted α̂. Moreover, we have T̂ = (0, b̂

√
D̂) =

(0, (27b− 4a3D)
√
−3D/9).

(3) The map φ from E to Ê is defined by

φ(P ) =
(
x3 + 4D((a2/3)x2 + abx+ b2)

x2
,
y(x3 − 4Db(ax+ 2b))

x3

)
for P 6= O and P 6= ±T , and φ(P ) = Ô if P = O or P = ±T , and
the map φ̂ from Ê to E is defined in the same way, replacing the
coefficients of E by those of Ê, except that the x-coordinate must
be divided by 9 and the y-coordinate by 27.

Proposition 1.4.

(1) φ and φ̂ are dual 3-isogenies (in particular group homomorphisms)
between E and Ê, so that φ̂◦φ and φ◦ φ̂ are the multiplication-by-3
maps on E and Ê respectively. The kernel of φ (over Q) is {O,±T},
and that of φ̂ is {Ô,±T̂}.

(2) The map α is a group homomorphism from E(Q) to G3, and Ker(α)
= φ̂(Ê(Q)).

2. 3-Descent with a rational 3-isogeny. We now explain how the use
of the 3-descent maps α and α̂ gives a precise estimate on the rank of E (and
of the isogenous curve Ê, which has the same rank). Before proving the main
result (Proposition 2.2 below), we need the following precise description of
the rational 3-torsion points of an elliptic curve (evidently, if an elliptic
curve does not have a rational 3-torsion subgroup, in other words if it does
not have an equation of the form y2 = x3 + D(ax + b)2, the only rational
3-torsion point is O).

Lemma 2.1. Let y2 = x3 + D(ax + b)2 be the equation of an elliptic
curve E with rational 3-torsion subgroup, and assume as usual that this
equation is written so that D is a fundamental discriminant. The rational
3-torsion points of E are the following :

(1) If D = 1: the points O and (0,±b).
(2) If D = −3 and 2(9b + 4a3) = t3 is the cube of a rational number
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t 6= 0: the point O and the points P such that

x(P ) =
t2

3
+

3
t2

(
4ab+

16
9
a4

)
+

4a2

3
.

(3) Otherwise, only the point O.

Proof. Let Q=(x, y) be a 3-torsion point. Then x([2]Q) = x(−Q) = x(Q),
which gives, using the formulas on p. 59 of [16] for the duplication law on
the elliptic curve E,

x(3x3 + 4Da2x2 + 12Dabx+ 12Db2) = 0.

Let P (x) = 3x3 + 4Da2x2 + 12Dabx + 12Db2. Note that Disc(P ) =
−48D2(−27b+ 4Da3)2b2. So either x = 0, and then y2 = Db2, or P (x) = 0
and after an easy calculation we obtain

y2 = −D
3

(ax+ 3b)2.

It is then straightforward to find the rational solutions, keeping in mind that
D is a fundamental discriminant.

We can now give the following exact analogue of Proposition 8.2.8 of [2],
whose proof we follow verbatim.

Proposition 2.2. Let E be the elliptic curve y2 = x3 +D(ax+ b)2 and
Ê the 3-isogenous curve with equation y2 = x3− 3D(ax+ (27b− 4a3D)/9)2

as above, and let α and α̂ be the corresponding 3-descent maps. Then

|Im(α)| |Im(α̂)| = 3r+δ,

where r is the rank of E (and of Ê), δ = 1 if D = 1 or D = −3, and δ = 0
otherwise.

Proof. If Et denotes the torsion subgroup of E we have

E(Q)/3E(Q) ' Et(Q)/3Et(Q)⊕ (Z/3Z)r.

Set G = Et(Q). We know that if G is a finite abelian group then G/3G
is noncanonically isomorphic to G[3], in other words to the group of 3-
torsion points of G. Thus by Lemma 2.1, Et(Q)/3Et(Q) is trivial unless
either D = 1, or D = −3 and 2(9b+ 4a3) is a cube. Write δD,n for the usual
Kronecker δ-symbol, and γ(a, b) for the truth value of the condition that
2(9b+ 4a3) is a cube. With this notation we can thus write

|E(Q)/3E(Q)| = 3r+δD,1+δD,−3γ(a,b).

On the other hand, let us consider our 3-isogenies φ and φ̂. Since φ̂ ◦ φ is
the multiplication-by-3 map, we evidently have

|E(Q)/3E(Q)| = [E(Q) : φ̂(Ê(Q))][φ̂(Ê(Q)) : φ̂(φ(E(Q)))].
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Now for any group homomorphism φ̂ and subgroup B of finite index in an
abelian group A we evidently have

φ̂(A)

φ̂(B)
' A

B + Ker(φ̂)
' A/B

(B + Ker(φ̂))/B
' A/B

Ker(φ̂)/(Ker(φ̂) ∩B)
.

Thus

[φ̂(A) : φ̂(B)] =
[A : B]

[Ker(φ̂) : Ker(φ̂) ∩B]
.

We are going to use this formula with A = Ê(Q) and B = φ(E(Q)). We
know that Ker(φ̂) (over Q) has three elements Ô and ±T̂ , and T̂ ∈ φ(E(Q))
if and only if D = −3, so (once again over Q), Ker(φ̂) = {O,±T̂} if D = −3,
and is trivial otherwise. Thus, if D 6= −3 we have [Ker(φ̂) : Ker(φ̂)∩B] = 1.
Assume now that D = −3, so that the equation of E is y2 = x3−3(ax+b)2,
and that of Ê can be taken to be y2 = x3 + (3ax + (9b + 4a3))2. Then
[Ker(φ̂) : Ker(φ̂) ∩ B] = 1 if T̂ ∈ φ(E(Q)), and is equal to 3 otherwise. We
know (see for instance [2, Proposition 8.4.4]) that T̂ ∈ φ(E(Q)) if and only
if 2(9b+ 4a3) is a cube, in other words with the notation introduced above,
if and only if γ(a, b) = 1. Thus,

[φ̂(Ê(Q)) : φ̂(φ(E(Q)))] =
[Ê(Q) : φ(E(Q))]

3δD,−3(1−γ(a,b))
.

Putting everything together we obtain

3r+δD,1+δD,−3γ(a,b)

= |E(Q)/3E(Q)| = [E(Q) : φ̂(Ê(Q))][φ̂(Ê(Q)) : φ̂(φ(E(Q)))]

= [E(Q) : φ̂(Ê(Q))][Ê(Q) : φ(E(Q))]3δD,−3(γ(a,b)−1).

On the other hand, the 3-descent map α on E(Q) has kernel φ̂(Ê(Q)), so
[E(Q) : φ̂(Ê(Q))] = |Im(α)|, and similarly [Ê(Q) : φ(E(Q))] = |Im(α̂)|, so
finally we obtain

|Im(α)| |Im(α̂)| = 3r+δD,1+δD,−3 ,

proving the proposition.

It follows from this proposition that to compute the rank it is sufficient
to compute the cardinality of Im(α) and of Im(α̂), which we do separately.
As in the case of 2-descent, we cannot give an algorithm for this, since there
is an obstruction embodied in the 3-part of the Tate–Shafarevich group of E,
but the method works in many cases. The goal of the next sections is thus
to compute |Im(α)|.

3. The case D = 1. We first treat the case D = 1. We choose the
equation of our elliptic curve as y2 = x3 + (ax + b)2 with a and b as in
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Lemma 1.2, and we recall that the fundamental 3-descent map α from E(Q)
to Q∗/Q∗3 is defined by α(O) = 1, α((0, b)) = 1/(2b), and α((x, y)) =
y − (ax+ b) for all other points of E(Q).

Note: For brevity, when we speak of a solution to a homogeneous equa-
tion we always mean a nontrivial solution, where the variables are not all
equal to 0. Similarly, when we speak of a solution to a homogeneous con-
gruence modulo pk for some prime p, we always mean a solution where all
the variables are p-integral, and at least one of them has p-adic valuation
equal to 0, typically min(vp(X), vp(Y ), vp(Z)) = 0.

Theorem 3.1. Keep the above notation.

(1) An element u ∈ Q∗/Q∗3 belongs to the image of α if and only if for
some (or any) representative u ∈ Q∗ the homogeneous cubic equation

uX3 + (1/u)Y 3 + 2bZ3 − 2aXY Z = 0

has an integer (or rational) solution.
(2) More precisely , for u = 1 it has the solution (X,Y, Z) = (1,−1, 0),

for u = 1/(2b) it has the solution (X,Y, Z) = (0, 1,−1), and if y −
(ax + b) = uz3 for some z ∈ Q∗ it has the solution (X,Y, Z) =
(z2,−x, z). Conversely , if (X,Y, Z) is a solution of the equation
with Z 6= 0 then (x, y) = (−XY/Z2, (uX3 − (1/u)Y 3)/(2Z3)) is a
preimage of u in E(Q), and z = X/Z.

(3) If the above equation has a rational solution and if u is the unique
positive integer cubefree representative of u, then u1u2 | (2b), where
u = u2

1u2 with the ui squarefree and coprime, and the solubility of
the equation is equivalent to that of

u1X
3 + u2Y

3 + (2b/(u1u2))Z3 − 2aXY Z = 0.

Proof. (1) and (2). The cases u = 1 and u = 1/(2b) (corresponding to
the points O and T = (0, b) respectively) being clear, we assume that we are
not in these cases. Then by definition if u belongs to the image of α there
exist (x, y) ∈ E(Q) and z ∈ Q∗ such that uz3 = y − (ax+ b), and if we set
X = z2, Y = −x, and Z = z then

uX3 + (1/u)Y 3 + 2bZ3 − 2aXY Z =
1
u

(u2z6 + 2uz3(ax+ b)− x3)

=
1
u

((uz3 + ax+ b)2 − x3 − (ax+ b)2)

=
1
u

(y2 − (x3 + (ax+ b)2)) = 0,

as claimed. Note that since z ∈ Q∗ we have Z 6= 0. Conversely, let
(X,Y, Z) be a solution to our equation with Z 6= 0. If we set x =
−XY/Z2 and y = (uX3 − (1/u)Y 3)/(2Z3), we have x3 + (ax + b)2 =
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(−X3Y 3 + Z2(bZ2 − aXY )2)/Z6, and since by the cubic equation we have
−2Z(bZ2 − aXY ) = uX3 + (1/u)Y 3, it follows that

x3 + (ax+ b)2 = ((uX3 + (1/u)Y 3)2 − 4X3Y 3)/(4Z6)

= (uX3 − (1/u)Y 3)/(4Z6) = y2,

so (x, y) ∈ E(Q). Furthermore,

α((x, y)) = y − (ax+ b) = (uX3 − (1/u)Y 3)/(2Z3)− (bZ2 − aXY )/Z2

= (1/(2Z3))(uX3 − (1/u)Y 3 − 2Z(bZ2 − aXY ))

= (1/(2Z3))(2uX3) = u(X/Z)3,

so is equal to u up to cubes, hence (x, y) is indeed a preimage of u, as
claimed.

For (3), let u be the (unique) positive integer cubefree representative
of u, and write u = u2

1u2 with the ui squarefree and coprime. Replacing Y
by u1u2Y in the cubic equation we obtain the equivalent equation

u2
1u2X

3 + u1u
2
2Y

3 + 2bZ3 − 2au1u2XY Z = 0.

It is clear that this homogeneous cubic equation has a rational solution
if and only if it has an integer solution, and we may in addition assume
that gcd(X,Y, Z) = 1. Assume by contradiction that u1u2 - 2b. Since u1u2

is squarefree, this means that there exists a prime p such that p |u1u2 and
p - 2b. Since exchanging X and Y in the above equation is equivalent to
the exchange of u1 and u2, we may assume that p |u1, hence p -u2. Since
p divides the first, second and fourth terms of the equation it divides the
third, and since p - 2b, we deduce that p |Z. Thus p2 divides the first, third
and fourth terms, so it divides the second, and since u1 is squarefree and
p -u2, we deduce that p |Y . Thus, p3 divides the second, third and fourth
terms, so it divides the first, and again since u1 is squarefree and p -u2, we
deduce that p |X, contradicting the assumption gcd(X,Y, Z) = 1. We can
thus divide by u1u2 to obtain the final equation given in (3).

Geometric interpretation. The plane cubic equation in (1) of Theorem 3.1
is the equation of a twist C of the elliptic curve Ê. We can recover a linear
action by linear automorphisms by doing the following: we pick s ∈ Q∗ and
consider the action

(X : Y : Z) 7→ (sX : (1/s)Y : Z).

This action gives a curve isomorphic to C with u replaced by us3. This is
what was predicted in the geometrical interpretation of [3, 4] recalled in the
introduction.

4. The case D 6= 1. We now assume specifically that D 6= 1, so that
K = Q(

√
D) is a genuine quadratic field. Note that to use 3-descent with
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a rational 3-torsion subgroup, we must compute the image of the 3-descent
map both for the curve E and for a 3-isogenous curve Ê whose D̂ is such that
D̂ = −3D. Thus, we always need to consider curves with D 6= 1. We will
denote by τ the nontrivial element of the Galois group Gal(K/Q), so that
τ(
√
D) = −

√
D and N = NK/Q the norm from K to Q, both for elements

and for ideals. If u ∈ K∗ we denote by [u] the class of u in K∗/K∗3.

4.1. Description of the image of α. The equation of our curve is y2 =
x3+D(ax+b)2, and the 3-descent map is a map α from E(Q) to the subgroup
G3 of K∗/K∗3 of classes [u] of elements u such that uτ(u) = NK/Q(u) ∈ Q∗3,
defined by α(O) = 1 and α((x, y)) = y − (ax+ b)

√
D for all other points of

E(Q) (note that T = (0, b
√
D) /∈ E(Q)). The image of α can be described

as follows.

Theorem 4.1. Keep the above notation.

(1) An element [u] ∈ G3 ⊂ K∗/K∗3 belongs to the image of α if and only
if for some (or any) representative u ∈ K∗ of the form u = v2τ(v)
the homogeneous cubic equation

2v2X
3 + 2Dv1Y

3 +
2b

v2
1 −Dv2

2

Z3

+ 6v1X
2Y + 6v2DXY

2 + 2a(X2Z −DY 2Z) = 0

has an integer (or a rational) solution, where we write v = v1 +
v2

√
D.

(2) More precisely , for u = 1 it has the solution (X,Y, Z) = (1, 0, 0), and
if y − (ax + b)

√
D = v2τ(v)z3 for some z ∈ Q∗ it has the solution

(X,Y, Z) = (z1, z2, 1), where z = z1+z2

√
D. Conversely , if (X,Y, Z)

is a solution of the equation with Z 6= 0 then

(x, y) =
(
vτ(v)

X2 −DY 2

Z2
, vτ(v)

<(v(X + Y
√
D)3)

Z3

)
is a preimage of u in E(Q) with z = (X+Y

√
D)/Z, where by abuse

of notation we write <(α) = (α+ τ(α))/2.

Proof. If we set a′ = a
√
D and b′ = b

√
D, and ignore for the moment all

rationality questions, the equation of our curve is y2 = x3 + (a′x+ b′)2, so if
y−(a′x+b′) = y−(ax+b)

√
D = uz3 then (X,Y, Z) = (z2,−x, z) is a solution

to the modified cubic equation uX3 +(1/u)Y 3 +2b
√
DZ3−2a

√
DXY Z = 0,

and conversely if (X,Y, Z) is such a solution then (x, y) = (−XY/Z2,
(uX3 − (1/u)Y 3)/(2Z3)) is a point on the curve. So formally there is no
problem. We must now add the condition that not only (x, y) ∈ E(K), but
(x, y) ∈ E(Q).
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We first choose suitable representatives u. Let for the moment u be any
representative of [u], so that uτ(u) = µ3 for some µ ∈ Q. This implies that
(u2/µ3)τ(u2/µ3) = 1, hence by a weak form of Hilbert’s Theorem 90, we have
u2 = µ3v/τ(v) for some v ∈ K, hence u = (u/µ)3τ(v)/v = (u/(µv))3v2τ(v).
Since u is defined up to cubes, we may therefore assume that u = v2τ(v) for
some v ∈ K∗. Thus uτ(u) = µ3 with µ = vτ(v). Multiplying v by a suitable
rational number we can assume that v ∈ ZK .

Now the condition x ∈ Q means that XY/Z2 ∈ Q, so that Y/Z =
λτ(X/Z) for some λ ∈ Q∗. The condition y ∈ Q is thus that uα3 −
(λ3/u)τ(α)3 ∈ Q, where α = X/Z. Replacing u by v2τ(v) and dividing by
the rational number vτ(v) gives the condition vα3− (λ3/(v3τ(v)2))τ(α)3∈Q.
Setting β = vα3 and r = (λ/(vτ(v)))3 ∈ Q∗ gives β − rτ(β) ∈ Q, so if
β = s + t

√
D, we have β − rτ(β) = s + t

√
D − r(s − t

√
D), hence the

condition is t(r+ 1) = 0, in other words either r = −1, so λ = −µ, or t = 0.
If t = 0 then β = vα3 ∈ Q, hence u = v2τ(v) = (β/(α2τ(α)))3, so [u] is

trivial. It follows that the case t = 0 corresponds to the unit element of G3,
which we now exclude.

Thus we may assume that λ = −µ. The cubic equation is thus
uα3 − τ(uα3) + 2a

√
Dµατ(α) + 2b

√
D = 0, and since µ = vτ(v) this gives

(vα3 − τ(vα3))/(2
√
D) + aατ(α) + b/(vτ(v)) = 0. Recall that v is given, so

write v = v1 + v2

√
D and α = x1 + x2

√
D. The above equation is thus

2v2x
3
1 + 2Dv1x

3
2 + 6v1x

2
1x2 + 6v2Dx1x

2
2 + 2a(x2

1−Dx2
2) + 2b/(v2

1 −Dv2
2) = 0,

so setting x1 = X/Z, x2 = Y/Z with X, Y , Z in Z we obtain finally

2v2X
3 + 2Dv1Y

3 + (2b/(v2
1 −Dv2

2))Z3

+ 6v1X
2Y + 6v2DXY

2 + 2a(X2Z −DY 2Z) = 0.

The formulas for (X,Y, Z) knowing x and y and vice versa are immediately
obtained by replacing the corresponding quantities in the formula given for
the case D = 1.

Remarks.

(1) The cubic equation in (1) of Theorem 4.1 can be written as

(v(X + Y
√
D)3 − τ(v)(X − Y

√
D)3)/

√
D

+ 2aZ(X + Y
√
D)(X − Y

√
D) + 2b/(vτ(v))Z3 = 0.

(2) By the theorem, the solubility of the equation depends only on the
class [u] of u, hence we can change v into vγ3 for any γ ∈ K∗,
or v into vr for any r ∈ Q∗ without changing the solubility of the
equation. This is of course clear directly.

(3) Since the image Im(α) of α is a group, [u] ∈ Im(α) if and only if
[1/u] ∈ Im(α), so the solubility for v is equivalent to that for v−1.
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Furthermore, since τ(u) = u−1(vτ(v))3, we have [τ(u)] ∈ Im(α), so
the solubility for v is equivalent to that for τ(v).

(4) Geometric interpretation. The plane cubic equation in (1) of Theo-
rem 4.1 is the equation of a twist C of the elliptic curve Ê. We get
a linear action by linear automorphisms by doing the following: we
pick s ∈ Q∗ and consider the action

(X : Y : Z) 7→ (sX : sY : (1/s2)Z).

This action gives a curve isomorphic to C with u replaced by us9.

The reader will notice that we have not given an analogous result to (3)
of Theorem 3.1, which is essential since it is necessary to check only a finite
number of elements of G3. We do this in the next subsection.

4.2. Reduction of elements of G3. We begin with the following lemma.

Lemma 4.2. Assume that x and y are rational numbers such that y2 =
x3 + D(ax + b)2, and write x = m/d2 and y = n/d3 with gcd(m, d) =
gcd(n, d) = 1 and d > 0. Finally , set

f = gcd(n− d(am+ bd2)
√
D,n+ d(am+ bd2)

√
D),

where the GCD is understood in the sense of ideals.

(1) There exist integers f and g such that g is a squarefree integer divid-
ing D, and f = fgd, where d is the unique ideal such that d2 = gZK
(when D = 1 we have of course g = 1 and d = Z).

(2) If we write f = f1q
3 with f1 cubefree then gf1q

2 | 2b, and in partic-
ular g | gcd(D, 2b).

(3) If p | f1 then p is split in K/Q, and in particular g and f1 are co-
prime.

Proof. The case D = 1, which we do not need, is left to the reader, so
assume that D 6= 1, so that K is a quadratic field. We can write uniquely
f = Fd, where F ∈ Z and d is an integral ideal of K which is primitive,
in other words not divisible by any element of Z other than ±1. Evidently
d cannot be divisible by inert primes; since f is the GCD of two conjugate
elements it is stable by conjugation, hence d cannot be divisible by an ideal
p above a split prime p, otherwise it would also be divisible by τ(p), hence
by p = pτ(p). Finally, since p2 = pZK for a ramified prime p, d cannot be
divisible by a ramified prime to a power higher than the first, so d is equal to
a product of distinct ramified primes. Thus d =

∏
p∈S0

p for some set S0 of
ramified primes p, and if g =

∏
p∈S0

p, where p is the prime number below p,
we thus have f = F

∏
p|g p and g |D, hence also f2 = F 2g.
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Let us now use our equation. Replacing x and y by m/d2 and n/d3 we
obtain the equation

(n− d(am+ bd2)
√
D)(n+ d(am+ bd2)

√
D) = n2 −Dd2(am+ bd2)2 = m3.

It follows that F 2g |m3. Let p | g and p be the prime ideal above p. Since
the two factors are conjugate, if v ≥ 1 is the p-adic valuation of the first
factor, it is also that of the second. This implies that both v = vp(f) and
3vp(m) = 2vp(f), in other words

3vp(m) = vp(f) = v = vp(f2)/2 = vp(F 2g)/2 = vp(F 2g) = 1 + 2vp(F )

since p | g and g is squarefree. We deduce that vp(F ) ≡ 1 (mod 3), and in
particular vp(F ) ≥ 1, so p |F , proving that g |F . Thus, F = fg for some
f ∈ Z. The same reasoning shows that if p is any inert or ramified prime
(dividing f or not) then 3vp(m) = vp(f), so 3 | vp(f).

Since f2g3 |m3 we have g |m and f2 | (m/g)3. Write f = f1q
3 with f1

cubefree. For all primes p we have vp(m/g) ≥ vp(q) + d2vp(f1)/3e. Since
0 ≤ vp(f1) ≤ 2 we have d2vp(f1)/3e = vp(f1), so f1q

2 |m/g. Note that
f2 = f2g3 = f2

1 g
3q6, so since for any inert or ramified prime we have 3 | vp(f),

for such a prime we have vp(f1) = 0, so f1 is only divisible by split primes.
In particular, it is coprime to D, hence to g.

Since (n − d(am + bd2)
√
D)/(fg) is an algebraic integer and D is a

fundamental discriminant, it follows that fg | 2 gcd(n, d(am + bd2)), hence
fg = gf1q

3 | 2 gcd(n, d(am + bd2)). Since 2bd3 = 2d(am + bd2) − 2adm and
gf1q

2 |m we deduce that 2bd3 ≡ 0 (mod gf1q
2). Since d and n are coprime

there exist integers u and v such that un+vd3 = 1, hence 2b = 2bvd3 +2bun,
and since gf1q

2 | 2bd3 and gf1q
2 | 2n, we have gf1q

2 | 2b, as claimed.

Corollary 4.3. Keep the above notation, and let [u] ∈ Im(α) ⊂ G3.
There exists an integral ideal v of K such that uZK = v2τ(v)q3 for some
ideal q of K, gcd(v, τ(v)) = 1 and f1 = NK/Q(v) is a cubefree divisor of 2b
divisible only by primes which are split in K/Q.

Proof. The above lemma states that if we set

f = gcd(n− d(am+ bd2)
√
D,n+ d(am+ bd2)

√
D)

there exist integers f1, g, and q in Z and an ideal d ∈ K such that f = f1q
3gd

with f1 cubefree divisible only by split primes, g | gcd(D, 2b), gZK = d2,
and gf1q

2 | 2b. Thus f = f1(qd)3. Set a− = (n − d(am + bd2)
√
D)/f and

a+ = (n+ d(am+ bd2)
√
D)/f, so that gcd(a−, a+) = 1 and our equation

implies a−a+ = m3/f2 (since we work with ideals, we lose some unit infor-
mation here). Since f1 is cubefree and divisible only by split primes, it is
also cubefree as an ideal, and the condition f2 |m3 implies as above that
f1(qd)2 |m, hence gf1q

2 |m (this time in Z), so the equation now reads

a−a+ = f1(m/(gf1q
2))3ZK .
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Since f is stable by conjugation, it is clear that a+ = τ(a−), so this equa-
tion gives the norm of a±. In any case, write a− = f−q3

−, a+ = f+q3
+ with

f± cubefree, so that in particular gcd(f−, f+) = 1, and also f+ = τ(f−)
and q+ = τ(q−). At the level of ideals our equation is thus f−f+(q−q+)3 =
f1(m/(gf1q

2))3ZK . As we already mentioned, f1 is also cubefree in K, and
since f− and f+ are coprime and cubefree, by uniqueness of the decom-
position into the product of a cubefree ideal and a cube it follows that
q−q+ = m/(gf1q

2)ZK and f−f+ = f1ZK . In particular, f− | f1.
Now recall that the 3-descent map α is defined on an affine point as the

class modulo cubes of y − (ax+ b)
√
D = (n− d(am+ bd2)

√
D)/d3. Thus

α((x, y))ZK = fa− = f1(qd)3f−q3
− = f1f−(qdq−)3 = v2τ(v)q3

1

for some ideal q1, with v = f−, as claimed.

Remark. It is clear that the condition gcd(v, τ(v)) = 1 implies that v
is primitive, in other words the only elements of Z which divide it are ±1.
Furthermore, since v2τ(v) = uq−3, the ideal class of v in Cl(K) belongs in
fact to (Cl(K)/Cl(K)3)[τ + 2], where for any group G and map φ from G
to G, G[φ] denotes the elements of G killed by φ, in other words the kernel
of φ.

Now recall the definition of a 3-virtual unit (or virtual cube) and 3-Selmer
group: an element u ∈ K∗ is a virtual cube if uZK = q3 is the cube of an
ideal. The group of virtual cubes modulo cubes of elements is called the
3-Selmer group of K and denoted S3(K). It is clear that S3(K) ⊂ G3, and
it is well-known and easy that we have a natural exact sequence

1→ U(K)/U(K)3 → S3(K)→ Cl(K)[3]→ 1.

Let as usual I(K) denote the group of (nonzero) fractional ideals of K, and
let Gc3 be the subgroup of I(K)/I(K)3 of classes of ideals whose norm is a
cube.

Lemma 4.4. We have a natural exact sequence

1→ S3(K)→ G3 → Gc3 → Cl(K)/Cl(K)3 → 1.

Proof. Consider first the map i from G3 to Gc3 which sends a class [u] to
the class of uZK . It is clear that it does send G3 to Gc3. If [u] is sent to the
unit element of Gc3 this means that uZK = q3 for some ideal q, in other words
[u] ∈ S3(K), giving the kernel. Consider now the map sending the class of
an ideal modulo cubes to its ideal class. It defines a map π from Gc3 to
Cl(K)/Cl(K)3. If some ideal a is sent to the unit element of Cl(K)/Cl(K)3

this means that there exist an ideal q and an element γ ∈ K∗ such that
a = γq3. Thus, the class of a modulo cubes of ideals is equal to that of γZK .
Furthermore, the norm of a is a cube, so that of γ also (since −1 is a cube),
hence γ does come from G3, proving exactness at Gc3. Finally, let us show
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that the map π is surjective. Let a be an ideal, representative of an element
of Cl(K)/Cl(K)3. Then since NK/Q(a) = a ∈ Q∗, aNK/Q(a) is in the same
ideal class as a, and its norm is evidently equal to (NK/Q(a))3, so the class
of a is the image of the class of aNK/Q(a) in Gc3, proving surjectivity and
the lemma.

Corollary 4.5. Denote by αi = i◦α the 3-descent map from E to Gc3.
Then

|Im(α)| = |Im(αi)| |S3(K) ∩ Im(α)|.
In particular , if D < 0, D 6= −3, and 3 -h(K) then |Im(α)| = |Im(αi)|.

Proof. By the above lemma the map i induces an injection from
G3/S3(K) to Gc3. Thus, for any subgroup H of G3 the map i induces a
bijection from H/(S3(K)∩H) to i(H). Applying this to the finite subgroup
Im(α) gives the formula of the corollary, and the special case corresponds
to S3(K) = 1.

Note that if γ is a 3-virtual unit then N(γ) = γτ(γ) is a cube. More
generally, if γ is such that N(γ) = n3 is a cube we can write γ = v2τ(v)q3

with v = γ and q = 1/n. Thus, using Corollaries 4.3 and 4.5 and Theorem 4.1
we can compute |Im(α)|. Note however that it will be completely algorithmic
and easy to prove everywhere local solubility of our homogeneous cubic
equations, so that we will compute the 3-Selmer group of E. On the other
hand, for global solubility, either we find a solution with a reasonable search
bound, or we are led to believe that no such solution exists, coming from
a nontrivial element of the 3-part of the Tate–Shafarevich group. Thus, it
is reasonable to give an algorithm which computes both the rank of the
3-Selmer group and a lower bound for the rank of the curve, so which gives
the exact rank when they coincide.

(1) For each class [γ] ∈ S3(K) choose a representative γ ∈ K∗, and check
that the equation of Theorem 4.1 has a solution for v = γ (more on
this later); let TS be the group of [γ] for which it is everywhere locally
soluble (ELS), and TG the subgroup generated by the elements for
which we find that it has a global solution. Thus TG ⊂ T ⊂ TS
⊂ S3(K), where T = S3(K) ∩ Im(α). This will allow us to compute
T exactly if TS = TG, and otherwise if the search bound is sufficiently
large, we suspect (but cannot prove without further work) that in
fact T = TG and that the elements of TS/TG correspond to nontrivial
elements of the 3-part of the Tate–Shafarevich group. Note that using
the fact that TG and TS are groups, it is not necessary to test all
classes [γ], but in fact using the fact that they are even F3-vector
spaces it is sufficient to work on bases of these spaces and use linear
algebra. Finally, choose a set RS of representatives of S3(K)/TS and
a set RG of representatives of TS/TG.
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(2) Let f be the largest positive integer cubefree divisor of 2b divisible
only by split primes, and write f =

∏
1≤i≤s p

vi
i with 1 ≤ vi ≤ 2.

For each pi, let pi be one of the two prime ideals above pi, fixed
once and for all. Find all ideals v of the form v =

∏
1≤i≤s pxivii with

−1 ≤ xi ≤ 1 whose ideal class is a cube (although this seems to be
3s principal ideal tests, it is easy to reduce to only s such tests using
linear algebra, but in practice Cl(K) will be small).

(3) For each ideal v that we have found write v = uq3 for some ideal q
and some element u ∈ K∗, where clearly the class [u] of u in G3 is
determined uniquely modulo multiplication by an element of S3(K).
For the moment, we choose any u as above.

(4) For each [γS ] ∈ RS , where RS is the system of representatives of
S3(K)/TS computed in (1), and any representative γS ∈ K∗, check
whether the equation of Theorem 4.1 is everywhere locally soluble
(ELS) for v = uγS (more on this later). If this is the case for some
[γS ] ∈ RS , there will be only one such class, and then v ∈ Sel(αi),
with evident notation, otherwise v /∈ Sel(αi). In the latter case, we do
nothing more, otherwise for each [γG] ∈ RG, where RG is the system
of representatives of TS/TG computed in (1), and any representative
γG ∈ K∗, check whether the equation of Theorem 4.1 has a global
solution up to a reasonable search bound for v = uγSγR. If this is
the case, once again there will be only one such class, and then v ∈
Im(αi), otherwise we suspect (but cannot be sure) that v /∈ Im(αi).
We let IG be the group generated by the v for which we are sure, so
that IG is a subgroup of Im(αi), probably equal to it.

(5) At the end of this process we have computed the Selmer group cardi-
nality |Sel(α)| = |Sel(αi)| |TS |, and the groups |IG| and TG probably
equal to Im(αi) and T respectively, but in any case satisfying TG ⊂
T ⊂ TS and IG⊂ Im(αi)⊂ Sel(αi), and so |IG| |TG|

∣∣ |Im(α)|
∣∣ |Sel(α)|,

the unknown quantity being |Im(α)|. If |IG| |TG| = |Sel(α)| then of
course these quantities are equal to |Im(α)|. Otherwise, we output
both quantities, and a message saying that we expect |Im(α)| to be
equal to |IG| |TG| and that the elements of Sel(α)/IGTG correspond
to nontrivial elements of the 3-part of the Tate–Shafarevich group.

5. Local solubility of u1X
3 +u2Y

3 +u3Z
3−cXY Z = 0. It remains to

decide whether or not the cubic equations of Theorems 3.1 and 4.1 have a
rational solution. It is unfortunately well-known that there is no algorithm
for doing this. We thus proceed as follows: we first check whether the equa-
tion is everywhere locally soluble (which we will abbreviate to ELS). If not,
there are no rational solutions. Otherwise, either there is an obstruction in
the 3-part of the Tate–Shafarevich group, or there does exist a rational so-
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lution which we can find using a more or less efficient search. If we do find
one, we are done, otherwise we give up and can only give bounds on |Im(α)|,
not its precise value.

Testing ELS is an algorithmic process, but is not completely trivial. In
this section we give such an algorithm. Since the degree is odd there is no
need to look at local solubility in R. We treat the following slightly more
general problem: decide solubility in Qp of the equation

F (X,Y, Z) = u1X
3 + u2Y

3 + u3Z
3 − cXY Z = 0.

For D = 1, in other words, for the equation of Theorem 3.1, we apply the
results that we obtain with u3 = 2b/(u1u2) and c = 2a.

5.1. Reduction of the cubic equation and bad primes. By multiplying
X, Y , and Z by suitable powers of p it is clear that without loss of generality
we may assume that u1, u2, u3 and c are p-integral. Dividing by a suitable
power of p we assume that

min(vp(u1), vp(u2), vp(u3), vp(c)) = 0.

We need further reductions, as follows.

Lemma 5.1. Assume as above that min(vp(u1), vp(u2), vp(u3), vp(c)) = 0.

(1) If min(vp(u1), vp(u2), vp(u3)) > 0 the equation is soluble in Qp.
(2) Assume that vp(c) > 0, so that min(vp(u1), vp(u2), vp(u3)) = 0. The

equation is equivalent to one where either vp(c) = 0 or

max(vp(u1), vp(u2), vp(u3)) ≤ 2.

(3) Assume that vp(c) > 0 and that max(vp(u1), vp(u2), vp(u3)) ≤ 2
(which can be achieved by (2)), and without loss of generality order
the variables so that 0 = vp(u1) ≤ vp(u2) ≤ vp(u3) ≤ 2, and let
v = (vp(u2), vp(u3)). Then:

(a) If v = (1, 2) the equation is not soluble in Qp.
(b) Otherwise the equation is equivalent to one such that either

vp(c) = 0 or vp(u1u2u3) ≤ 2 (and min(vp(u1), vp(u2), vp(u3)) = 0
if vp(c) > 0).

Thus, given a completely general cubic equation of the form u1X
3 +

u2Y
3 +u3Z

3−cXY Z = 0, we use the following procedure, where we distin-
guish the cases c 6= 0 and c = 0.

Assume first that c 6= 0.

(1) Let g = gcd(u1, u2, u3, c), and replace (u1, u2, u3, c) by (u1/g, u2/g,
u3/g, c/g), so that we may now assume that gcd(u1, u2, u3, c) = 1.

(2) For each prime p | c, do the following.
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(a) By dividing u1, u2, u3, and c by suitable powers of p as explained
in the lemma, we reduce to an equation with either vp(c) = 0 or
max(vp(u1), vp(u2), vp(u3)) ≤ 2.

(b) If now vp(c) = 0 or min(vp(u1), vp(u2), vp(u3)) > 0 we do nothing
more for the prime p. Otherwise, reorder the variables ui so that
0 = vp(u1) ≤ vp(u2) ≤ vp(u3) ≤ 2.

(c) If vp(u2) = 1 and vp(u3) = 2, the equation has no solution.
(d) Otherwise, if necessary by changing (u1, u2, u3, c) into

(u2/p
2, u3/p

2, pu1, c/p),

we may assume that also vp(u1u2u3) ≤ 2.

Assume now that c = 0.

(1) Let g = gcd(u1, u2, u3), and replace (u1, u2, u3) by (u1/g, u2/g, u3/g),
so that we may now assume that gcd(u1, u2, u3) = 1.

(2) Replace u1, u2, and u3 by their cubefree part, so that max(vp(u1),
vp(u2), vp(u3)) ≤ 2.

(3) For each prime p |u1u2u3, do the following.

(a) Reorder the variables ui so that 0 = vp(u1)≤ vp(u2)≤ vp(u3)≤ 2.
(b) If vp(u2) = 1 and vp(u3) = 2, the equation has no solution.
(c) Otherwise, if necessary by changing (u1, u2, u3) into

(u2/p
2, u3/p

2, pu1),

we may assume that also vp(u1u2u3) ≤ 2.

This leads to the following definition:

Definition 5.2. We will say that a cubic equation is p-reduced if

min(vp(u1), vp(u2), vp(u3)) = 0

and vp(u1u2u3) ≤ 2 for all primes p dividing c (all primes if c = 0).

Thanks to the above lemma, we can therefore always assume that our
cubic equation is p-reduced, since if min(vp(u1), vp(u2), vp(u3)) > 0 the equa-
tion has a p-adic solution.

Lemma 5.3. Let p be a prime and let u1X
3 +u2Y

3 +u3Z
3− cXY Z = 0

be a cubic equation with p-integral coefficients, not necessarily p-reduced.
If p 6= 3, vp(u1) = vp(u2) = vp(u3) = 0, and vp(27u1u2u3 − c3) = 0, the
equation is soluble in Qp.

Proof. Let us look at the singular points of the cubic over Fp. First,
a point with Z = 0 is singular if u1X

3 + u2Y
3 = 0, 3u1X

2 = 0, and
3u2Y

2 = 0, and since we assume p 6= 3 and vp(ui) = 0, this implies X =
Y = 0, which is not possible. Thus, any singular point has Z 6= 0, so we
may assume that Z = 1. Since p 6= 3, the equation has a singular point
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in Fp for Z = 1 if and only if 3u1X
2 − cY = 0, 3u2Y

2 − cX = 0, and
3u3 − cXY = 0. If there is such a singular point we cannot have c = 0,
otherwise u3 = 0, in other words vp(u3) ≥ 1, a contradiction. Thus Y =
3u1X

2/c, X = 3u2Y
2/c = 27u2

1u2X
4/c3, hence either X = 0, which is not

possible since otherwise X = Y = 0 hence u3 = 0, or X3 = c3/(27u2
1u2), so

that 3u3 = cXY = 3u1X
3 = c3/(9u1u2), in other words 27u1u2u3 − c3 = 0,

which is also excluded. Thus the cubic is nonsingular over Fp. Since it is a
curve of genus 1 and 3 − 2

√
2 > 0, it follows from the Weil bounds that

for every prime p it has a nontrivial point in Fp. If p is not in the excluded
list, this point is necessarily nonsingular, and since we assume p 6= 3 we
can perform a Hensel lift to Zp as soon as we know that there is a solution
modulo p, proving the lemma.

5.2. Local solubility for p |u1u2u3, p 6= 3. Thanks to Lemma 5.1, we may
assume that our cubic equation is p-reduced, and thanks to Lemma 5.3, it is
enough to consider the primes p such that vp(u1u2u3)> 0, vp(27u1u2u3−c3)
> 0, or p = 3. We begin by primes p 6= 3 such that vp(u1u2u3) > 0. For such
primes, by symmetry we may assume that vp(u1) > 0, and since the equation
is p-reduced we have min(vp(u2), vp(u3)) = 0, so again by symmetry we may
assume that 0 ≤ vp(u1) ≤ vp(u2) ≤ vp(u3).

Lemma 5.4. Let p be a prime and assume that our cubic equation is
p-reduced , p 6= 3 and vp(u1u2u3) > 0, with 0 ≤ vp(u1) ≤ vp(u2) ≤ vp(u3).
The equation is soluble in Qp if and only if one of the following conditions
is satisfied.

(1) vp(c) = 0.
(2) vp(c) > 0, vp(u1) = vp(u2) = 0, and the class of u1/u2 modulo p is

a cube in F∗p.
(3) vp(c) > 0, vp(u1) = 0, vp(u2) = vp(u3) = 1, and the class of u2/u3

modulo p is a cube in F∗p.

Remarks.

(1) Note that since the cubic equation is p-reduced, the above lemma
covers all possible cases for which p 6= 3 and vp(u1u2u3) > 0: indeed,
if vp(c) > 0 we have necessarily vp(u1u2u3) ≤ 2, so up to ordering
either vp(u1) = vp(u2) = 0 (and vp(u3) ≤ 2), or vp(u1) = 0 and
vp(u2) = vp(u3) = 1.

(2) It follows from the proof that the equation is also soluble in case (1)
when p = 3, in other words if v3(u1u2u3) > 0 and v3(c) = 0, but the
assumption p 6= 3 is necessary in cases (2) and (3).

5.3. Local solubility for p | (27u1u2u3 − c3), p 6= 3. In this section, we
assume that p is a prime different from 3 such that p | (27u1u2u3 − c3). We
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may also assume that p -u1u2u3 since these primes have already been taken
care of in the preceding subsection.

Lemma 5.5. Let p be a prime, assume that our cubic equation is p-
reduced , and assume that p 6= 3, vp(u1u2u3) = 0, and vp(27u1u2u3−c3) > 0.
The equation is soluble in Qp if and only if u2/u1 is a cube in F∗p.

5.4. Local solubility for p = 3. Finally, we consider local solubility at
the prime p = 3. By the remarks made above, when v3(c) = 0 we have seen
that the cubic equation is locally soluble at 3 if v3(u1u2u3) > 0. We may
therefore assume that either v3(c) > 0, or v3(c) = v3(u1u2u3) = 0. In the
latter case the result is immediate:

Lemma 5.6. If v3(c) = 0 the cubic equation has a solution in Q3.

The final case to be treated is v3(c) > 0. In this case, we need a small
strengthening of Hensel’s lemma, which we give in a slightly more general
form that we will need below.

Lemma 5.7. Set P0 = (X0, Y0, Z0), and let k≥ 1. Assume that v3(F (P0))
≥ 2k and min(v3(F ′X(P0)), v3(F ′Y (P0)), v3(F ′Z(P0))) = k. Assume that all
second and third partial derivatives of F are divisible by 3 at the point P0,
the condition on the third derivatives being required only if k = 1. Then
there exists a 3-adic point P = (X,Y, Z) such that F (P ) = 0 with P ≡ P0

(mod 3k).

Now for F (P ) = u1X
3 + u2Y

3 + u3Z
3 − cXY Z we have for instance

F ′X(P ) = 3u1X
2 − cY Z, and since v3(c) > 0 all the partial derivatives are

divisible by 3 at any point, so to apply the lemma it is enough to find a
point such that F (P0) ≡ 0 (mod 32k) and

min(v3(F ′X(P0)), v3(F ′Y (P0)), v3(F ′Z(P0))) = k.

We will mainly use this lemma with k = 1, but we will need it also with
k = 2.

In fact, we need a variation of the above lemma for k = 2.

Lemma 5.8. Let P0 = (X0, Y0, Z0) be such that

v3(F (P0)) ≥ 3 and min(v3(F ′X(P0)), v3(F ′Y (P0)), v3(F ′Z(P0))) = 2,

and assume that all second , third , and fourth partial derivatives of F are di-
visible by 3 at P0. Assume in addition that for all P1 ≡ P0 (mod 3) such that
v3(F (P1)) ≥ 3 we also have min(v3(F ′X(P1)), v3(F ′Y (P1)), v3(F ′Z(P1))) = 2.
Then there exists a 3-adic point P = (X,Y, Z) such that F (P ) = 0 with
P ≡ P0 (mod 3).

Of course for our cubics the fourth partial derivatives vanish.
Recall that a solution (X,Y, Z) of a congruence modulo some power of 3

is always such that min(v3(X), v3(Y ), v3(Z)) = 0.
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Lemma 5.9. Let p = 3, assume the cubic equation is 3-reduced , and
v3(c) > 0, so that v3(u1u2u3) ≤ 2. Reorder the variables so that 0 =
v3(u1) ≤ v3(u2) ≤ v3(u3).

(1) If v3(c) ≥ 2 and v3(u1u2u3) = 0 the equation has a solution in Q3

if and only if ui ≡ ±uj (mod 9) for some i 6= j.
(2) If v3(c) ≥ 2 and exactly one of the ui is divisible by 3 (in other

words v3(u2) = 0 and v3(u3) > 0), the equation has a solution in Q3

if and only if either u1 ≡ ±u2 (mod 9), or if v3(u3) = 1.
(3) If v3(c) ≥ 2, and two of the ui are divisible by 3 (in other words

v3(u2) = v3(u3) = 1 since the equation is 3-reduced), the equation
has a solution in Q3 if and only if u2/3 ≡ ±u3/3 (mod 9).

(4) If v3(c) = 1 and exactly one of the ui is divisible by 3 (i.e., v3(u2) = 0
and v3(u3) > 0), the equation has a solution in Q3 if and only if
either u1 ≡ ±u2 (mod 9), or there exist s1 and s2 in {−1, 1} such
that c ≡ s1u1 + s2u2 + s1s2u3 (mod 9).

(5) If v3(c) = 1 and two of the ui are divisible by 3 (i.e., v3(u2) =
v3(u3) = 1), the equation has a solution in Q3.

Note that this lemma does not cover the case where v3(c) = 1 and none
of the ui is divisible by 3, or equivalently v3(u1u2u3) = 0, which will be
covered by Lemma 5.10 below.

Lemma 5.10. Let p = 3 and assume that v3(c) > 0 and v3(u1u2u3) = 0.

(1) If ui ≡ ±uj (mod 9) for some i 6= j, the cubic equation has a
solution in Q3.

(2) If ui 6≡ ±uj (mod 9) for i 6= j (which implies that u1u2u3 ≡ ±1
(mod 9)), the equation has a solution in Q3 if and only if there exist
signs s1 = ±1 and s2 = ±1 such that c ≡ s1u1 + s2u2 + s1s2u3

(mod 27).

Remarks.

(1) We only assume that v3(c) > 0 and not v3(c) = 1, although the case
v3(c) ≥ 2 is covered by Lemma 5.9: indeed, it is easy to see that case
(2) of the above lemma cannot occur when v3(c) ≥ 2.

(2) It follows from the proof that case (1) occurs if and only if there
exists a solution (X,Y, Z) with min(v3(X), v3(Y ), v3(Z)) = 0 but
one of the variables is divisible by 3.

(3) In case (2), there is no need to search among the four possibilities for
the signs si: since 3 | c it is easy to see that we must take s1 ≡ u2u3

(mod 3) and s2 ≡ u1u3 (mod 3).

We have thus proved the local solubility of the general cubic equation

F (X,Y, Z) = u1X
3 + u2Y

3 + u3Z
3 − cXY Z = 0,
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hence in particular of the equation

u1X
3 + u2Y

3 + (2b/(u1u2))Z3 − 2aXY Z = 0

of Theorem 3.1.

6. Local solubility: the case D 6= 1

6.1. Reduction of the cubic equation, bad primes, and split primes. We
now consider local solubility when D 6= 1. Although we will do the same
type of computations as in the case D = 1, there are evidently some added
complications.

It is essential to begin by a reduction of the cubic equation of Theo-
rem 4.1. Recall that in the case D = 1 we could reduce to an equation
where u = u2

1u2 with the ui squarefree and coprime. We have seen in Sec-
tion 4.2 that the analogous statement for D 6= 1 involves ideals, so we cannot
immediately reproduce what we have done.

Recall that the cubic equation of Theorem 4.1 can be written as
F (X,Y, Z) = 0, where if v = v1 + v2

√
D we have

F (X,Y, Z) = 2v2X
3 + 2Dv1Y

3 + (2b/(v2
1 −Dv2

2))Z3

+ 6v1X
2Y + 6v2DXY

2 + 2a(X2Z −DY 2Z)

= (v(X + Y
√
D)3 − τ(v)(X − Y

√
D)3)/

√
D

+ 2aZ(X + Y
√
D)(X − Y

√
D) + (2b/(vτ(v)))Z3,

and we will use both forms interchangeably.

Lemma 6.1. If p 6= 3, vp(vτ(v)) = 0, vp(2b) = 0, and vp(27b−4a3D) = 0
the above cubic equation is soluble in Qp.

Recall that, analogously to ideals, an algebraic integer v is said to be
primitive if v/n ∈ ZK with n ∈ Z if and only if n = ±1.

Lemma 6.2. Let [u] ∈ Im(α). In the above cubic equation, we may as-
sume that [u] = [v2τ(v)] where v is a primitive algebraic integer such that
vτ(v) is divisible only by split primes. In particular , v and τ(v) generate
coprime ideals. Furthermore, if D ≡ 0 (mod 4) we may also assume that
v = v1 + v2

√
D with v2 ∈ Z.

Note that, in contrast to the case D = 1, we cannot deduce from this
lemma that vτ(v) | 2b. It is easy to show using Corollary 4.3 that if 3 -h(K),
we may assume that vτ(v) | (2b)h(K), and in particular all prime numbers
dividing vτ(v) (which are necessarily split) divide 2b, but this may not be
true if 3 |h(K).

Since v is now an algebraic integer, we have 2v1 ∈ Z and 2v2 ∈ Z, so all
the coefficients of the equation are integers, except perhaps for 2b/(vτ(v)).
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Corollary 6.3. Assume as above that v = v1 + v2

√
D is a primitive

algebraic integer such that vτ(v) is divisible only by split primes, and let
p be any split prime. There exists dp ∈ Qp such that d2

p = D. The cubic
equation of Theorem 4.1 has a solution in Qp if and only if the equation
u1X

3+u2Y
3+u3Z

3−cXY Z = 0 does, where u1 = v1+v2dp, u2 = v1−v2dp,
u3 = (2b/vτ(v))dp, and c = 2adp.

Since we have given a complete algorithm to determine the solubility in
Qp of an equation of the type u1X

3 +u2Y
3 +u3Z

3− cXY Z = 0, this solves
the problem for D 6= 1 in the case where p is a split prime. Thus we are left
with the study of ramified and inert primes, so thanks to Lemma 6.2, we
may assume that vp(vτ(v)) = 0, so in particular vp(2b/(vτ(v))) ≥ 0.

Thus we assume that p is a ramified or inert prime, and vp(vτ(v)) = 0,
and recall that our equation is F (X,Y, Z) = 0 with

F (X,Y, Z) = (v(X + Y
√
D)3 − τ(v)(X − Y

√
D)3)/

√
D + u3Z

3

+ 2aZ(X + Y
√
D)(X − Y

√
D),

with u3 = 2b/(vτ(v)), hence vp(u3) ≥ 0. We begin with inert primes.

6.2. The case of inert primes. If p is an inert prime, consider the field
Kp = Qp(

√
D), which up to isomorphism is the unique unramified extension

of degree 2 of Qp, and whose residue field is Fp2 , so that we can also consider
the class of

√
D in F∗p2 , and τ is defined on Fp2 as in characteristic 0. By

abuse of notation, if α and β are elements of K = Q(
√
D) or of Kp, we will

write α ≡ β (mod p) to mean that the class of α and β in the residue field is
the same. Note that we work in Kp or K for practicality, but that the cubic
equation has coefficients in Q, and we also look for solutions in Q.

Before studying the bad primes, we need an auxiliary lemma.

Lemma 6.4. Let p 6= 3 be an inert prime. The following conditions are
equivalent :

(1) There exist X and Y such that τ(v)/v ≡ ((X+Y
√
D)/(X−Y

√
D))3

(mod p) in the above sense.
(2) The class of τ(v)/v is a cube in F∗p2.

(3) Either p ≡ 1 (mod 3), or p ≡ 2 (mod 3) and v(p2−1)/3 ≡ 1 (mod p).

Lemma 6.5. Let D 6= 1, and assume that the elliptic curve is given by
an equation satisfying the conditions of Lemmas 1.2 and 6.2. Let p be an
inert prime number such that vp(2b) > 0, vp(vτ(v)) = 0 and p 6= 3, and if
p = 2, assume that vp(2b) ≤ 2. The cubic equation of Theorem 4.1 is locally
soluble at p if and only if one of the following conditions is satisfied.

(1) vp(2a) = 0.
(2) vp(2a) > 0 and the class of τ(v)/v modulo p is a cube in F∗p2.
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We now consider the prime p = 2, assumed to be inert, when v2(2b) ≥ 3.
Since the equation is 2-reduced, note that either v2(a) > 0, in which case
v2(b) ≤ 2 hence v2(2b) = 3, or v2(a) = 0. Furthermore, we can write v =
v1 + v2

√
D = (w1 + w2

√
D)/2 with w1 and w2 in Z such that w1 ≡ w2

(mod 2), and since v is primitive, either w1 ≡ w2 ≡ 1 (mod 2), or w1 and
w2 are even with w1 6≡ w2 (mod 4).

Lemma 6.6. Let D 6= 1, and assume that the elliptic curve is given by
an equation satisfying the conditions of Lemmas 1.2 and 6.2. Assume that
p = 2 is an inert prime, in other words D ≡ 5 (mod 8), and that v2(2b) ≥ 3,
and write w1 = 2v1 and w2 = 2v2.

(1) If w1 ≡ 2 (mod 4) and w2 ≡ 0 (mod 4) or w1 ≡ 0 (mod 4) and
w2 ≡ 2 (mod 4) the equation has a solution in Q2.

(2) If w1 ≡ w2 ≡ 1 (mod 2), the equation has a solution in Q2 if and
only if either v2(2b) ≥ 4 or v2(a) > 0.

Lemma 6.7. Let D 6= 1, and assume that the elliptic curve is given by
an equation satisfying the conditions of Lemmas 1.2 and 6.2. Let p be an
inert prime number such that vp(2b) = vp(vτ(v)) = 0, vp(27b− 4Da3) > 0,
and p 6= 3. The equation of Theorem 4.1 is locally soluble at p if and only
if τ(v)/v is a cube in F∗p2.

Recall that vp(vτ(v)) = 0 since we assume that p is not split.

Lemma 6.8. Let D 6= 1 and assume that the elliptic curve is given by an
equation satisfying the conditions of Lemmas 1.2 and 6.2, and that p = 3
is an inert prime, i.e., D ≡ 2 (mod 3). Set u1 = 2v2, u2 = 2v1D, and
u3 = 2b/(vτ(v)).

(1) If v3(2a) = 0 the equation has a solution in Q3.
(2) If v3(2a) ≥ 2 the equation has a solution in Q3 if and only if either

v3(u1) ≥ 2, v3(u2) ≥ 2, ui ≡ ±uj (mod 9) for some i 6= j and a
suitable sign, or u3 ≡ 2(±u1 ± u2) (mod 9) for suitable signs.

(3) If v3(2a) = 1, v3(2b) > 0, and v3(u1u2) ≥ 1, the equation has a
solution in Q3 if and only if either v3(u1) ≥ 2 and v3(u2) ≥ 2, or
v3(2a+ 2b) = 1.

(4) If v3(2a) = 1, v3(2b) > 0, and v3(u1u2) = 0, the equation has a
solution in Q3 if and only if either u1 ≡ ±u2 (mod 9), or 2a+ b ≡
±u1 ± u2 (mod 9) for suitable signs.

Lemma 6.9. Let D 6= 1 and assume that the elliptic curve is given by
an equation satisfying the conditions of Lemmas 1.2 and 6.2, and that p = 3
is an inert prime, i.e., D ≡ 2 (mod 3). Set u1 = 2v2, u2 = 2v1D, and
u3 = 2b/(vτ(v)). Assume that v3(2a) = 1 and v3(u1) = v3(u2) = v3(2b) = 0,
and set u4 = u3 + 2a, so that also v3(u4) = 0.
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(1) If ui ≡ ±uj (mod 9) for some i 6= j with i, j = 1, 2, or 4, the
equation has a solution in Q3.

(2) Otherwise, the equation has a solution in Q3 if and only if 2a+u4 =
4a+ u3 ≡ ±3D (mod 27) for a suitable sign.

Similar remarks to those given after Lemma 5.10 apply here.
This concludes the study of local solubility in the case of inert primes.

6.3. The case of ramified primes

Lemma 6.10. Let D 6= 1 and assume that the elliptic curve is given
by an equation satisfying the conditions of Lemmas 1.2 and 6.2. If p is a
ramified prime such that p 6= 3, the equation is soluble in Qp.

Lemma 6.11. Let D 6= 1 and assume that the elliptic curve is given by an
equation satisfying the conditions of Lemmas 1.2 and 6.2. Assume p = 3 is
ramified , in other words 3 |D, and to simplify notation, set u3 = 2b/(vτ(v)).

(1) If v3(2a) = 0, the equation has a solution if and only if one of the
following conditions is satisfied :

(a) v3(2v2) > 0.
(b) v3(2v2) = v3(2a+ u3) = 0.

(2) If v3(2a) ≥ 2, the equation has a solution if and only if one of the
following conditions is satisfied :

(a) D ≡ 3 (mod 9) and v3(u3) = 0.
(b) D ≡ 3 (mod 9), v3(u3) > 0, and v3(2v2) > 0.
(c) D ≡ 6 (mod 9) and v3(2v2) ≥ 2.
(d) D ≡ 6 (mod 9) and v3(2v2) = v3(u3) = 1.
(e) D ≡ 6 (mod 9), v3(2v2) = 0, and u3 ≡ ±2v2 (mod 9).
(f) u3 ≡ ±2v1D (mod 27).

We will treat the case where v3(2a) = 1 below.

Lemma 6.12. Keep the notation and assumptions of the preceding lemma,
assume that v3(2a) = 1, and set u4 = u3 + 2a. The cubic equation has a
solution if and only if one of the following conditions is satisfied :

(a) D ≡ 3 (mod 9) and v3(u4) = 0.
(b) D ≡ 3 (mod 9), v3(u4) > 0, and v3(2v2) > 0.
(c) D ≡ 6 (mod 9) and v3(2v2) ≥ 2.
(d) D ≡ 6 (mod 9) and v3(2v2) = v3(u4) = 1.
(e) D ≡ 6 (mod 9), v3(2v2) = 0, and u4 ≡ ±2v2 (mod 9).
(f) v3(u3) = 1 and there exists s = ±1 such that 2v1(D/3) ≡

s(u3/3− 2a(D/3)) (mod 9) and 2v1s 6≡ 2a/3 (mod 3).
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(g) v3(u3) = 1 and there exists s = ±1 such that 2v1(D/3) ≡
s(u3/3 − 2a(D/3)) (mod 9), 2v1s ≡ 2a/3 (mod 3), v3(2v2) = 0,
and D ≡ 3 (mod 9).

(h) v3(u3) = 1 and there exists s = ±1 such that 2v1(D/3) ≡
s(u3/3 − 2a(D/3)) (mod 27), 2v1s ≡ 2a/3 (mod 3), v3(2v2) = 0,
and D ≡ 6 (mod 9).

(i) v3(u3) = 1 and there exists s = ±1 such that 2v1s ≡ 2a/3 (mod 3),
v3(2v2) > 0, and there exists t ∈ {−1, 0, 1} and r ∈ {−1, 0, 1} such
that
2v1(D/3) ≡ s(u3/3− 2a(D/3))− 6v2(D + 3)t− 9(2v1s− 2a/3)st2

− 3r(D(2v1 + a/3) + 6rDv1 + 6at2) (mod 81).

This finishes the study of local solubility.

7. Examples

7.1. The curves y2 = x3 + (kp)2 for k = 1, 2, or 4. In this section we
consider the family of curves Ekp with equation y2 = x3 + (kp)2, where
p is a prime and k = 1, 2, or 4. The restriction on k is made so that no
other prime apart from 2 divides it. Note that it is not necessary to consider
higher powers of 2 since the curve y2 = x3 + (8kp)2 is trivially isomorphic
to y2 = x3 + (kp)2. Furthermore, the primes p = 2 and 3 give rise to a finite
number of curves which can be treated individually (specifically, for p = 2
the rank is equal to 0, for (k, p) = (1, 3) and (2, 3) the rank is 1, Mordell–Weil
generators being (−2, 1) and (−3, 3) respectively, and for (k, p) = (4, 3) the
rank is again 0, and the torsion is always of order 3 generated by T = (0, kp),
except for (k, p) = (4, 2), for which it has order 6 generated by (8, 24)). We
therefore assume that p ≥ 5, so that in particular all of these curves have
rational 3-torsion generated by T = (0, kp) equal to their full rational torsion
subgroup.

We first compute the image of α. For this, we consider the cubic equa-
tions of Theorem 3.1(3), in other words u1X

3 + u2Y
3 + u3Z

3 = 0, where
u1u2 | 2kp and u3 = 2kp/(u1u2), where we recall that u1u2 is squarefree. Up
to exchange of u1 and u2, it is easy to check that the only possibilities are
(1, 1, 2kp), (1, 2, kp), (1, p, 2k), (1, 2p, k), and (2, p, k). The first one (corre-
sponding to u = 1) gives an evidently soluble equation, corresponding to
the unit element of the elliptic curve.

• When k = 1, the fourth one (corresponding to u = 2p and u = 4p2) is
also soluble, and it corresponds to the two nontrivial rational 3-torsion
points on the curve, and the other three (corresponding to u = 2, 4,
p, p2, 4p, and 2p2) are equivalent.
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• When k = 2, the fifth one (corresponding to u = 4p and u = 2p2) is
also soluble, and it again corresponds to the two nontrivial rational
3-torsion points on the curve, the second and fourth (corresponding
to u = 2, 4, 2p, and 4p2) are equivalent, and the third corresponds to
u = p and p2. Since the set (of classes) of u for which the equation is
soluble forms a group and since 4p and 2p2 belong to this group, it fol-
lows that [p] and [p2] will be in the group if and only if 4 and 2 are, so in
fact the three equations are equivalent, although slightly less trivially.
• Finally, when k = 4 the third equation (corresponding to p and p2)

is clearly soluble (since 2k = 8 is a cube), and this again corresponds
to the two rational 3-torsion points. The other equations correspond
respectively to u = 2 and 4, u = 2p and 4p2, and u = 4p and 2p2, and
once again because of the group structure all the equations are in fact
equivalent.

We see that in each case it is sufficient to consider the equation with
u1 = 1, u2 = 2, hence u3 = kp. The result is as follows:

Lemma 7.1. Keep the above assumptions. The equation X3 + 2Y 3 +
kpZ3 = 0 is ELS if and only if k 6= 4, either p ≡ 2 (mod 3) or 2(p−1)/3 ≡ 1
(mod 3), and kp 6≡ ±4 (mod 9).

Proof. This of course immediately follows from the above study. More
precisely, if k = 4 the 2-adic valuations of the coefficients are (0, 1, 2), so
the equation has no 2-adic solutions by Lemma 5.1. On the other hand, if
k = 1 or k = 2, the 2-adic valuations are (0, 0, 1) and (0, 1, 1) respectively,
and since all elements of F∗2 are cubes, we conclude by Lemma 5.4 that
the equation has a solution in Q2. For p-adic solubility we also use this
lemma, since the p-adic valuations are (0, 0, 1), and we conclude that the
equation has a p-adic solution if and only if 2 is a cube in F∗p, leading to
the given condition. Finally, since the 3-adic valuations are (0, 0, 0) we use
Lemma 5.9(1), which tells us that the equation has a 3-adic solution if and
only if ui ≡ ±uj (mod 9) for some i 6= j, which gives kp ≡ ±1 or ±2 (mod 9),
in other words kp 6≡ ±4 (mod 9) since 3 - kp.

Corollary 7.2. Let p ≥ 5 be prime, let k = 1, 2, or 4, and let E be
the elliptic curve y2 = x3 + (kp)2.

(1) For k = 1, if either p ≡ ±4 (mod 9), or p ≡ 1 or 7 (mod 9) and
2(p−1)/3 6≡ 1 (mod p), then Im(α) = {1, 2p, 4p2}, and in particular
|Im(α)| = 3.

(2) For k = 1 and p ≡ 2 (mod 9) we have |Im(α)| = 9.
(3) For k = 2, if either p ≡ ±2 (mod 9), or p ≡ 1 or 4 (mod 9) and

2(p−1)/3 6≡ 1 (mod p), then Im(α) = {1, 4p, 2p2}, and in particular
|Im(α)| = 3.
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(4) For k = 4 we always have Im(α) = {1, p, p2}, and in particular
|Im(α)| = 3.

(5) In all other cases, |Im(α)| = 3 or 9. More precisely , the cubic equa-
tion X3 + 2Y 3 + kpZ3 = 0 is ELS , and |Im(α)| = 9 if and only if it
is globally soluble.

Proof. (1), (3), (4), and (5) are clear from the lemma by inspection.
For (2), we use Proposition 3.3, p. 438 of Satgé [14].

Remark. In [12], Rodŕıguez Villegas and Zagier have characterized the
primes which are sums of two cubes. If their method could be extended to
primes which are of the form x3 + 2y3, and also of the form x3 + 4y3, it
would determine Im(α) in all cases.

We now compute the image on the dual curve Ê, whose equation is
y2 = x3 − 27(kp)2, so that D = −3 and b = 3kp. We first determine local
solubility of the equation corresponding to ρ = (−1 +

√
−3)/2, and for the

moment we do not necessarily assume that k | 4.

Lemma 7.3.

(1) Let k be such that 8 - k. The equation corresponding to ρ is locally
soluble at the primes 2, 3, and p if and only if p ≡ ±1 (mod 9),
k ≡ ±4 (mod 9), and 4 | k.

(2) In particular , if k = 1, 2, or 4, the equation corresponding to ρ is
ELS if and only if k = 4 and p ≡ ±1 (mod 9).

Proof. We have 2v1 = −1, 2v2 = 1, and 2b = 6kp, so u3 = 2b/(vτ(v))
= 6kp. The prime 2 being inert, by Lemma 6.5, if 4 - k the equation is
locally soluble at 2 if and only if ρ is a cube in F∗4, which is not the case
since the only cube is 1. On the other hand, if 4 | k Lemma 6.6 tells us that
the equation is locally soluble at 2. Let us now look at the prime p. If p ≡ 1
(mod 3) then p is split, so by Corollary 6.3 the equation is locally soluble
at p if and only if (v1 + v2dp)X3 + (v1 − v2dp)Y 3 + 6kpZ3 = 0 is, and since
the p-adic valuations are (0, 0,≥ 1), by Lemma 5.4 this is true if and only
if (v1 + v2dp)/(v1 − v2dp) ≡ ρ2/ρ = ρ (mod p) is a cube in F∗p, hence if and
only if ρ(p−1)/3 ≡ 1 (mod p), which is the case if and only if p ≡ 1 (mod 9).
If p ≡ 2 (mod 3) then p is inert, so by Lemma 6.5 the equation is locally
soluble at p if and only if ρ is a cube in F∗p2 , hence if and only if p2 ≡ 1
(mod 9), in other words p ≡ −1 (mod 9) since we assume p ≡ 2 (mod 3).
It follows that the local condition at p is p ≡ ±1 (mod 9). Finally, let us
look at the prime 3. Since 2a = 0 we use Lemma 6.11(2), which tells us that
the equation is locally soluble at 3 if and only if 6kp ≡ ±3 (mod 27), or
equivalently kp ≡ ±4 (mod 9), proving (1) since p ≡ ±1 (mod 9), and (2)
follows immediately.
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Next, we assume that p ≡ 1 (mod 3). In this case we can write p = πτ(π)
with π = (w1 + w2

√
−3)/2 in 12 different ways, and it is well-known and

easy that up to sign and exchange of π and τ(π) there is exactly one such
decomposition with 3 |w2.

Lemma 7.4. Let p ≡ 1 (mod 3), let π = (w1 + w2

√
−3)/2 be such

that πτ(π) = p, and let k be such that 8 - k, 3 - k, and p - k. The equation
corresponding to π is locally soluble at the primes 2, 3, and p if and only if
(a) either 4 | k or 4 - k and 2 |w2 ∈ Z, and (b) (w1/(2k))(p−1)/3 ≡ 1 (mod p),
and (c) either 3 |w2, or 3 -w2 and p ≡ k2 + 3 (mod 9).

Proof. We have 2v1 = w1, 2v2 = w2, and u3 = 2b/(vτ(v)) = 6k. The
prime 2 being inert, as above Lemmas 6.5 and 6.6 tell us that the equation is
locally soluble at 2 if and only if either 4 | k, or 4 - k and (w1 +w2

√
−3)/2 = 1

in F∗4, which is equivalent to 2 |w2. By Corollary 6.3 the equation is locally
soluble at p if and only if (v1 + v2dp)X3 + (v1 − v2dp)Y 3 + 6kdpZ3 = 0
is. Since v2

1 − v2
2d

2
p = p, we may assume for instance that dp is chosen

so that vp(v1 − v2dp) = 1, so in particular v2dp ≡ v1 (mod p). The p-
adic valuations of the coefficients are thus (0, 1, 0), so by Lemma 5.4 local
solubility is equivalent to (v1 + v2dp)/(6kdp) being a cube in F∗p, and since
v1 ≡ v2dp (mod p), this means that v1/(3kdp) = w1/(6kdp) is a cube in F∗p.
This is equivalent to (w1/(6kdp))2 = −w2

1/(108k2) being a cube, hence to
(w1/(2k))2 being a cube, hence to w1/(2k) being a cube, leading to the
given condition. Finally, let us look at the prime 3. Since 2a = 0 we use
Lemma 6.11(2), which tells us (since 3 - k, so that v3(u3) = 1) that the
equation is locally soluble at 3 if and only if either 3 |w2, or 6k ≡ ±3w1

(mod 27), in other words 2k ≡ ±w1 (mod 9). However, since w2
1 +3w2

2 = 4p,
if 3 -w2 we have w2

1 ≡ 4p − 3 (mod 9), and since the condition 2k ≡ ±w1

(mod 9) is equivalent to w2
1 ≡ 4k2 (mod 9) (since 3 -w1), we obtain the

equivalent condition 4p ≡ 4k2 + 3 (mod 9), or equivalently p ≡ k2 + 3
(mod 9), finishing the proof of the lemma.

Corollary 7.5. Let p ≥ 5 be prime, let k = 1, 2, or 4, and let Ê be
the elliptic curve y2 = x3 − 27(kp)2.

(1) For k = 1 or k = 2, if either p ≡ 2 (mod 3), or p ≡ 1 (mod 3) and
p 6≡ k2 + 3 (mod 9), and 2(p−1)/3 6≡ 1 (mod p), then Im(α̂) is trivial.

(2) For k = 4, if p ≡ 2 or 5 (mod 9) then Im(α̂) is trivial.
(3) Otherwise, |Im(α̂)| = 1 or 3 when k = 1, k = 2, or k = 4 and p ≡ 8

(mod 9), and |Im(α̂)| = 1, 3, or 9 when k = 4 and p ≡ 1 (mod 3).

Proof. Since 2b = 6kp, 2 is inert, and 3 is ramified, with the notation
of Section 4.2, we must have f1 = 1 if p ≡ 2 (mod 3) and f1 = 1 or p if
p ≡ 1 (mod 3). In the first case, the only possible v are 1, ρ, and ρ2, while
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in the second case we have in addition the three possible π (up to sign and
conjugation) such that πτ(π) = p. It follows that:

• If ρ /∈ Im(α̂) and none of the three possible π is in Im(α̂) then Im(α̂)
= {1}, so |Im(α̂)| = 1.
• If ρ 6∈ Im(α̂) and one of the three possible π (so necessarily exactly

one) is in Im(α̂) then Im(α̂) = {1, π, τ(π)}, hence |Im(α̂)| = 3.
• If ρ ∈ Im(α̂) and none of the three possible π (in this case they are

equivalent) is in Im(α̂) then Im(α̂) = {1, ρ, ρ2}, hence |Im(α̂)| = 3.
• If ρ ∈ Im(α̂) and one of the three possible π is in Im(α̂) (hence all are)

then Im(α̂) = {ρj , ρjπ, ρjτ(π) : 0 ≤ j ≤ 2}, hence |Im(α̂)| = 9.

Since in the two preceding lemmas we have studied local solubility of the
equation in all these cases, we conclude by inspection.

We can say a little more:

Proposition 7.6.

(1) Assume that k = 1 and p ≡ 4 (mod 9), or that k = 2 and p ≡ 7
(mod 9), and write p = m2 +3n2, where m and n are integers which
are unique up to sign. The equation corresponding to π = m+n

√
−3

(i.e., with v1 = m and v2 = n) is ELS , and |Im(α̂)| = 3 if and only
if it is globally soluble.

(2) Assume that k = 4 and p ≡ 8 (mod 9). The equation corresponding
to ρ is ELS , and |Im(α̂)| = 3 if and only if it is globally soluble.

(3) Assume that k = 4 and p ≡ 4 or 7 (mod 9), and write 4p =
m2 + 27n2, where m and n are unique up to sign. The equation
corresponding to π = (m + 3n

√
−3)/2 (i.e., with v1 = m/2 and

v2 = 3n/2) is ELS , and |Im(α̂)| = 3 if and only if it is globally
soluble.

Proof. Apply the same method as above.

We will see below that it follows from BSD that these equations (of
Proposition 7.6) should in fact always be globally soluble.

Corollary 7.7.

(1) If p ≡ 5 (mod 9), or p ≡ 1 or 7 (mod 9) and 2(p−1)/3 6≡ 1 (mod p),
the elliptic curve Ep with equation y2 = x3 +p2 has rank 0. If p ≡ 2
(mod 9), it has rank 1. Otherwise, if p ≡ 4 or 8 (mod 9) it has rank
0 or 1, and if p ≡ 1 or 7 (mod 9) it has rank 0, 1, or 2.

(2) If p ≡ 2 (mod 9), or p ≡ 1 or 4 (mod 9) and 2(p−1)/3 6≡ 1 (mod p),
the elliptic curve E2p with equation y2 = x3 + 4p2 has rank 0. Oth-
erwise, if p ≡ 5, 7, or 8 (mod 9) it has rank 0 or 1, and if p ≡ 1
or 4 (mod 9) it has rank 0, 1, or 2.
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(3) If p ≡ 2 or 5 (mod 9) the elliptic curve E4p with equation y2 =
x3 + 16p2 has rank 0. Otherwise, if p ≡ 4, 7, or 8 (mod 9) it has
rank 0 or 1, and if p ≡ 1 (mod 9) it has rank 0, 1, or 2.

Proof. Clear, since |Im(α)| |Im(α̂)| = 3r+1. (No need of BSD here.)

This corollary allows us to determine the rank exactly for instance with
k = 1 for p = 61, 79, 113, 131, 149, 151, 163, 293, etc., with k = 2 for
p = 29, 83, 137, 139, 173, 181, 199, etc., and with k = 4 for p = 41, 59, 101,
131, 137, etc. for which mwrank, at least in its basic version, is not able to
determine the rank using 2-descent.

Remarks.

(1) We can use the “parity conjecture” in this context (see for example
[7] and [8]), in other words the analytic rank has the same parity as
the algebraic rank, so whenever in the above the rank is known to be
equal to 0 or 1 then it is always 1, while when the rank is known to be
equal to 0, 1, or 2 then it is always 0 or 2, and both cases occur. This
has been proved in certain cases: as already mentioned, by Satgé for
k = 1 and p ≡ 2 (mod 9), and in an unpublished work Elkies has
shown that for k = 4 and p ≡ 4 or 7 (mod 9) the rank is indeed 1.

(2) The case k = 4 corresponds to primes which are sums of two cubes, so
by [12] one knows that when p ≡ 1 (mod 9) the rank is equal to 0 or 2,
and exactly for which primes it is equal to 2. It is possible that either
their method or Elkies’ can be extended to the cases k = 1 and k = 2.

(3) The result for k = 4 can also be proved, less naturally, using 2-
descent; see Theorem 6.4.17 of [2].

When the cubics are ELS, we may of course try to look for a global solu-
tion by search. A very efficient way of looking for rational points on a homo-
geneous cubic has been described by N. Elkies in [9], see also an unpublished
preprint of J. Cremona on the subject. It has been implemented by several
people. Using a slightly modified implementation due to M. Watkins, we can
for instance find that a generator P = (x, y) of the Mordell–Weil group of
y2 = x3 + p2 for p = 1759, which has rank 1, is given by

x = −242479559514608433100075350499874221113923535

3063551062176562878606796987394973602467684
,

y =
8643240396318605197724619647046515784779281219388876514209037894857

5362134274928159502186511847328850266140274118035321166956948248
.

This generator is not found by mwrank even at a high search limit. On the
other hand, it could certainly be found using the Heegner point method.

For a more complicated example, for p = 9511 the curve y2 = x3 + p2

has analytic rank 2, so the Heegner point method is not applicable, and
mwrank even at a high search limit finds only the one-dimensional subspace
of the (free part of the) Mordell–Weil group generated by P1 = (−210, 9011).
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Using our implementation, we find that the full free part has basis (P1, P2)
with P2 = (x, y), where

x =
32701984517186448621442294824950874787830128281

456289760665179363242981599270033206574137600
,

y =
92890043770264171014255964610503972850176417273682124237369198272789821

9746778232027925565271633950191532413151456450450966045051557376000
.

In the following tables, we summarize what is proved (either using 3-descent
as above, by Satgé, in Elkies’ unpublished work, or in Rodŕıguez Villegas
Zagier’s work), what is a consequence of BSD, and what remains to be done.
The tables are coded as follows. In the first column we indicate the residue
of p modulo 9, and if relevant, in the second column we indicate the cubic
character

(
2
p

)
3

of 2 modulo p, 1 meaning that 2(p−1)/3 ≡ 1 (mod p), and ρ,
ρ2 meaning of course 2(p−1)/3 6≡ 1 (mod p). In the third, fourth, and fifth
columns we give |Im(α)|, |Im(α̂)|, and the rank of the curve respectively,
and when two values are given, both occur. In the last column, we give a
pair of symbols (A, B), corresponding to (|Im(α)|, |Im(α̂)|), where P means
proved, BSD means proved under BSD, S means Satgé, ELK means Elkies,
RVZ means Rodŕıguez Villegas–Zagier, and U means unknown.

Curves y2 = x3 + p2, p ≥ 5

p mod 9 ( 2
p
)
3
|Im(α)| |Im(bα)| rank proved

1 1 9 or 3 3 or 1 2 or 0 (U, U)

1 ρ, ρ2 3 1 0 (P, P)

2 − 9 1 1 (S, P)

4 − 3 3 1 (P, BSD)

5 − 3 1 0 (P, P)

7 1 9 or 3 3 or 1 2 or 0 (U, U)

7 ρ, ρ2 3 1 0 (P, P)

8 − 9 1 1 (BSD, P)

Curves y2 = x3 + 4p2, p ≥ 5

p mod 9 ( 2
p
)
3
|Im(α)| |Im(bα)| rank proved

1 1 9 or 3 3 or 1 2 or 0 (U, U)

1 ρ, ρ2 3 1 0 (P, P)

2 − 3 1 0 (P, P)

4 1 9 or 3 3 or 1 2 or 0 (U, U)

4 ρ, ρ2 3 1 0 (P, P)

5 − 9 1 1 (BSD, P)

7 − 3 3 1 (P, BSD)

8 − 9 1 1 (BSD, P)
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Curves y2 = x3 + 16p2, p ≥ 5

p mod 9 ( 2
p
)
3
|Im(α)| |Im(bα)| rank proved

1 − 3 9 or 1 2 or 0 (P, RVZ)

2 − 3 1 0 (P, P)

4 − 3 3 1 (P, ELK)

5 − 3 1 0 (P, P)

7 − 3 3 1 (P, ELK)

8 − 3 3 1 (P, BSD)

An immediate corollary of the above tables and of Corollary 7.2 and
Proposition 7.6 is the following:

Corollary 7.8.

(1) Assume BSD. If p ≡ 2 or 8 (mod 9) there exist x and y in Q such
that p = x3 + 2y3, and if p ≡ 5 or 8 (mod 9) there exist x and y
in Q such that p = x3 + 4y3.

(2) Assume that either k = 1 and p ≡ 4 (mod 9), or k = 2 and p ≡ 7
(mod 9), and write p = m2 + 3n2. If BSD is true the equation

nX3 − 3mY 3 + 3kZ3 + 3mX2Y − 9nXY 2 = 0

is globally soluble.
(3) Assume that p ≡ 8 (mod 9). If BSD is true the equation

X3 + 3Y 3 + 24pZ3 − 3X2Y − 9XY 2 = 0

is globally soluble.
(4) Assume that p ≡ 4 or 7 (mod 9), and write 4p = m2 +27n2. Without

any assumption the equation

nX3 −mY 3 + 8Z3 +mX2Y − 9nXY 2 = 0

is globally soluble.

Proof. Clear, since these correspond respectively to |Im(α)| = 9 under
BSD, to |Im(α̂)| = 3 under BSD for (2) and (3), and to |Im(α̂)| = 3 by
Elkies’ result.

7.2. The curves y2 = x3 + (kp)2 for k = 3 or 9. Once again the re-
striction on k is made so that no other prime apart from 3 divides it, and
it is not necessary to consider higher powers of 3. Furthermore, the primes
p = 2 and p = 3 give rise to a finite number of curves which can be treated
individually (specifically, the rank is zero unless (k, p) = (3, 2), in which case
it has rank 1, a Mordell–Weil generator being (−3, 3), and the torsion is of
order 3 generated by T = (0, kp), unless (k, p) = (9, 3), in which case it has
order 6 generated by (18, 81)). We therefore assume that p ≥ 5.
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As before, we first compute the image of α. For this, we consider the
cubic equations of Theorem 3.1(3), in other words u1X

3 +u2Y
3 +u3Z

3 = 0,
where u1u2 | 2kp and u3 = 2kp/(u1u2), where we recall that u1u2 is square-
free. Up to exchange of u1 and u2, it is easy to check that the only possi-
bilities are (1, 1, 2kp), (1, 2, kp), (1, 3, 2kp/3), (1, 6, kp/3), (1, p, 2k), (1, 2p, k),
(1, 3p, 2k/3), (1, 6p, k/3), (2, 3, kp/3), (2, p, k), (2, 3p, k/3), (3, p, 2k/3),
(3, 2p, k/3), and (6, p, k/3). The first one (corresponding to u = 1) gives
an evidently soluble equation, corresponding to the unit element of the el-
liptic curve.

Consider first k = 3. We obtain the equations (1, 2, 3p), (1, 3, 2p), (1, 6, p),
(1, p, 6), (1, 2p, 3), (1, 3p, 2), (1, 6p, 1), (2, 3, p), (2, p, 3), (2, 3p, 1), (3, p, 2),
(3, 2p, 1), and (6, p, 1). The equation (1, 6p, 1) (corresponding to u = 6p and
u = (6p)2) corresponds to the two 3-torsion points of the curve. Apart from
that, up to permutation of the ui we have to study solubility for (1, 2, 3p)
(corresponding to u = 2, 4, 3p, 9p2, 12p, and 18p2), (1, 3, 2p) (corresponding
to u = 3, 9, 2p, 4p2, 18p, and 12p2), (1, 6, p) (corresponding to u = 6, 36,
p, p2, 36p, and 6p2), (2, 3, p) (corresponding to u = 12, 18, 4p, 2p2, 9p,
and 3p2).

Lemma 7.9. We have two cases:

(1) If p ≡ 2 (mod 3) all the above cubic equations are ELS , giving a
total of 27 ELS equations.

(2) If p ≡ 1 (mod 3), then either both 2 and 3 are cubes in F∗p, in which
case once again all the above equations are ELS for a total of 27, or
either 2 or 3 or both are non cubes, in which case only nine equations
are ELS.

Proof. Using the lemmas that we have proved it is immediate to show
that all the equations are soluble at 2 and 3. The only problem is at p, and
by Lemma 5.4 the equations are also soluble at p if and only if the classes
of 2, 3, 6, and 3/2 respectively are cubes in F∗p, and if p ≡ 2 (mod 3) this is
trivially true.

Assume now that p ≡ 1 (mod 3). We consider four cases, according to
the cubic residue character of 2 and 3 modulo p.

(1) If 2 and 3 are not cubes in F∗p, then either their product or their
quotient is a cube, so we deduce that either (1, 6, p) or (2, 3, p) is
locally soluble (but not both), giving a total of 6 + 3 = 9 possible
values of u.

(2) If 2 or 3 is a cube in F∗p but not both, then 6 and 3/2 cannot be cubes,
so we deduce that either (1, 2, 3p) or (1, 3, 2p) is locally soluble, giving
again 9 possible values of u.
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(3) If both 2 and 3 are cubes in F∗p then all the equations are locally
soluble, giving a total of 24 + 3 = 27 possible values of u, proving
the lemma.

Corollary 7.10.

(1) If p ≡ 2 (mod 3) then |Im(α)| = 3, 9, or 27 and assuming BSD we
have |Im(α)| = 3 or 27 and the following are equivalent :
(a) |Im(α)| = 27.
(b) rk(E) = 2.
(c) There exist x and y in Q such that p = x3 + 6y3.
(d) There exist x and y in Q such that p = 2x3 + 3y3.
(e) There exist x and y in Q such that p = 4x3 + 12y3.
(f) There exist x and y in Q such that p = 9x3 + 18y3.

(2) If p ≡ 1 (mod 3) and 2 and 3 are not both cubes in F∗p then
|Im(α)| = 3 or 9, and assuming BSD we have |Im(α)| = 9 and
rk(E) = 1, and furthermore for (a, b) = (1, 6), (2, 3), (4, 12), or
(9, 18), there exist x and y in Q such that p = ax3 + by3 if and only
if b/a is a cube in F∗p.

(3) If p ≡ 1 (mod 3) and 2 and 3 are both cubes in F∗p then either Cπ0

is globally soluble, in which case the six conditions of (1) are again
equivalent except that the second must be replaced by rk(E) = 3, or
Cπ0 is not globally soluble, in which case |Im(α)| = 9 and rk(E) = 1,
and exactly one of the equations p = x3 + 6y3, p = 2x3 + 3y3, p =
4x3 + 12y3, or p = 9x3 + 18y3 has a solution with x and y in Q.

Proof. The assertions independent of BSD follow immediately from the
above lemma. On the other hand, if either p ≡ 2 (mod 3) or p ≡ 1 (mod 3)
and 2 and 3 are not both cubes in F∗p, we have |Im(α̂)| = 1, so that 3rk(E)+1 =
|Im(α)|. If p ≡ 2 (mod 3) the root number of E is equal to +1, so assuming
BSD the rank of E is even, hence |Im(α)| = 3 or 27, and the result clearly
follows in this case. If p ≡ 1 (mod 3) the root number of E is equal to −1,
so assuming BSD the rank of E is odd, hence |Im(α)| = 9 when 2 and 3 are
not both cubes, and the result also follows. Finally, if p ≡ 1 (mod 3) and 2
and 3 are both cubes, then |Im(α̂)| = 1 or 3, and it is equal to 3 if and only
if Cπ0 (which is ELS) is globally soluble. Assuming BSD the rank of E is
again odd, so we have two cases:

• If Cπ0 is not globally soluble we again have |Im(α̂)| = 1, so |Im(α)| = 9
and rk(E) = 1.
• If Cπ0 is globally soluble we have |Im(α̂)| = 3, so either |Im(α)| = 3

and rk(E) = 1, or |Im(α)| = 27 and rk(E) = 3.

Note that although Cπ0 is ELS, it is not always globally soluble: the
smallest p for which it is not is p = 3889, for which the 2-rank based
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mwrank program of Cremona tells us that the rank is equal to 1, and on
the other hand (X,Y, Z) = (91,−211, 19) is a solution of the (2, 3, p) cubic
so |Im(α)| ≥ 9, hence by the above if Cπ0 were globally soluble we would
have rk(E) = 3, which is not the case.

Consider now k= 9. We obtain the equations (1, 2, 9p), (1, 3, 6p), (1, 6, 3p),
(1, p, 18), (1, 2p, 9), (1, 3p, 6), (1, 6p, 3), (2, 3, 3p), (2, p, 9), (2, 3p, 3), (3, p, 6),
(3, 2p, 3), and (6, p, 3). The equation (3, 2p, 3) (corresponding to u = 18p and
u = 12p2) corresponds to the two 3-torsion points of the curve. Apart from
that, up to permutation of the ui we have to study solubility for (1, 2, 9p)
(corresponding to u = 2 and 4), (1, 3, 6p) (corresponding to u = 3, 9, 6p, and
36p2), (1, 6, 3p) (corresponding to u = 6, 36, 3p, 9p2), (1, 9, 2p) (correspond-
ing to u = 2p and 4p2), (1, 18, p) (corresponding to u = p and p2), (2, 3, 3p)
(corresponding to u = 12, 18, 12p, and 18p2), (2, 9, p) (corresponding to
u = 4p and 2p2), and (3, 6, p) (corresponding to u = 9p, 3p2, 36p, and 6p2).

Once again, the equations are all locally soluble at 2. However, they are
not all locally soluble at 3 (in fact, (3, 6, p) is never locally soluble at 3), and
using once again the local solubility results that we have proved, we obtain
the following lemma:

Lemma 7.11.

(1) If p ≡ 2 (mod 3), exactly two of the above seven equations are ELS ,
giving always a total of nine values of u.

(2) If p ≡ 1 (mod 3) and 3/2, 3, or 6 are cubes respectively for p ≡ 1,
4, or 7 (mod 9), once again exactly two of the above seven equations
are ELS , giving always a total of nine values of u. Otherwise, none
are ELS , giving a total of three values of u (corresponding to the
3-torsion points).

Proof. The seventh equation is not locally soluble at 3, and the six others
are ELS if and only if p ≡ ±4 (mod 9) and 3 is a cube for (1, 3, 6p) and
(1, 9, 2p), p ≡ ±2 (mod 9) and 6 is a cube for (1, 6, 3p) and (2, 9, p), or
p ≡ ±1 (mod 9) and 3/2 is a cube for (1, 18, p) and (2, 3, 3p), and the result
follows.
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[12] F. Rodŕıguez Villegas and D. Zagier, Which primes are sums of two cubes? , in:
Number Theory (Halifax, NS, 1994), CMS Conf. Proc. 15, Amer. Math. Soc., 1994,
295–306.
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351 Cours de la Libération
33405 Talence, France
E-mail: cohen@math.u-bordeaux1.fr
http://www.math.u-bordeaux.fr/˜cohen/

IMJ Université Paris 7
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