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1. Introduction and summary. Let

li(x) = lim
ε→0+

1−ε�

0

dt

log t
+

x�

1+ε

dt

log t

and let π(x) denote the number of primes ≤ x. Also, πq,a(x) denotes the
number of primes ≤ x lying in the progression a mod q. In 1792, Gauss
observed that π(x) < li(x) for x < 3000000 (see e.g. [E]) and the question of
whether or not there are any sign changes of π(x)−li(x) remained open until
1914 when J. E. Littlewood [Li] showed that there exists a positive constant
k such that infinitely often both π(x)− li(x) and li(x)− π(x) exceed

kx1/2 log log log x
log x

.

Sign changes are, nonetheless, quite rare and it was not until 1955 that any
upper bound was obtained for the first sign change. The upper bound of

10101034

was obtained by Skewes [Sk1] on the assumption of the Riemann Hypothesis,
and in 1955 [Sk2] he provided the first unconditional upper bound for the
first sign change, namely

101010103

.

In 1966, Lehman [Leh] developed a new method based on an explicit
formula for li(x) − π(x) averaged by a Gaussian kernel and knowledge of
zeros of the Riemann zeta function ζ(s) in the region |=s| ≤ 12000. Lehman’s
method drastically improves the upper bound for the first sign change. In
particular, he proved that it must occur before 1.5926·101165 and his method
was used by te Riele [tR] to lower the bound to 6.6658 · 10370 and by Bays
and Hudson [BH5] to lower it further to 1.39822 · 10316.
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In this paper, we generalize Lehman’s method, enabling one to compare
the number of primes≤ x in any two arithmetic progressions qn+a and qn+b.
For reasons given in, e.g., [H2], [RS], negative values of πq,b(x)− πq,a(x)
may be relatively infrequent if b is a quadratic non-residue of q and a a
quadratic residue. This phenomenon, first noted by Chebyshev in 1853 for
the case q = 4, is known as “Chebyshev’s bias”. It is quite pronounced when
q | 24, 1 < b < q, (b, q) = 1 and a = 1, and these cases have been studied
extensively from a numerical point of view ([BH1]–[BH4], [Lee], [Sh]) and
from a theoretical point of view ([BFHR], [H2], [K1]–[K3], [KT1], [KT2],
[Li], [RS]). For example, Bays and Hudson [BH2] showed in 1978 that the
smallest x with π3,2(x) < π3,1(x) is x = 608981813029.

Section 2 is devoted to the development of the analog of Lehman’s the-
orem. Our bounds are considerably sharper than in [Leh], but as a con-
sequence the bounds are a bit more complex. In Section 3 we apply the
theorem for q | 24 and a = 1. Our present knowledge of the zeros of these
L-functions is due to Rumely ([Ru1], [Ru2]) and this is insufficient to obtain
bounds which are anywhere near “best possible”. The bounds, however, are
in most cases adequate to localize negative values of πq,b(x)− πq,1(x).

2. A generalization of Lehman’s theorem. For non-real numbers
z, define

(2.1) li(ez) := ez
∞�

0

e−t

z − t dt

and let

(2.2) K(s;α) =

√
α

2π
e−αs

2/2.

Also, for % = β + iγ, 0 < β < 1, define

J(%) :=
ω+η�

ω−η
K(u− ω;α)ue−u/2 li(e%u) du.

Lemma 2.1. If % = 1/2 + iγ with γ 6= 0, u ≥ 1 and J ≥ 1, then
∣∣∣∣
li(e%u)
e%u

−
J∑

j=1

(j − 1)!
(%u)j

∣∣∣∣ ≤
J !
uJ+1 min

(
1

|γ|J+1 ,
21.5J+2

(1 + 2|γ|)J+1

)
.

Proof. By (2.1) and repeated integration by parts, we have for non-real
z the identity

(2.3) e−z li(ez)−
J∑

j=1

(j − 1)!
zj

= J !
∞�

0

e−t

(z − t)J+1 dt.
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Now put z = %u. Since |%u − t| ≥ u|γ|, the last integral is ≤ (u|γ|)−J−1. If
|γ| is small, we can do better by deforming the contour. If γ > 0 let C be
the union of the straight line segments from 0 to 1

2 (u − iu) to u to ∞ and
if γ < 0 let C be the union of the line segments from 0 to 1

2 (u+ iu) to u to
∞. For t ∈ C, we have

|%u− t| ≥ (1 + 2|γ|)u
23/2

.

Together with the bound
�

C

|e−t| dt ≤
√

2,

this proves the lemma.

Lemma 2.2 (McCurley). Let χ be a Dirichlet character of conductor k
and denote by N(T, χ) the number of zeros of L(s, χ) lying in the region
s = σ + iγ, 0 < σ < 1, |γ| ≤ T . Then

∣∣∣∣N(T, χ)− T

π
log
(
kT

2πe

)∣∣∣∣ ≤ C2 log(kT ) + C3,

where

C2 = 0.9185, C3 = 5.512.

Proof. This is Theorem 2.1 of [M] with η = 1/2.

Corollary 2.3. Suppose g is a continuous, positive, decreasing func-
tion for t ≥ T = 2πe/k, and suppose T2 ≥ T1 ≥ T . Let χ be a Dirichlet
character of conductor k and denote by γ the imaginary part of a generic
non-trivial zero of L(s, χ). Then

∣∣∣∣
∑

T1<|γ|≤T2

g(|γ|)− 1
π

T2�

T1

g(t) log
(
kt

2π

)
dt

∣∣∣∣

≤ 2g(T1)(C2 log(kT1) + C3) + C2

T2�

T1

g(t)
t
dt.

Proof. Lemma 2.2 and partial summation.

Corollary 2.4. If T ≥ 150, n ≥ 2 and χ is a Dirichlet character of
conductor k ≥ 3, then

∑

|γ|>T
γ−n <

T 1−n log(kT )
3

.
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Proof. Letting g(γ) = γ−n in Corollary 2.3, we obtain

∑

|γ|>T
γ−n ≤ T 1−n

(
log
(
kT
2π

)

π(n− 1)
+

1
π(n− 1)2 +

2C2 log(kT ) + 2C3 + C2/n

T

)

≤ T 1−n log(kT )
(

1
π

+
2C2

T

)
+ T 1−n

(
2C3 + C2/2

T
− log(2π)

π

)

< 1
3T

1−n log(kT ).

We also use the simple bound

(2.4)
∞�

y

K(u;α) du <

√
α

2π

∞�

y

(
u

y

)
e−αu

2/2 du =
K(y;α)
αy

(y > 0).

We now adopt a notational convention from [Leh]: The notation f = ϑ(g)
means |f | ≤ |g|.

Lemma 2.5. Suppose

(2.5) ω ≥ 30, 0 < η ≤ ω/30, |γ| ≤ αη/2.
If % = 1/2 + iγ, then

J(%) = eiγω−γ
2/(2α)

(
1
%

+
1
ω%2 +

2
ω2%3

)
+Q1(γ) +Q2(γ),

where

|Q1(γ)| ≤ 6
(ω − η)3 min

(
1
γ4 ,

64
√

2
(1 + 2|γ|)4

)
,

|Q2(γ)| ≤ 2.2K(η;α)
|%|αη +

1.25
αω3|%|2 +

1.27e−γ
2/(2α)

ω2α|%| .

Proof. Without loss of generality suppose γ > 0. By Lemma 2.1 and the
fact that � ∞−∞K(u;α) du = 1,

ω+η�

ω−η
K(u− ω;α)ue−u/2 li(e%u) du = I +E,

where

I =
ω+η�

ω−η
K(u− ω;α)ueiγu

J∑

j=1

(j − 1)!
(%u)j

du,

|E| ≤ J !
(ω − η)J

min
(

1
γJ+1 ,

21.5J+2

(1 + 2γ)J+1

)
.

Now make the change of variables u = ω − s and take J = 3. By (2.5),
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|s/ω| ≤ 1/30 and |%ω| ≥ 15, thus

I

eiγω
=

η�

−η
K(s;α)e−iγs

(
1
%

+
1

ω%2(1− s/ω)
+

2
ω2%3(1− s/ω)2

)
ds

=
η�

−η
K(s;α)e−iγs

×
(

1
%

+
1
ω%2 +

2
ω2%3 +

s

ω2%2 +
4s
ω3%3 + ϑ

(
1.25s2

ω3%2

))
ds

=
(

1
%

+
1
ω%2 +

2
ω2%3

)
I0 +

I1
ω2%2

(
1 +

4
ω%

)
+ ϑ

(
I ′2

1.25
ω3%2

)

where

In =
η�

−η
K(s;α)sne−iγs ds (n = 0, 1)

and

I ′2 =
∞�

−∞
K(s;α)s2 ds = 1/α.

By (2.2) and (2.4), we have

I0 = e−γ
2/(2α) + ϑ

(
2
∞�

η

K(s;α) ds
)

= e−γ
2/(2α) + ϑ

(
2K(η;α)

αη

)
.

In addition, by (2.5) we have

|I1| =
∣∣∣∣
2i sin γη

α
K(η;α)− iγ

α
I0

∣∣∣∣

≤
(

2
α

+
2γ
α2η

)
K(η;α) +

γe−γ
2/(2α)

α
≤ 3K(η;α) + γe−γ

2/(2α)

α
.

We thus obtain∣∣∣∣I − eiγω−γ
2/(2α)

(
1
%

+
1
ω%2 +

2
ω2%3

)∣∣∣∣

≤ 1.27γe−γ
2/(2α)

ω2|%|2α +
1.25

αω3|%|2 +
(

3.8
ω2|%|2α +

2.16
|%|αη

)
K(η;α).

By (2.5), ω2|%| ≥ 450η, and the lemma follows.

The next lemma, essentially due to Lehman ([Leh], §5), shows how to
deal with the contribution from large γ without needing to assume the truth
of the Riemann Hypothesis.
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Lemma 2.6. Suppose that

(2.6) |γ| ≥ 100, ω ≥ 30, η ≤ ω/15, 1 ≤ N ≤ min(|γ|η/2, αω2/100).

Writing % = β + iγ, with 0 < β < 1, we have

|J(%)| ≤ e(β−1/2)(ω+η)
(

2.4
√
α e−αη

2/8

γ2 +
2.8
√
N

|γ|N+1

(
Nα

e

)N/2)
.

Proof. By Lemma 2.5, we expect |J(%)| is about |%|−1e(β−1/2)ω−γ2/(2α).
Suppose without loss of generality that γ > 100. As in [Leh], we begin by
considering the function

f(s) := %se−%s li(e%s)e−α(s−ω)2/2

in the region −π/4 ≤ arg s ≤ π/4, |s| > 1. This function is analytic in this
sector because γ > 100. Then

J(%) =
1
%

√
α

2π
I1, I1 =

ω+η�

ω−η
e(%−1/2)uf(u) du.

By repeated integration by parts,

I1 =
N∑

n=0

(−1)ne(%−1/2)ω

(%− 1/2)n+1 (e(%−1/2)ηf (n)(ω + η)− e−(%−1/2)ηf (n)(ω − η))

+
(−1)N

(%− 1/2)N

ω+η�

ω−η
e(%−1/2)uf (N)(u) du.

Choose r ≤ ω/10. Then

(2.7) f (n)(u) =
n!

2πi

�

|s−u|=r

f(s)
(s− u)n+1 ds.

By (2.3) we have

f(s) = e−α(s−ω)2/2
(

1 +
1
%s

+ ϑ

(
2|%s|
|=%s|3

))
.

Since |%s| ≥ 2000 and |=%s| ≥ 1
2 |%s|, it follows that

|f(s)| ≤ 1.001e−(α/2)<(s−ω)2
.

Writing s = u+ reiφ and using (2.7), we deduce

(2.8) |f (n)(u)| ≤ 1.001n!
2πrn

π�

−π
e(α/2)(r2−r2 cos2 φ−(r cosφ+u−ω)2) dφ.
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When u = ω ± η, we take r = η/2 and get

|f (n)(u)| ≤ 1.001n!
2π(η/2)n

e−αη
2/8

π�

−π
e−(αη2/4)(1−cosφ)2

dφ

≤ 1.001n!(2/η)ne−αη
2/8,

since the integrand above is ≤ 1. We then obtain

|I1| ≤ e(β−1/2)(ω+η)
(

2.002e−αη
2/8

γ

N∑

n=0

n!
(

2
γη

)n
+ γ−N

ω+η�

ω−η
|f (N)(u)| du

)
.

Since n! ≤ 2(N/2)n for n ≤ N and N/(γη) ≤ 1/2, the sum on n is ≤ 3. By
(2.8),

ω+η�

ω−η
|f (N)(u)| du ≤ 1.001N !

2πrN
eαr

2/2
π�

−π
e−

α
2 r

2 cos2 φ

η�

−η
e−

α
2 (t+r cosφ)2

dt dφ

≤ 1.001N !
2πrN

eαr
2/2

π�

−π

∞�

−∞
e−αt

2/2 dt dφ

=
1.001N !
rN

eαr
2/2

√
2π
α
.

Taking r =
√
N/α and using the inequality N ! ≤ e1−NNN+1/2 gives
ω+η�

ω−η
|f (N)(u)| du ≤ 1.001e

√
2πN
α

(
αe

N

)−N/2
.

The lemma now follows.

Theorem 1. Suppose χ is a primitive Dirichlet character of conductor
k, and all the non-trivial zeros % = β + iγ of L(s, χ) with |γ| ≤ A have real
part β = 1/2. Suppose that

(2.9) 150 ≤ T ≤ A, ω ≥ 30, η ≤ ω/30, 2A/η ≤ α ≤ A2.

Then
∑

%

J(%) =
∑

|γ|≤T
eiγω−γ

2/(2α)
(

1
%

+
1
ω%2 +

2
ω2%3

)
+

4∑

i=1

Ri(χ, T ),

where

|R1(χ, T )| ≤ 6
(ω − η)3

∑

%

min
(

1
γ4 ,

64
√

2
(1 + 2|γ|)4

)
,

|R2(χ, T )| ≤
(

2.2K(η;α)
αη

+
1.27
αω2

) ∑

|γ|≤A

1
|%| +

1.25
αω3

∑

%

1
|%|2 ,
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|R3(χ, T )| ≤ e−T 2/(2α) log(kT )
(

α

πT 2 +
4.3
T

)
,

|R4(χ, T )| ≤ e(ω+η)/2 log(kA)
(

0.8
√
α e−αη

2/8

A
+ 2.56Aα−1/2e−A

2/(2α)
)
.

If the Riemann Hypothesis is true for L(s, χ) (i.e. all the non-trivial zeros
have real part 1/2), then the term R4 may be omitted , as may the condition
α ≤ A2. Also, if A = T , then R3(χ, T ) = 0.

Proof. The main terms in the theorem come from the main terms of
Lemma 2.5 for |γ| ≤ T . The first part of the theorem follows by taking

Ri = Ri(χ, T ) =
∑

|γ|≤A
Qi(γ) (i = 1, 2),

R3 = R3(χ, T ) =
∑

T<|γ|≤A
eiγω−γ

2/(2α)
(

1
%

+
1
ω%2 +

2
ω2%3

)
,

R4 = R4(χ, T ) =
∑

|γ|>A
J(%).

The upper bounds for R1 and R2 follow from Lemma 2.5. Since ω ≥ 30, we
have ∣∣∣∣

1
%

+
1
ω%2 +

2
ω2%3

∣∣∣∣ ≤
1
γ
.

Thus, by Corollary 2.3, we find that

|R3| ≤
∑

|γ|>T

e−γ
2/(2α)

γ

≤
∞�

T

e−t
2/(2α)

πt
log
(
kt

2π

)
dt+

2e−T
2/(2α)

T
(C2 log(kT ) + C3)

+ C2

∞�

T

e−t
2/(2α)

t2
dt.

If g(t) is positive and decreasing for t ≥ T we have
∞�

T

g(t)e−bt
2
dt <

g(T )
T

∞�

T

te−bt
2
dt =

g(T )e−bT
2

2bT
.

Therefore,

|R3| ≤ e−T
2/(2α)

(
α log(kT/(2π))

πT 2 +
2C2 log(kT ) + 2C3

T
+
αC2

T 3

)
.
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The desired bound for R3 now follows from the bounds kT ≥ 100 and

αC2

T 3 ≤
α log(2π)
πT 2 .

Lastly, Corollary 2.4 and Lemma 2.6 give

|R4| ≤
∑

|γ|>A
|J(%)|

≤ e(ω+η)/2 log(kA)
(

0.8
√
α e−αη

2/8

A
+ 0.94

√
N

(
Nα

eA2

)N/2)
.

We take N = bA2/αc and note that (2.9) implies (2.6).

Finally, we need explicit formulas for the number of primes in an arith-
metic progression. For a primitive Dirichlet character χ modulo k ≥ 3, let
a = 0 if χ(−1) = 1 and a = 1 if χ(−1) = −1. By an analog of the Riemann–
von Mangoldt formula ([La, p. 532]), if L(s, χ) has no positive real zeros
then

S(χ;x) :=
∑

p,m
pm≤x

χ(p)m

m
(2.10)

= −
∑

%

li(x%) +
∞�

x

dy

y1−a(y2 − 1) log y

+ (1− a) log log x+Ka,

where

K0 = C − log
(
τ(χ)π

2k
L(1, χ)

)
,

K1 = log
(
τ(χ)
iπ

L(1, χ)
)
,

and

τ(χ) =
k∑

m=1

χ(m)e2πim/k.

Here C = 0.5772 . . . is the Euler–Mascheroni constant and log z refers to the
principal branch of the logarithm. The values of L(1, χ) are computed easily
by means of the formula

τ(χ)L(1, χ) = −
k−1∑

j=1

χ(j) log(1− e2πij/k).

Also, the integral in (2.10) is less than 1/x for x > 10. The last formula we



306 K. Ford and R. H. Hudson

need is

(2.11) πq,a(x) =
1

φ(q)

∑

χmod q

χ(a)S(χ;x)−
∑

p,m
pm≤x,m≥2
pm≡a (mod q)

1
m
.

In practice the m = 2 terms will be very significant, while the terms with
m ≥ 3 will be negligible. In fact, we have

(2.12)
∑

pm≤x,m≥3

1
m
≤ 1.3x1/3

log x
(x ≥ e30)

which follows easily from the inequality

π(x) ≤ x

log x
+

1.5x

log2 x
(x > 1)

given by Theorem 1 of Rosser and Schoenfeld [RoS]. Lastly, if χ0 is the
primitive character (of order k0) which induces χ, then

|S(χ0;x)− S(χ;x)| ≤
∑

pm≤x
p|k, p-k0

1
m
≤

∑

p|k, p-k0

(
1 + log

log x
log p

)
(2.13)

≤ |{p : p | k, p - k0}|(log log x+ 1− log 2).

Here we have used the inequality
∑
n≤x 1/n ≤ 1 + log x.

3. Primes in progressions modulo 3, 4, 8, 12 and 24. For brevity,
write

∆q,b,1(x) := πq,b(x)− πq,1(x).

In this section we give new results on the location of negative values of
∆q,b,1(x). Throughout we assume q | 24, 1 < b < q and (b, q) = 1. As
noted previously, such negative values are quite rare. The smallest x giving
∆4,3,1(x) < 0 is x = 26861, discovered by Leech [Lee] in 1957. Shanks [Sh]
computed ∆8,b,1(x) for b = 3, 5, 7 and x ≤ 106 and found that none of the
functions takes negative values. Extensive computations by Bays and Hud-
son in the 1970s ([BH1]–[BH4]) for x ≤ 1012 led to the discovery of several
more “negative regions” for ∆4,3,1(x), as well as a single region for ∆3,2,1(x),
a single region for ∆24,13,1(x) and two regions for ∆8,5,1(x). By “negative
region” we mean an interval [x1, x2] where the corresponding function is
negative a large percentage of time. It is not well defined, but reflects the ob-
servation that negative values of the functions ∆q,b,1(x) occur in “clumps”.
For example, ∆3,2,1(x) < 0 for about 15.9% of the integers in the interval
[608981813029, 610968213796]. On the other hand, the computations show
that

∆q,b,1(x) ≥ 0 (x ≤ 1012)
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for

(3.1) q = 8, b ∈ {3, 7} and q = 24, b ∈ {5, 7, 11, 17, 19, 23}.

With modern computers, the search could easily be extended to 1014 or
even 1015, and we will show that in fact there are regions in this range
where ∆q,b,1(x) < 0 for some of the pairs q, b given in (3.1). Our method,
though, takes only seconds versus weeks for an exhaustive search.

From a theoretical standpoint, Littlewood [Li] proved in 1914 that
∆4,3,1(x) and ∆3,2,1(x) change sign infinitely often. Knapowski and Turán
(Part II of [KT1]) generalized this substantially, showing that ∆q,b,1(x)
changes sign infinitely often whenever q | 24, 1 < b < q and (b, q) = 1 (in
addition to other q, b). Later papers ([KT1], [KT2]) deal with the frequency
of sign changes, but the bounds for the first sign change are of the “towering
exponentials” type, similar to Skewes’ results.

In what follows, χk denotes the unique primitive character modulo k
and χk,i (i = 1, . . . , h) denote the primitive characters modulo k if there are
more than one. In particular, χ8,1(−1) = −1 and χ24,1(−1) = −1. Table 1
below lists some parameters which we will need. Here

Σ1 =
∑

%

1
|%|2 , Σ2 =

∑

%

min
(

1
γ4 ,

64
√

2
(1 + 2|γ|)4

)
, Σ3 =

∑

|γ|≤10000

1
|%| .

The entries in the second, third, and fourth columns are rigorous upper
bounds, obtained from Rumely’s lists of zeros [Ru2] and Corollary 2.4. The
number N denotes the number of zeros with 0 < γ < 10000. It is desirable
in applications to know the zeros of all the required L-functions to the
same height. Rumely [Ru1] originally computed zeros to height 10000 for
characters with conductor ≤ 13 and to height 2600 for other characters. For
the two primitive characters modulo 24, Rumely’s original programs were
run to compute the zeros to height T = 10000, and the output was checked
against his original list of zeros to height 2600. In all of our computations,
we take T = 10000 for every character. Recently Rumely [Ru2] has extended
the computations to height 100000 for characters of conductor < 10. So for
such characters we may take A = 100000.

When q | 24, all the characters modulo q are real, and furthermore the
only quadratic residue modulo q is 1. When x ≥ e32.3, for each character in
Table 1,

|(1− a) log log x+Ka| ≤ |log log x+ log 3| ≤ 0.00312
x1/3

log x
.

Further, if χ0 is the primitive character (modulo k0) which induces χ (for
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Table 1

Char. Σ1 Σ2 Σ3 N a τ(χ)L(1, χ) Ka

χ3 0.114 0.00070 11.29 11891 1 (π/3)i − log 3
χ4 0.156 0.00186 12.10 12349 1 (π/2)i − log 2
χ8,1 0.317 0.01336 14.14 13452 1 πi 0
χ8,2 0.236 0.00442 13.92 13452 0 2 log(1 +

√
2) 1.6382 . . .

χ12 0.331 0.01120 15.12 14097 0 2 log(2 +
√

3) 1.6420 . . .
χ24,1 0.798 0.13683 17.61 15200 1 2πi log 2
χ24,2 0.553 0.04239 17.24 15200 0 4 log(

√
2 +
√

3) 1.0877 . . .

one of the seven characters in Table 1), then

(log log x+ 0.31)|{p : p | k, p - k0}| ≤ log log x+ 0.31 ≤ 0.0026
x1/3

log x
.

Together with (2.10)–(2.13), we obtain the formula

(3.2) πq,b(x)− πq,1(x) =
2

φ(q)

∑

χmod q
χ(b)=−1

∑

%

li(x%) +
π(
√
x)

2
+ ϑ

(
1.31x1/3

log x

)
.

We need a tight upper bound on π(
√
x), given by the next lemma.

Lemma 3.1. For x ≥ 1014, we have π(x) ≤ 1.000011 li(x).

Proof. From Table 3 of [Ri], we have π(1014) < li(1014). Defining θ(x) =∑
p≤x log p, we have

|θ(x)− x| ≤ 0.0000055x (x ≥ e32),

which follows from Theorem 5.1.1 of [RR], upon taking x = e32, m = 18,
H = 70000000, and δ = 6.59668 · 10−8. By partial summation, for x ≥ 1014

we obtain

π(x) ≤ li(1014) +
x�

1014

dθ(t)
log t

≤ (1 + 2(0.0000055)) li(x).

Define
W (χ;x) =

∑

%

li(x%),

where the sum is over zeros % of L(s, χ) lying in the critical strip. Since we
are primarily interested in locations where πq,b(x)− πq,1(x) is negative, we
apply Lemma 3.1 to obtain from (3.2) the inequality

πq,b(x)− πq,1(x) ≤ 2
φ(q)

∑

χmod q
χ(b)=−1

W (χ;x) +
1
2

(1.000011) li(
√
x) +

1.31x1/3

log x
.

It is easy to show that
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li(x) ≤ x

log x

(
1 +

1
log x

+
2

log2 x
+

h(x)

log3 x

)
,

where

h(x) =





8.326, e16 ≤ x < e21,

7.538, e21 ≤ x ≤ e29.3,

7, x ≥ e29.3.

By Theorem 1, we therefore have

Theorem 2. Suppose that ω − η ≥ 32.3 and 0 < η ≤ ω/30. Suppose
q | 24, (b, q) = 1 and 1 < b < q. For each Dirichlet character χ modulo q
with χ(b) = −1, suppose that all the zeros of L(s, χ) which lie in the rectangle
0 < <s < 1, −Aχ ≤ =s ≤ Aχ, actually lie on the critical line <s = 1/2.
Further suppose that

150 ≤ Tχ ≤ Aχ, 2Aχ/η ≤ α ≤ A2
χ

for every χ. Then
ω+η�

ω−η
K(u− ω;α)ue−u/2(πq,b(eu)− πq,1(eu)) du

≤ (1.000011)
(

1 +
2

ω − η +
8

(ω − η)2 +
8h(e(ω−η)/2)

(ω − η)3

)
+ 1.31e−(ω−η)/6

+
2

φ(q)

∑

χmod q
χ(b)=−1

( ∑

|γ|≤Tχ
eiγω−γ

2/(2α)
(

1
%

+
1
ω%2 +

2
ω2%3

)

+
4∑

i=1

|Ri(χ, Tχ)|
)
.

The error terms Ri(χ, Tχ) are as given in Theorem 1, with T = Tχ and
A = Aχ. Furthermore, if Aχ = Tχ then the corresponding R3(χ, T ) is 0,
and if the Riemann Hypothesis holds for L(s, χ), then we have R4(χ, T ) = 0
and the condition α ≤ A2

χ may be omitted.

Locating likely candidates for regions where ∆q,b,1(x) takes negative val-
ues is relatively simple. We search for values of ω for which

K∗ = K∗(q, b;ω) =
li(
√
x) log x
2
√
x

+
2

φ(q)

∑

χmod q
χ(b)=−1

∑

|γ|≤Tχ

eiγω

%
< 0.

Heuristically,K∗ is a good predictor for the average of ue−u/2∆q,b,1(eu) for u
near ω. For example, K∗(24, 13;ω) reaches a relative minimum of −0.15873
at about ω = 27.617477, while Bays and Hudson [BH3] computed at x =
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9.866 · 1011 ≈ e27.61753 the value ∆24,13,1(x) = −6091 ≈ −0.169357
√
x

log x (it
is possible that ∆24,13,1(x) takes smaller values in this vicinity, but this is
the smallest value listed in the paper). Using K∗ as an approximation for
ue−u/2∆q,b,1(eu) is also useful in computing a numerical value for Cheby-
shev’s bias (see [RS], [BFHR]).

In practice, since ω is large, η is small, and T is large (≥ 10000), the
most critical of the error terms is R4(χ, Tχ) because it controls the maximum
practical value for α. We want to take α as large as possible, so the sums over
eiγω−γ

2/(2α)/%, which are required to be “large” negative, are not damped
out too much by the e−γ

2/(2α) factor.
The computations were performed with a C program running on a Sun

Ultra-10 workstation using double precision floating point arithmetic, which
provides about 16 digits of precision. The zeros of the L-functions in
Rumely’s lists are all accurate to within 10−12. Values computed for the
right side of the inequality in Theorem 2 were rounded up in the 4th deci-
mal place.

Theorem 3. For each row of Tables 2 and 3 for which a value of K is
given, we have

(3.3) min
ω−η≤u≤ω+η

ue−u/2(πq,b(eu)− πq,1(eu)) ≤ K.

Proof. Take the indicated values of the parameters in Theorem 2. Here
Tχ = 10000 for every χ, Aχ = 100000 in Table 2 and Aχ = 10000 in Table 3.
In the case where a value of K is not given, we could not prove that K < 0
with any choice of parameters.

Table 2

q b ω K∗ η α K

3 2 45.12686 −0.0798 0.02 107 −0.0650
3 2 58.36855 −0.1710 0.02 107 −0.1525

4 3 2179.77584 −0.8109 0.05 4000000 −0.7761
4 3 78683.67818 −1.0480 2.00 120000 −0.8372

8 3 43.36630 −0.0249 0.02 107 −0.0013
8 3 54.94255 −0.0490 0.02 107 −0.0280
8 5 32.89388 −0.0716 0.02 107 −0.0503
8 5 34.46826 −0.0051
8 5 57.48058 −0.2136 0.02 107 −0.1915
8 7 32.89284 −0.0136
8 7 45.34991 −0.0868 0.02 107 −0.0508
8 7 48.79950 −0.1889 0.02 107 −0.1724

12 11 187.53674 −0.0410 0.02 107 −0.0191
12 11 191.89007 −0.0415 0.02 107 −0.0182
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Example. The “error terms” R3 and R4 force α to be less than
min(A2/ω, T 2) for practical purposes. For row 5 of Table 2, with the in-
dicated values of the parameters, we compute (rounded in the last place
after the decimal point)

Char Sum on % R1 R2 R3 R4

χ4 −0.802723684 0.000000137 0.000000002 0.002303420 0
χ8,2 −1.308816425 0.000000326 0.000000003 0.002454092 0

Here the second column is the sum over |γ| ≤ Tχ in Theorem 2. The first line
of the right side of the inequality in Theorem 2 is computed as 1.0521043.
All of these values are rounded in the 9th decimal place.

Corollary 4. For each b ∈ {3, 5, 7}, π8,b(x) < π8,1(x) for some x <
5 · 1019. For each b ∈ {5, 7, 11}, π12,b(x) < π12,1(x) for some x < 1084. For
each b ∈ {5, 7, 11, 13, 17, 19, 23}, π24,b(x) < π24,1(x) for some x < 10353.
Finally , if the zeros of L(s, χ4) lying in the critical strip to height A =
630000 all have real part equal to 1/2, then for some x in the vicinity of
e78683.7 we have

π4,1(x)− π4,3(x) >
√
x/log x.

The significance of the last statement is that we now know (once the zeros
of L(s, χ4) are computed to height 630000) a specific region where π4,1(x)
runs ahead of π4,3(x) as much as it usually runs behind (this is the smallest
x for which K∗ < −1). The idea is that the terms on the right side of (3.2)
corresponding to the zeros % are oscillatory, so that on average ∆q,b,1(x) is
about π(

√
x)/2 ≈ √x/log x. Subject to certain unproven hypotheses, this

notion can be made very precise (e.g. [RS]). The two rows for q = 4 were
chosen because of the large negative values of K∗.

In Tables 2 and 3, we have confined our calculations to locating regions
with x ≥ e32.3 ≈ 1014, smaller x being easily dealt with by exhaustive
computer search. The listed values of K∗ and K are rounded up in the last
decimal place. For each pair (q, b) except (4, 3), the first few likely regions
of negative values of ∆q,b,1(x) are listed. The lists continue until a region
is found where a negative value can be proved with A = 10000. In some
regions, a negative value can be proved with a larger value of A and in
other regions no negative value could be proved even with A = ∞. These
latter rows have no K value listed. However, when ω ≤ 44 or so, it is
possible to find specific values of x with ∆q,b,1(x) < 0 by computing this
function exactly by means of Hudson’s extension of Meissel’s formula [H1].
This formula makes it practical to compute exact values of πq,a(x) for x as
large as 1020. The first author is currently writing a computer program for
this, and one preliminary result can be announced now. At x = 1.9282 ·1014
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Table 3

q b ω K∗ η α K

12 5 39.12815 −0.0071
12 5 69.00554 −0.0210
12 5 73.93306 −0.0117
12 5 88.98310 −0.0104
12 5 102.08460 −0.0344
12 5 103.73736 −0.0611 0.03 750000 −0.0445
12 7 39.12144 −0.2063 0.02 1550000 −0.1410
12 7 45.87795 −0.1468 0.02 1400000 −0.0871

24 5 161.18837 −0.1176 0.04 525000 −0.0920
24 7 92.49622 −0.0693 0.03 830000 −0.0530
24 11 111.54595 −0.0023
24 11 812.63677 −0.0526 0.20 118000 −0.0104
24 13 34.14425 −0.4810 0.02 1700000 −0.3521
24 17 34.05708 −0.0387
24 17 34.19749 −0.0208 0.02 1650000 −0.0110
24 19 34.20322 −0.1473 0.02 1650000 −0.1362
24 23 43.45318 −0.0204
24 23 94.46170 −0.0376 0.03 800000 −0.0113

we have ∆8,7,1(x) = −105, and this computation took 10 minutes on a Sun
Ultra-10 workstation.

For all pairs q, b, the values of ω given in Tables 2 and 3 represent the
minimum of K, and this does not necessarily correspond to the minimum of
K∗. The difference |K −K∗| varies substantially, and this is expected due
to the factors e−γ

2/(2α) in Theorem 2. To illustrate the difference, Graph 1
depicts the functions K and K∗ for q = 12, b = 11 in the vicinity of e187.536.
Also as expected, larger values of A, which permit larger values of α, narrow
the difference appreciably.

A shortcoming of our method is the inability to compare three or more
progressions. For example, Shanks [Sh] asked if π8,1(x) will ever be greater
than each of π8,3(x), π8,5(x) and π8,7(x) simultaneously. Based on compu-
tations of the functions K∗, it is likely that this occurs in the vicinity of
e389.3712, but this cannot be proved by the methods of this paper. It is,
however, possible to detect negative values of any linear combination of the
functions πq,b(x). For example, by Theorem 2 it follows that for some x with
|log x− 158.64233| ≤ 0.01, we have

(3.4) π8,1(x) > 1
3 (π8,3(x) + π8,5(x) + π8,7(x)).

We are really looking for negative values of 1
3 (∆8,3,1(x) + ∆8,5,1(x) +

∆8,7,1(x)), and take A = 100000, α = 107 and η = 0.02 and obtain
K < −0.0265.
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Graph 1. K vs. K∗; q = 12, b = 11, η = 0.02, α = 107, A = 100000
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