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1. Introduction. Exponential sums have proved to be very useful in
many problems in number theory. The most powerful results obtained so
far in this area are concerned with exponential sums in finite fields. There
are many important results on this topic in the literature (see Weil [9],
Bombieri [2], [3], Deligne [4], [5], Serre [8], Katz [6]). The theory works fine
for complete exponential sums. By a standard procedure of expressing an
incomplete exponential sum in terms of complete ones, it also works for
incomplete sums. However, the quality of such results depends on the size
of the range of summation of the given incomplete exponential sum, and it
is getting worse when this size is small.

A technique devised to estimate certain averages of short exponential
sums is presented in [10]. To be precise, let ε > 0, let N ≤ M ≤ P be
positive integers and let r(X) = f(X)/g(X) be a rational function which
is not a polynomial, with integer coefficients bounded by PK1 and with
deg f,deg g < K2, where K1 and K2 are some positive constants. Then for
almost all pairs (p,m) with p prime, p ∈ [P, 2P ] and m ∈ {1, . . . ,M} one
has

(1.1)
∣∣∣∣
∑∗

1≤n≤N
e

(
mr(n)
p

)∣∣∣∣�ε,K1,K2 N
1/2P ε.

Here and in what follows “almost all” means that the exceptional set has
density < P−ε, r(n) is computed modulo p and

∑∗ denotes a sum over val-
ues of n for which g(n) is nonzero modulo p. The above result was obtained
via the following second moment estimate. Under the same assumptions one
has

(1.2)
∑

P≤p≤2P

∑

1≤m≤M
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�ε,K1,K2 NMP 1+ε.
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In order to prove (1.2) one brings into play the pair correlation of the
sets

Np =
{
r(n) (mod p)

p
: 1 ≤ n ≤ N

}

and use them to provide upper bounds for the short moments:

M2(N,M, r, p) =
∑

1≤m≤M

∣∣∣∣
∑∗

1≤n≤N
e

(
mr(n)
p

)∣∣∣∣
2

for each p individually. Next, an alternative way of estimating the pair cor-
relations is introduced, which produces the required amount of cancellation
in these pair correlations when p varies in the interval [P, 2P ]. Thus the
point was to average the correlations rather than the exponential sums.

In this paper we present a generalization of the above results to ratio-
nal functions of several variables r(X1, . . . ,Xk). Here the new feature is
the appearance of an obstruction caused by a certain Diophantine equa-
tion, the size of the set of solutions of which controls the size of our ex-
ponential sums. Quite interestingly, this is a Diophantine equation over Z
as is the case with our original rational function r(X1, . . . ,Xk), although
the exponential sums under consideration are defined modulo p, with p
varying in an interval [P, 2P ]. More precisely, given a rational function
r(X1, . . . ,Xk) ∈ Q(X1, . . . ,Xk) we consider, in the affine space A2k+1, the
hypersurface Hr which consists of points (x1, . . . , xk, y1, . . . , yk, z) satisfying
the equation

(1.3) z = r(x1, . . . , xk)− r(y1, . . . , yk).

We call Hr the pair correlation hypersurface associated to r. For any k-tuple
(N1, . . . , Nk) of positive integers define

A(r,N1, . . . , Nk) = {(x1, . . . , xk, y1, . . . , yk, z) ∈ Z2k+1 ∩Hr :

1 ≤ xj , yj ≤ Nj , 1 ≤ j ≤ k}.
Note that (1.3) has “diagonal solutions” z = 0, x1 = y1, . . . , xk = yk, there-
fore A(r,N1, . . . , Nk) has at least N1 . . .Nk elements. Under the assumption
that the number of integer solutions to (1.3) is not much larger than the
number of diagonal solutions we obtain a generalization of (1.2) which again
produces square root cancellation on average in the corresponding exponen-
tial sums.

Theorem 1. Let ε > 0, let N1, . . . , Nk ≤ P and M be positive integers
and let r(X) = f(X1, . . . ,Xk)/g(X1, . . . ,Xk) be a rational function with
integer coefficients bounded by PK1 and with deg f,deg g < K2, where K1

and K2 are some positive constants. Assume that

(1.4) #A(r,N1, . . . , Nk)�ε,k,K1,K2 N1 . . .NkP
ε.
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Then

(1.5)
∑

P≤p≤2P

∑

1≤m≤M

∣∣∣∣
∑

1≤n1≤N1

. . .
∑∗

1≤nk≤Nk
e

(
mr(n1, . . . , nk)

p

)∣∣∣∣
2

�ε,k,K1,K2 N1 . . . Nk(MP + PN1 . . .Nk +N1 . . .NkM)P ε.

As a consequence, if N1 . . . Nk ≤ min{P,M} then we get square root
cancellation on average in the above exponential sums:

Corollary 1. Under the hypotheses of Theorem 1, if N1 . . .Nk ≤
min{P,M} then for almost all pairs (p,m) with p prime, p ∈ [P, 2P ] and
m ∈ {1, . . . ,M} one has

(1.6)
∣∣∣∣
∑

1≤n1≤N1

. . .
∑∗

1≤nk≤Nk
e

(
mr(n1, . . . , nk)

p

)∣∣∣∣

�ε,k,K1,K2 N
1/2
1 . . .N

1/2
k P ε.

In practice, in order to apply the above results one first needs to check
whether the given rational function r(X1, . . . ,Xk) satisfies the above condi-
tion (1.4). Let us remark that if two rational functions r1(X1, . . . ,Xk) and
r2(X1, . . . ,Xk) differ by a polynomial, that is,

r1(X1, . . . ,Xk)− r2(X1, . . . ,Xk) ∈ Z[X1, . . . ,Xk],

then for any k-tuple (N1, . . . , Nk) one has

#A(r1, N1, . . . , Nk) = #A(r2, N1, . . . , Nk).

Therefore (1.4) holds for r1(X1, . . . ,Xk) if and only if it holds for r2(X1, . . .
. . . ,Xk). In case k = 1 the relation (1.4) holds for any r(X) which is not a
polynomial (see [10], Section 3). For functions of several variables this is no
longer the case. For example, if k ≥ 2 and b is a nonzero integer then (1.4)
fails for the rational function

(1.7) r(X1, . . . ,Xk) =
b

X1 + . . .+Xk
.

Indeed, in this case any (2k+ 1)-tuple (x1, . . . , xk, y1, . . . , yk, 0) with x1, . . .
. . . , xk, y1, . . . , yk ∈ Z, 1 ≤ xj , yj ≤ Nj for 1 ≤ j ≤ k and x1 + . . . + xk =
y1+. . .+yk will be an element ofA(r,N1, . . . , Nk). If we replace the sum from
the denominator of the right hand side of (1.7) by the product X1 . . .Xk

then the condition (1.4) will hold true. By the above remark this condition
will continue to hold if a polynomial is added to our rational function. In
particular if we take

r(X1, . . . ,Xk) = a1X1 + . . .+ akXk +
b

X1 . . .Xk
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then (1.4) holds and we obtain square root cancellation in certain averages
of short hyper-Kloosterman sums:

Corollary 2. Let K, ε > 0, let P,M,N1, . . . , Nk be positive integers
such that N1 . . .Nk < min{P,M} and let b 6= 0 and a1, . . . , ak be integers
bounded by PK . Then for almost all pairs (p,m) with p prime, p ∈ [P, 2P ]
and 1 ≤ m ≤M one has

(1.8)
∣∣∣∣
∑

1≤n1≤N1

. . .
∑

1≤nk≤Nk
e

(
m(a1n1 + . . .+ aknk + bn1 . . . nk)

p

)∣∣∣∣

�ε,k,K N
1/2
1 . . .N

1/2
k P ε,

where n1 . . . nk denotes the inverse of n1 . . . nk modulo p.

As was pointed out by the referee, our results have a similarity to the
Large Sieve Inequality. In fact, in case r(n) = n (which is not covered by our
results) the left hand side of (1.2) can be written in the form

∑R
j=1 |S(αj)|2,

where S(α) =
∑N
n=1 e(nα) and {α1, . . . , αR} is the set of fractions m/p

with 1 ≤ m ≤M and P ≤ p ≤ 2P, p prime. The Large Sieve Inequality (see
Montgomery [7]) gives an upper bound of the form

R∑

j=1

|S(αj)|2 ≤ ∆(N, δ)
M+N∑

n=M+1

|an|2

for any trigonometric polynomial with complex coefficients

S(α) =
M+N∑

n=M+1

ane(nα)

and any real numbers α1, . . . , αR which are well spaced (mod 1) in the sense
that ‖αj −αs‖ ≥ δ for j 6= s, where ‖ · ‖ denotes the distance to the nearest
integer. Here one can take ∆(N, δ) = N − 1 + δ−1. Our method also works
with weights an or, in general, a(n1, . . . , nk) attached to the sums. The
results are presented in Section 4.4 below.

Acknowledgements. The author is grateful to the referee whose com-
ments led to the results presented in Section 4.4.

2. Exponential sums and pair correlations. Let N = {xn : 1 ≤
n ≤ N} be a finite sequence of points in the interval [0, 1] and let M be a
positive integer. An upper bound for the second moment

M2(N ,M) :=
∑

1≤m≤M

∣∣∣
∑

1≤n≤N
e(mxn)

∣∣∣
2
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is provided in [10], Section 2, in terms of the pair correlation of the set N .
The result is

(2.1) M2(N ,M)�ME(N ,M)

where
E(N ,M) = #{1 ≤ n, n′ ≤ N : ‖xn − xn′‖ ≤ 1/M}.

Now let r(X1, . . . ,Xk) be a rational function as in the statement of
Theorem 1 and let p be a prime number in the interval [P, 2P ]. Choose
positive integers N1, . . . , Nk less than p and let B(r, p,N1, . . . , Nk) be the
set of k-tuples (n1, . . . , nk) of positive integers with nj ≤ Nj , 1 ≤ j ≤ k,
for which g(n1, . . . , nk) is nonzero modulo p. Denote by N (r, p,N1, . . . , Nk)
the set of values of r(n1, . . . , nk) (mod p)/p, counted with multiplicities,
as (n1, . . . , nk) varies in B(r, p,N1, . . . , Nk). From (2.1) applied to N =
N (r, p,N1, . . . , Nk) we get

(2.2)
∑

1≤m≤M

∣∣∣∣
∑

1≤n1≤N1

. . .
∑∗

1≤nk≤Nk
e

(
mr(n1, . . . , nk)

p

)∣∣∣∣
2

�ME(N (r, p,N1, . . . , Nk),M)

where

E(N (r, p,N1, . . . , Nk),M)

= #{(n1, . . . , nk), (n′1, . . . , n
′
k) ∈ B(r, p,N1, . . . , Nk) :

r(n1, . . . , nk)− r(n′1, . . . , n′k) ≡ h (mod p), |h| ≤ p/M}.

3. Averaging over p. We add the inequalities (2.2) for all primes p ∈
[P, 2P ] to obtain

(3.1)
∑

P≤p≤2P

∑

1≤m≤M

∣∣∣∣
∑

1≤n1≤N1

. . .
∑∗

1≤nk≤Nk
e

(
mr(n1, . . . , nk)

p

)∣∣∣∣
2

�M
∑

P≤p≤2P

E(N (r, p,N1, . . . , Nk),M).

Note that the sum on the right hand side equals the number of (2k + 2)-
tuples (n1, . . . , nk, n

′
1, . . . , n

′
k, h, p) satisfying the following conditions:

(3.2)

p prime, P ≤ p ≤ 2P,

h ∈ Z, |h| ≤ p/M,

n1, . . . , nk, n
′
1, . . . , n

′
k ∈ Z,

1 ≤ nj , n′j ≤ Nj , 1 ≤ j ≤ k,
g(n1, . . . , nk), g(n′1, . . . , n

′
k) nonzero (mod p),

r(n1, . . . , nk)− r(n′1, . . . , n′k) ≡ h (mod p).
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The last condition in (3.2) is equivalent to

(3.3) g(n′1, . . . , n
′
k)f(n1, . . . , nk)− f(n′1, . . . , n

′
k)g(n1, . . . , nk)

≡ hg(n′1, . . . , n
′
k)g(n1, . . . , nk) (mod p).

For any solution (n1, . . . , nk, n
′
1, . . . , n

′
k, h, p) to (3.2) consider the integer

A = g(n′1, . . . , n
′
k)f(n1, . . . , nk)− f(n′1, . . . , n

′
k)g(n1, . . . , nk)

− hg(n′1, . . . , n
′
k)g(n1, . . . , nk).

We count separately the solutions with A = 0 and those with A 6= 0. Let
(n1, . . . , nk, n

′
1, . . . , n

′
k, h, p) be a solution with A = 0. Then

r(n1, . . . , nk)− r(n′1, . . . , n′k) = h

in Q, hence (n1, . . . , nk, n
′
1, . . . , n

′
k, h) is an integer point on the hypersurface

Hr. Moreover, from (3.2) we see that this point belongs to A(r,N1, . . . , Nk).
By our assumption (1.4), the number of elements of A(r,N1, . . . , Nk) is
�ε,k,K1,K2 N1 . . .NkP

ε. Any such (2k + 1)-tuple (n1, . . . , nk, n
′
1, . . . , n

′
k, h)

appears in less than P solutions (n1, . . . , nk, n
′
1, . . . , n

′
k, h, p) to (3.2), there-

fore the number of solutions with A = 0 is

�ε,k,K1,K2 N1 . . .NkP
1+ε.

We now count the solutions to (3.2) for which A 6= 0. Choose a (2k+ 1)-
tuple (n1, . . . , nk, n

′
1, . . . , n

′
k, h) which appears in such a solution. The point

here is that A cannot have too many prime divisors. More precisely, from
the hypotheses of Theorem 1 we see that

A�k,K2 P
2K1(max{N1, . . . , Nk})2K2 max{P/M, 1} � P 2K1+2K2+1.

It follows that the number of primes p ∈ [P, 2P ] which divide A is bounded
by a constant which depends on k, K1 and K2 only.

Taking into account that by (3.2) the (2k + 1)-tuple (n1, . . . , nk, n
′
1, . . .

. . . , n′k, h) takes at most N2
1 . . . N

2
k max{2P/M, 1} values, we find that the

number of solutions to (3.2) with A 6= 0 is

�ε,k,K1,K2

N2
1 . . .N

2
k (P +M)
M

.

Therefore the total number of solutions to (3.2) is

�ε,k,K1,K2 N1 . . . NkP
1+ε +

N2
1 . . .N

2
k (P +M)
M

.

Using this bound for the sum on the right hand side of (3.1) we obtain (1.5),
which completes the proof of Theorem 1.

4. Further remarks, applications and generalizations

4.1. In order to prove Corollary 2 we need to check that r(X1, . . . ,Xk)
= b/(X1 . . .Xk) satisfies (1.4). Let us count the number of (2k + 1)-tuples
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(x1, . . . , xk, y1, . . . , yk, z) in A(r,N1, . . . , Nk) with x1, . . . , xk fixed. Multi-
plying (1.3) by x1 . . . xk we find that bx1 . . . xk/(y1 . . . yk) is an integer. This
almost fixes y1, . . . , yk since the number of divisors of the nonzero inte-
ger bx1 . . . xk is Oε,k,K1(P ε). Next, with (x1, . . . , xk, y1, . . . , yk) fixed, z is
uniquely determined by (1.3). Thus r(X1, . . . ,Xk) satisfies (1.4).

4.2. Under the hypotheses of Corollary 1, assume also that all the ele-
ments (x1, . . . , xk, y1, . . . , yk, z) of A(r,N1, . . . , Nk) satisfy

(4.1) |z| < P/M.

Note that for any (x1, . . . , xk, y1, . . . , yk, z) in A(r,N1, . . . , Nk) one has

|z| ≤ |f(x1, . . . , xk)|+ |f(y1, . . . , yk)|
≤ 2PK1(K2 + 1)k(max{N1, . . . , Nk})K2 ,

therefore (4.1) will hold if we assume that K1 < 1 and

P 1−K1 > 2M(max{N1, . . . , Nk})K2 .

Under the above assumptions the condition (1.4) besides being sufficient
is also necessary in order to have square root cancellation on average in
the exponential sums under consideration. Indeed, on the one hand by an
appropriate modification of the argument which gives (2.1) one also obtains
an upper bound for ME(N ,M) in terms of exponential sums:

ME(N ,M)�
∑

|m|≤M

∣∣∣
∑

1≤n≤N
e(mxn)

∣∣∣
2

(see for example Chapter 2 of Baker [1]). This provides an upper bound for
the sum on the right hand side of (3.1), and hence also for the number, call
it l, of solutions of the system (3.2), in terms of exponential sums. On the
other hand, following the proof of Theorem 1 and using also (4.1) we see
that each element of A(r,N1, . . . , Nk) in combination with each admissible
prime p produce a solution to (3.2), and this gives a lower bound for l. Now
if r(X1, . . . ,Xk) does not satisfy (1.4), this lower bound will be too large
to still have square root cancellation on average in the exponential sums
appearing in the above upper bound for l.

4.3. As in Theorem 3 of [10], we may combine Theorem 1 above with
the Erdős–Turán inequality to obtain a square root saving on average in the
discrepancy of the sets

N (r, p,m,N1, . . . , Nk) := {mr(n1, . . . , nk)/p : 1 ≤ nj ≤ Nj , 1 ≤ j ≤ k,
g(n1, . . . , nk) 6= 0 (mod p)}.

The result is
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Theorem 2. Under the hypotheses of Theorem 1, assume also that N1. . .
. . .Nk ≤ min{P,M} and that (1.4) holds with r replaced by mr for any 1 ≤
m ≤ N1 . . . Nk. Then for almost all pairs (p,m) with p prime, p ∈ [P, 2P ]
and 1 ≤ m ≤M one has

D(N (r, p,m,N1, . . . , Nk))�ε,k,K1,K2 N
1/2
1 . . . N

1/2
k P ε.

Here the discrepancy D(N ) of a finite sequence N = {xn : 1 ≤ n ≤ N}
of points in [0, 1] is defined by

D(N ) = sup
0≤α<β≤1

|#(N ∩ [α, β])−N(β − α)|.

The proof of the above theorem goes along the same lines as that of Theo-
rem 3 of [10]. As a consequence of Theorem 2 we have the following

Corollary 3. Under the hypotheses of Theorem 2, for almost all pairs
(p,m) with p prime, p ∈ [P, 2P ] and 1 ≤ m ≤ M and for any β ∈ [0, 1]
there exist 1 ≤ n1 ≤ N1, . . . , 1 ≤ nk ≤ Nk such that

∣∣∣∣
{
mr(n1, . . . , nk) (mod p)

p

}
− β

∣∣∣∣�ε,k,K1,K2 N
−1/2
1 . . .N

−1/2
k P ε.

4.4. One can generalize the inequalities (1.2) and (1.5) by attaching
weights an, respectively a(n1, . . . ,nk) to the corresponding exponential sums.
We are looking for an upper bound for the sum

S :=
∑

P≤p≤2P

∑

|m|≤M

∣∣∣∣
∑∗

1≤nj≤Nj , 1≤j≤k
a(n1, . . . , nk)e

(
mr(n1, . . . , nk)

p

)∣∣∣∣
2

where the weights a(n1, . . . , nk) are arbitrary complex numbers. In this case
instead of the number of elements in the set A(r,N1, . . . , Nk) we consider
the weighted sum

(4.2) σ =
∑

(x,y,z)∈A(r,N1,...,Nk)

|a(x1, . . . , xk)a(y1, . . . , yk)|

where we have set x = (x1, . . . , xk), y = (y1, . . . , yk). One has the following
generalization of Theorem 1.

Theorem 3. Let K1,K2, ε > 0, let N1, . . . , Nk ≤ P and M be positive
integers, let a(n1, . . . , nk) with 1 ≤ nj ≤ Nj , 1 ≤ j ≤ k, be complex numbers
and let r(X) = f(X1, . . . ,Xk)/g(X1, . . . ,Xk) be a rational function with
integer coefficients bounded by PK1 and with deg f,deg g ≤ K2. Then

(4.3) |S| �ε,k,K1,K2 PMσ+P ε(P+M)
( ∑

1≤nj≤Nj , 1≤j≤k
|a(n1, . . . , nk)|

)2
.
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Taking into account the contribution of the diagonal terms x = y in
(4.2) we see that one always has

(4.4) σ ≥
∑

1≤nj≤Nj , 1≤j≤k
|a(n1, . . . , nk)|2.

In case k = 1 and r(X) = f(X)/g(X) is not a polynomial, reasoning in
terms of the resultant R(f, g) as in Section 3 of [10] one finds that σ is not
much larger than the right hand side of (4.4); more precisely,

σ �ε,K1,K2 P
ε
∑

1≤n≤N
|an|2.

Hence we obtain the following result.

Theorem 4. Let K1,K2, ε > 0, let N ≤ P and M be positive integers,
let an with 1 ≤ n ≤ N be complex numbers and let r(X) = f(X)/g(X)
be a rational function with integer coefficients bounded by PK1 and with
deg f,deg g ≤ K2, r(X) not a polynomial. Then

(4.5)
∑

P≤p≤2P

∑

|m|≤M

∣∣∣∣
∑∗

1≤n≤N
ane

(
mr(n)
p

)∣∣∣∣
2

�ε,K1,K2 P
1+ε
[
M

∑

1≤n≤N
|an|2 +

( ∑

1≤n≤N
|an|

)2]
.

Here we applied Cauchy’s inequality in order to get rid of the term
P εM(

∑
1≤n≤N |an|)2. Applying it one more time we obtain the following

generalization of (1.2).

Corollary 4. Under the hypotheses of Theorem 4, assume also that
N ≤M. Then

∑

P≤p≤2P

∑

|m|≤M

∣∣∣∣
∑∗

1≤n≤N
ane

(
mr(n)
p

)∣∣∣∣
2

�ε,K1,K2 P
1+εM

∑

1≤n≤N
|an|2.

Returning to Theorem 3, its proof uses the following lemma.

Lemma 1. For any real numbers x1, . . . , xN , any complex numbers a1, . . .
. . . , aN and any positive integer M one has

∑

|m|≤M

∣∣∣
∑

1≤n≤N
ane(mxn)

∣∣∣
2
�M

∑

1≤n, n′≤N
‖xn−xn′‖≤1/M

|anan′ |.

The proof of Lemma 1 goes along the same lines as the proof of (2.1)
given in [10]: reasoning in terms of the real and imaginary part of an we
may assume that the an’s are real; next, by putting together the positive,
respectively negative weights one further reduces the problem to the case
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when the an’s are positive numbers. Then the positivity argument from
Section 2 of [10] works and the lemma is proved.

If we use Lemma 1 instead of (2.1) in the above relations (2.2) and (3.1)
the result is that in (3.2) we have to count each solution (n1, . . . , nk, n

′
1, . . .

. . . n′k, h, p) with a weight given by |a(n1, . . . , nk)a(n′1, . . . , n
′
k)|. Note that

the congruence (3.3) does not depend on the weights, so we have the same
two classes of solutions to (3.2) as before, according as A = 0 or A 6= 0.
The contribution of solutions with A = 0 to the right hand side of (4.3) is
captured in the term PMσ, while the contribution of solutions with A 6= 0
is bounded by the other term, and this proves Theorem 3.
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