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1. Introduction. A hybrid sequence is a sequence of points in an m-
dimensional unit cube that is obtained by “mixing” two different types of
lower-dimensional sequences, in the sense that certain coordinates of the m-
dimensional points stem from the first type of sequence and the remaining
coordinates of the m-dimensional points stem from the second type of se-
quence. In many cases of practical interest, one lower-dimensional sequence
is a low-discrepancy sequence and the other is a sequence of pseudorandom
numbers (or vectors). Hybrid sequences go back to a proposal of Spanier [15]
in the context of multidimensional numerical integration by Monte Carlo and
quasi-Monte Carlo methods (see [11] for a recent survey of these methods).

A classical family of low-discrepancy sequences is formed by Halton se-
quences (see Section 2 for the definition). It is therefore of great interest
to study hybrid sequences involving Halton sequences as one constituent.
Discrepancy bounds for hybrid sequences involving Halton sequences have
been established in [9], [10], and [13]. In the present paper, we introduce a
new method for dealing with hybrid sequences involving Halton sequences
which leads in several cases to substantial improvements on the previous
discrepancy bounds for such sequences.

For an integer m ≥ 1, let λm denote the m-dimensional Lebesgue mea-
sure. For arbitrary points y0,y1, . . . ,yN−1 ∈ [0, 1)m, their discrepancy DN

is defined by

DN = sup
J

∣∣∣∣A(J ;N)

N
− λm(J)

∣∣∣∣ ,
where the supremum is extended over all half-open subintervals J of [0, 1)m
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and the counting function A(J ;N) is given by

(1) A(J ;N) = #{0 ≤ n ≤ N − 1 : yn ∈ J}.
Note that we always have NDN ≥ 1 (see [5, p. 93]) and DN ≤ 1. Throughout
the paper, we use the convention that the parameters on which the implied
constant in a Landau symbol O depends are written in the subscript of O.
A symbol O without a subscript indicates an absolute implied constant.

In Section 2 we review Halton sequences and prove the basic lemmas for
our new method. In Section 3 we apply the new method to hybrid sequences
obtained by “mixing” Halton sequences and Kronecker sequences. We also
prove a multidimensional version of the classical lower bound of Behnke [2]
for the discrepancy of one-dimensional Kronecker sequences. In Sections 4
to 6 we establish improved discrepancy bounds for hybrid sequences ob-
tained by “mixing” Halton sequences with various types of sequences of
pseudorandom numbers.

2. Halton sequences. For an integer b ≥ 2, let Zb = {0, 1, . . . , b − 1}
denote the least residue system modulo b. Let n =

∑∞
j=1 aj(n)bj−1 with all

aj(n) ∈ Zb and aj(n) = 0 for all sufficiently large j be the digit expansion
of the integer n ≥ 0 in base b. The radical-inverse function φb in base b is
defined by

φb(n) =

∞∑
j=1

aj(n)b−j .

For pairwise coprime integers b1, . . . , bs ≥ 2, the Halton sequence (in the
bases b1, . . . , bs) is given by

xn = (φb1(n), . . . , φbs(n)) ∈ [0, 1)s, n = 0, 1, . . . .

It is a classical low-discrepancy sequence (see [7, Section 3.1]).

Lemma 1. Let b ≥ 2 be an integer and let v and f be positive integers
with v ≤ bf . Then for any integer n ≥ 0, we have φb(n) ∈ [0, vb−f ) if and
only if n ∈

⊔m
k=1Qk, where 1 ≤ m ≤ bf , each Qk is a residue class in Z,

and Q1, . . . , Qm are disjoint. The moduli of the residue classes are powers
bj with 1 ≤ j ≤ f . The sets Q1, . . . , Qm depend only on b, v, and f .

Proof. We write (v − 1)b−f =
∑f

j=1 djb
−j with dj ∈ Zb for 1 ≤ j ≤ f .

Then φb(n) ∈ [0, vb−f ) if and only if

f∑
j=1

aj(n)b−j ≤
f∑
j=1

djb
−j .

This condition holds if and only if one of the following f mutually exclusive
conditions is satisfied: (C1) a1(n) ≤ d1 − 1; (C2) a1(n) = d1 and a2(n) ≤
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d2 − 1; (C3) a1(n) = d1, a2(n) = d2, and a3(n) ≤ d3 − 1;. . . ; (Cf ) a1(n) =
d1, . . . , af−1(n) = df−1, and af (n) ≤ df . These conditions can be translated
into the following congruence conditions on n: (C′1) n ≡ r1 (mod b) for some
0 ≤ r1 ≤ d1 − 1; (C′2) n ≡ d1 + r2b (mod b2) for some 0 ≤ r2 ≤ d2 − 1;
(C′3) n ≡ d1 + d2b + r3b

2 (mod b3) for some 0 ≤ r3 ≤ d3 − 1;. . . ; (C′f )

n ≡ d1 + d2b+ · · ·+ df−1b
f−2 + rfb

f−1 (mod bf ) for some 0 ≤ rf ≤ df . This
yields disjoint residue classes Q1, . . . , Qm in which n must lie. The number
m of residue classes satisfies m =

∑f−1
j=1 dj + df + 1 ≤ (b − 1)f + 1 ≤ bf ,

whence the result.

The following multidimensional version of Lemma 1 is obtained by com-
bining the Chinese remainder theorem with Lemma 1.

Lemma 2. Let b1, . . . , bs≥2 be pairwise coprime integers and let v1, . . . , vs
and f1, . . . , fs be positive integers with vi ≤ bfii for 1 ≤ i ≤ s. Then for any
integer n ≥ 0, we have

(φb1(n), . . . , φbs(n)) ∈
s∏
i=1

[0, vib
−fi
i )

if and only if n ∈
⊔M
k=1Rk, where 1 ≤ M ≤ b1 · · · bsf1 · · · fs, each Rk is a

residue class in Z, and R1, . . . , RM are disjoint. The moduli of the residue
classes are of the form bj11 · · · b

js
s with 1 ≤ ji ≤ fi for 1 ≤ i ≤ s. The sets

R1, . . . , RM depend only on b1, . . . , bs, v1, . . . , vs, f1, . . . , fs.

3. Mixing Halton sequences and Kronecker sequences. A Kro-
necker sequence is a sequence ({nα}), n = 0, 1, . . . , of fractional parts, where
α ∈ Rt for an arbitrary dimension t ≥ 1. The discrepancy of this sequence
depends on the (simultaneous) diophantine approximation character of α.
The following definition is relevant here (see e.g. [6, Definition 6.1]). We
write ‖u‖ = min({u}, 1 − {u}) for the distance from u ∈ R to the nearest
integer. Furthermore, we put

r(h) =

t∏
j=1

max(|hj |, 1) for h = (h1, . . . , ht) ∈ Zt

and we use · for the standard inner product in Rt.

Definition 1. Let τ be a real number. Then α ∈ Rt is of finite type τ
if τ is the infimum of all real numbers σ for which there exists a constant
c = c(σ,α) > 0 such that

r(h)σ‖h ·α‖ ≥ c for all h ∈ Zt \ {0}.

Remark 1. It is well known that we always have τ ≥ 1. There are
interesting examples of points α ∈ Rt with τ = 1, for instance: (i) α =
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(α1, . . . , αt) with real algebraic numbers α1, . . . , αt such that 1, α1, . . . , αt
are linearly independent over Q (see [14]); (ii) α = (eq1 , . . . , eqt) with distinct
nonzero rational numbers q1, . . . , qt (see [1]).

Now we choose dimensions s ≥ 1 and t ≥ 1, pairwise coprime integers
b1, . . . , bs ≥ 2, and α ∈ Rt. Then we define the hybrid sequence

(2) xn = (φb1(n), . . . , φbs(n), {nα}) ∈ [0, 1)s+t, n = 0, 1, . . . .

The following discrepancy bound is an improvement on [9, Theorem 2].

Theorem 1. If b1, . . . , bs ≥ 2 are pairwise coprime integers and α ∈ Rt
is of finite type τ , then for any integer N ≥ 1 the discrepancy DN of the
first N terms of the sequence (2) satisfies

DN = Ob1,...,bs,α,ε(N
− 1

(τ−1)(st2−st+t)+st+1
+ε

) for all ε > 0.

Proof. The result is trivial for N = 1, and so we can assume that N ≥ 2.
Let A(J ;N) be the counting function in (1), but relative to the points
x0,x1, . . . ,xN−1 in (2). We introduce the positive integers

(3) fi =

⌈
1

(τ − 1)(st2 − st+ t) + st+ 1
logbi N

⌉
for 1 ≤ i ≤ s.

We first consider an interval J ⊆ [0, 1)s+t of the form

(4) J =
s∏
i=1

[0, vib
−fi
i )×

t∏
j=1

[w
(1)
j , w

(2)
j )

with v1, . . . , vs ∈ Z, 1 ≤ vi ≤ bfii for 1 ≤ i ≤ s, and 0 ≤ w
(1)
j < w

(2)
j ≤ 1 for

1 ≤ j ≤ t. We apply Lemma 2 to a point xn in (2). Then we have xn ∈ J if
and only if

n ∈
M⊔
k=1

Rk and {nα} ∈
t∏

j=1

[w
(1)
j , w

(2)
j ),

where M and R1, . . . , RM are as in Lemma 2. Hence we obtain A(J ;N) =∑M
k=1 Sk, where

Sk = #
{

0 ≤ n ≤ N − 1 : n ≡ rk (mod mk) and {nα} ∈
t∏

j=1

[w
(1)
j , w

(2)
j )
}

with suitable moduli m1, . . . ,mM and 0 ≤ rk < mk for 1 ≤ k ≤M .

We consider Sk for a fixed k with 1 ≤ k ≤ M . For an n counted by Sk,
we have n = lmk + rk for some integer l, and the condition 0 ≤ n ≤ N −1 is
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equivalent to 0 ≤ l ≤ b(N − rk − 1)/mkc. Assume first that N ≥ mk. Then

Sk = #

{
0 ≤ l ≤

⌊
N − rk − 1

mk

⌋
: {lmkα + rkα} ∈

t∏
j=1

[w
(1)
j , w

(2)
j )

}

=

⌊
N − rk − 1 +mk

mk

⌋ t∏
j=1

(w
(2)
j − w

(1)
j )

+O

(⌊
N − rk − 1 +mk

mk

⌋
D

(k)
b(N−rk−1+mk)/mkc

)
,

where D
(k)
L denotes the discrepancy of the L points {lmkα + rkα}, l =

0, 1, . . . , L− 1. Since⌊
N − rk − 1 +mk

mk

⌋ t∏
j=1

(w
(2)
j − w

(1)
j ) =

N

mk

t∏
j=1

(w
(2)
j − w

(1)
j ) +O(1),

it follows that

Sk =
N

mk

t∏
j=1

(w
(2)
j − w

(1)
j )(5)

+O

(⌊
N − rk − 1 +mk

mk

⌋
D

(k)
b(N−rk−1+mk)/mkc

)
.

Now fix an ε > 0. Then by [9, Lemmas 1 and 6] we have

LD
(k)
L = Oα,ε(m

t
kL

1−1/((τ−1)t+1)+ε/2) for all L ≥ 1.

With L = b(N − rk − 1 +mk)/mkc = O(m−1k N) this yields

(6) Sk =
N

mk

t∏
j=1

(w
(2)
j −w

(1)
j )+Oα,ε(m

t−1+1/((τ−1)t+1)
k N1−1/((τ−1)t+1)+ε/2).

This is trivial for N < mk since then Sk = 0 or 1, and so (6) holds in all
cases.

By inserting (6) in the identity A(J ;N) =
∑M

k=1 Sk, we get

A(J ;N) = N
( t∏
j=1

(w
(2)
j − w

(1)
j )
) M∑
k=1

1

mk

+Oα,ε

(
N1−1/((τ−1)t+1)+ε/2

M∑
k=1

m
t−1+1/((τ−1)t+1)
k

)
.

Since the Halton sequence in the bases b1, . . . , bs is uniformly distributed in
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[0, 1]s (see [7, Theorem 3.6]), we deduce in conjunction with Lemma 2 that

s∏
i=1

vib
−fi
i = lim

N→∞

1

N
#
{

0 ≤ n ≤ N − 1 : (φb1(n), . . . , φbs(n)) ∈
s∏
i=1

[0, vib
−fi
i )

}
= lim

N→∞

1

N
#
{

0 ≤ n ≤ N − 1 : n ∈
M⊔
k=1

Rk

}
=

M∑
k=1

lim
N→∞

1

N
#{0 ≤ n ≤ N − 1 : n ≡ rk (mod mk)} =

M∑
k=1

1

mk
.

Therefore

A(J ;N) = Nλs+t(J) +Oα,ε

(
N1−1/((τ−1)t+1)+ε/2

M∑
k=1

m
t−1+1/((τ−1)t+1)
k

)
,

and so

(7)

∣∣∣∣A(J ;N)

N
−λs+t(J)

∣∣∣∣=Oα,ε

(
N−1/((τ−1)t+1)+ε/2

M∑
k=1

m
t−1+1/((τ−1)t+1)
k

)
.

Next we note that Lemma 2 yields M ≤ b1 · · · bsf1 · · · fs and mk ≤ bf11 · · · b
fs
s

for 1 ≤ k ≤M . From the choice of the integers fi in (3), it follows that

mk ≤ b1 · · · bsN
s

(τ−1)(st2−st+t)+st+1 for 1 ≤ k ≤M.

Using these bounds in (7), we obtain

(8)

∣∣∣∣A(J ;N)

N
− λs+t(J)

∣∣∣∣ = Ob1,...,bs,α,ε(N
− 1

(τ−1)(st2−st+t)+st+1
+ε

)

with an implied constant independent of J .

Next we consider an interval J ⊆ [0, 1)s+t of the form

(9) J =

s∏
i=1

[0, wi)×
t∏

j=1

[w
(1)
j , w

(2)
j )

with 0 < wi ≤ 1 for 1 ≤ i ≤ s and 0 ≤ w
(1)
j < w

(2)
j ≤ 1 for 1 ≤ j ≤ t. By

approximating the wi from below and above by the nearest fractions of the
form vi/b

fi
i with vi ∈ Z, we deduce from (8) that

(10)

∣∣∣∣A(J ;N)

N
−λs+t(J)

∣∣∣∣≤ s∑
i=1

b−fii +Ob1,...,bs,α,ε(N
− 1

(τ−1)(st2−st+t)+st+1
+ε

).

Using again the expression for the fi in (3), we derive from (10) that∣∣∣∣A(J ;N)

N
− λs+t(J)

∣∣∣∣ = Ob1,...,bs,α,ε(N
− 1

(τ−1)(st2−st+t)+st+1
+ε

)
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with an implied constant still independent of J . The standard method of
moving from intervals of the form (9) to arbitrary half-open subintervals of
[0, 1)s+t (see [5, p. 93, Example 1.2]) produces an additional factor 2s in the
discrepancy bound.

Remark 2. In the special case where α ∈ Rt is of finite type τ = 1
(compare with Remark 1), we obtain the simpler bound

DN = Ob1,...,bs,α,ε(N
−1/(st+1)+ε) for all ε > 0.

There is an even more special case where t = 1 and α ∈ R is of constant type
c (see [9, Section 3]). In this case, the method in the proof of Theorem 1
yields

DN = Ob1,...,bs(c
1/(s+1)N−1/(s+1)(log(c−1N + 3))s/(s+1)).

This is an improvement on [9, Theorem 1].

Remark 3. A probabilistic result on the discrepancy DN of the first N
terms of the hybrid sequence (2) was shown in [4], namely that for almost
all α ∈ [0, 1)t in the sense of Lebesgue measure we have

DN = Ob1,...,bs,α,ε(N
−1(log(N + 1))s+t+1+ε) for all ε > 0.

This result was extended in [3] to a more general family of hybrid sequences.

There is a classical lower bound on the discrepancy of one-dimensional
Kronecker sequences, due to Behnke [2]. A multidimensional version of this
lower bound has not been established so far. We present such a generalization
in Theorem 2 below. In the case t = 1, Theorem 2 reduces to Behnke’s result.
It is clear that Theorem 2 yields also a lower bound on the discrepancy of
the hybrid sequence (2) when α is of finite type.

Theorem 2. Let α ∈ Rt be of finite type τ . Then the discrepancy DN of
the first N terms of the Kronecker sequence ({nα}), n = 0, 1, . . . , satisfies

DN = Ω(N−1/τ−ε) for all ε > 0.

Proof. Fix ε > 0 and put δ = τ2ε/(2τε+ 2). Since δ > 0, it follows from
Definition 1 that for any c > 0 there is h ∈ Zt \{0} with r(h)τ−δ‖h ·α‖ < c.
Consequently, there exist infinitely many h ∈ Zt \ {0} such that ‖h · α‖ <
r(h)−τ+δ. Fix such an h for the moment. Then there exists v ∈ Z with
|h ·α− v| < r(h)−τ+δ. Put β = τ −2δ = τ/(τε+ 1) and N = dr(h)βe. Then
for 0 ≤ n ≤ N − 1 we get |h · (nα)− nv| < r(h)β−τ+δ = r(h)−δ, and so

(11) ‖h · {nα}‖ < r(h)−δ for 0 ≤ n ≤ N − 1.

Since we have infinitely many h, we can assume that r(h)−δ ≤ 1/3. It follows
from (11) that none of the points {nα}, n = 0, 1, . . . , N − 1, is in the set
K(h) = {x ∈ [0, 1)t : ‖h · x‖ ≥ 1/3}. For any half-open subinterval J of
K(h), we then have DN ≥ λt(J).
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We now construct a special interval J . We can assume without loss of
generality that all coordinates of h = (h1, . . . , ht) are nonzero and that,
moreover, hi > 0 for 1 ≤ i ≤ m and hi < 0 for m + 1 ≤ i ≤ t, with some
integer m satisfying 1 ≤ m ≤ t. Put

J =

m∏
i=1

[
1

2mhi
,

2

3mhi

)
×

t∏
i=m+1

[
0,

1

6(t−m)|hi|

)
⊆ [0, 1)t.

Then for any x = (x1, . . . , xt) ∈ J we have

h · x =

t∑
i=1

hixi ≤
m∑
i=1

hixi ≤
2

3
,

h · x =
m∑
i=1

hixi −
t∑

i=m+1

|hi|xi ≥
1

2
− 1

6
=

1

3
.

Hence J ⊆ K(h), and so DN ≥ λt(J) ≥ (6t)−tr(h)−1. Recalling that N =
dr(h)βe, we conclude that

(12) DN ≥ (6t)−tN−1/β = (6t)−tN−1/τ−ε.

Since there are infinitely many choices for h, there are infinitely many values
of N for which (12) holds.

4. Mixing Halton sequences and explicit nonlinear congruential
sequences. A standard nonlinear method for the generation of uniform
pseudorandom numbers is the explicit nonlinear congruential method (see
[7, Section 8.1]). In this section we consider hybrid sequences obtained by
“mixing” Halton sequences and sequences of explicit nonlinear congruential
pseudorandom numbers. We choose dimensions s ≥ 1 and t ≥ 1, pairwise
coprime integers b1, . . . , bs ≥ 2, and a prime p ≥ 3. We identify the finite
prime field Fp of characteristic p with the set {0, 1, . . . , p− 1} ⊆ Z. Now we
choose polynomials g1, . . . , gt ∈ Fp[X], view their function values as elements
of Fp, and define the hybrid sequence

(13) xn = (φb1(n), . . . , φbs(n), g1(n)/p, . . . , gt(n)/p) ∈ [0, 1)s+t

for n = 0, 1, . . . . The following discrepancy bound is a substantial improve-
ment on [10, Theorem 2]. We put Log u = max(1, log u) for u ∈ R, u > 0.

Theorem 3. Let b1, . . . , bs ≥ 2 be pairwise coprime integers. Let p ≥ 3
be a prime and assume that gcd(bi, p) = 1 for 1 ≤ i ≤ s. Let g1, . . . , gt
∈ Fp[X] with deg(gj) < p for 1 ≤ j ≤ t and assume that the polyno-
mials 1, X, g1(X), . . . , gt(X) are linearly independent over Fp. Put G =
max(deg(g1), . . . ,deg(gt)). Then for 1 ≤ N ≤ p the discrepancy DN of
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the first N terms of the sequence (13) satisfies

DN = Ob1,...,bs,t

(
Gp1/2(log p)t+1

N

(
Log

N

Gp1/2(log p)t+1

)s)
.

Proof. For a fixed integer N with 1 ≤ N ≤ p, we introduce the positive
integers

(14) fi =

⌈
1

log bi
Log

N

Gp1/2(log p)t+1

⌉
for 1 ≤ i ≤ s.

Let A(J ;N) be the counting function in (1), but relative to the points
x0,x1, . . . ,xN−1 in (13). We put

un = (g1(n)/p, . . . , gt(n)/p) ∈ [0, 1)t, n = 0, 1, . . . .

For an interval J ⊆ [0, 1)s+t of the form (4), we then deduce as in the proof

of Theorem 1 that A(J ;N) =
∑M

k=1 Sk, where now

Sk = #
{

0 ≤ n ≤ N − 1 : n ≡ rk (mod mk) and un ∈
t∏

j=1

[w
(1)
j , w

(2)
j )
}

with suitable moduli m1, . . . ,mM and 0 ≤ rk < mk for 1 ≤ k ≤M .

We consider Sk for fixed k with 1 ≤ k ≤ M and we assume first that
N ≥ mk. In analogy with (5), we get

Sk =
N

mk

t∏
j=1

(w
(2)
j − w

(1)
j )(15)

+O

(⌊
N − rk − 1 +mk

mk

⌋
D

(k)
b(N−rk−1+mk)/mkc

)
,

whereD
(k)
L denotes the discrepancy of the L points ulmk+rk , l= 0, 1, . . . , L−1.

Note that gcd(mk, p) = 1. It was shown in the proof of [10, Theorem 2] that

LD
(k)
L = Ot(Gp

1/2(log p)t+1) for 1 ≤ L ≤ p.

Together with (15) this yields

(16) Sk =
N

mk

t∏
j=1

(w
(2)
j − w

(1)
j ) +Ot(Gp

1/2(log p)t+1).

This is trivial for N < mk since then Sk = 0 or 1, and so (16) holds in all
cases.

By continuing to follow the arguments in the proof of Theorem 1, we
obtain ∣∣∣∣A(J ;N)

N
− λs+t(J)

∣∣∣∣ = Ob1,...,bs,t(f1 · · · fsN−1Gp1/2(log p)t+1)
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with an implied constant independent of J . Furthermore, for an interval
J ⊆ [0, 1)s+t of the form (9) we derive in analogy with (10) that∣∣∣∣A(J ;N)

N
− λs+t(J)

∣∣∣∣ ≤ s∑
i=1

b−fii +Ob1,...,bs,t(f1 · · · fsN−1Gp1/2(log p)t+1).

Using the expression for the fi in (14), we get∣∣∣∣A(J ;N)

N
− λs+t(J)

∣∣∣∣=Ob1,...,bs,t

(
Gp1/2(log p)t+1

N

(
Log

N

Gp1/2(log p)t+1

)s)
with an implied constant still independent of J . The proof is completed like
the proof of Theorem 1.

Remark 4. The conditions on g1, . . . , gt ∈ Fp[X] in Theorem 3 are
satisfied if 2 ≤ deg(gj) < p for 1 ≤ j ≤ t and deg(g1), . . . ,deg(gt) are
distinct.

An interesting special case of the explicit nonlinear congruential method
is the explicit inversive method (see [8, Section 3.3]). In this case, the hybrid
sequence corresponding to (13) is obtained as follows. Let s ≥ 1 and t ≥ 1
be given dimensions, let b1, . . . , bs ≥ 2 be pairwise coprime integers, and let
p ≥ 5 be a prime. Choose a1, . . . , at ∈ F∗p and c1, . . . , ct ∈ Fp. For 1 ≤ j ≤ t,
we introduce the sequence

e(j)n = (ajn+ cj)
p−2 ∈ Fp, n = 0, 1, . . . ,

of period p. Then we define the hybrid sequence

(17) xn = (φb1(n), . . . , φbs(n), e(1)n /p, . . . , e(t)n /p)∈ [0, 1)s+t, n = 0, 1, . . . .

The following discrepancy bound is a substantial improvement on [10, The-
orem 4].

Theorem 4. Let b1, . . . , bs ≥ 2 be pairwise coprime integers. Let p ≥ 5
be a prime and assume that gcd(bi, p) = 1 for 1 ≤ i ≤ s. Let a1, . . . , at ∈ F∗p
and c1, . . . , ct ∈ Fp be such that c1a

−1
1 , . . . , cta

−1
t are distinct elements of Fp.

Then for 1 ≤ N ≤ p the discrepancy DN of the first N terms of the se-
quence (17) satisfies

DN = Ob1,...,bs,t

(
p1/2(log p)t+1

N

(
Log

N

p1/2(log p)t+1

)s)
.

Proof. A comparison with the proof of [10, Theorem 4] shows that we
can formally proceed as in the proof of Theorem 3 with G = 1.

5. Mixing Halton sequences and digital explicit inversive se-
quences. Let q ≥ 3 be a prime power and let Fq be the finite field with q
elements. Choose α, β, γ ∈ F∗q with γ of order T ≥ 2 in the cyclic group F∗q .
Put %n = (αγn + β)q−2 ∈ Fq, n = 0, 1, . . . . Let {β1, . . . , βe} be an ordered
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basis of Fq over its prime subfield Fp. Then we can write %n =
∑e

l=1 cn,l βl,
n = 0, 1, . . . , with uniquely determined cn,l ∈ Fp = {0, 1, . . . , p − 1}. A se-
quence of digital explicit inversive pseudorandom numbers of order T is then
defined by

(18) zn =

e∑
l=1

cn,l p
−l ∈ [0, 1), n = 0, 1, . . . .

These sequences were introduced in [16]. They are purely periodic with least
period T .

We now consider hybrid sequences obtained by “mixing” Halton se-
quences and sequences of digital explicit inversive pseudorandom numbers
of order T . For a dimension s ≥ 1, we choose pairwise coprime integers
b1, . . . , bs ≥ 2. For a dimension t with 1 ≤ t ≤ T , we choose integers
0 ≤ d1 < d2 < · · · < dt < T . Then with z0, z1, . . . as in (18), we define
the hybrid sequence

(19) xn = (φb1(n), . . . , φbs(n), zn+d1 , . . . , zn+dt)∈ [0, 1)s+t, n = 0, 1, . . . .

The following discrepancy bound is a substantial improvement on [13, The-
orem 3].

Theorem 5. Let b1, . . . , bs ≥ 2 be pairwise coprime integers. Let q ≥ 3
be a prime power and let the sequence z0, z1, . . . in (18) have least period
T ≥ 2. Assume that gcd(bi, T ) = 1 for 1 ≤ i ≤ s. Then for 1 ≤ N ≤ T the
discrepancy DN of the first N terms of the sequence (19) satisfies

DN = Ob1,...,bs,t

(
q1/2(log q)t log T

N

(
Log

N

q1/2(log q)t log T

)s)
.

Proof. For a fixed integer N with 1 ≤ N ≤ T , we introduce the positive
integers

fi =

⌈
1

log bi
Log

N

q1/2(log q)t log T

⌉
for 1 ≤ i ≤ s.

Let A(J ;N) be the counting function in (1), but relative to the points
x0,x1, . . . ,xN−1 in (19). We put

zn = (zn+d1 , . . . , zn+dt) ∈ [0, 1)t, n = 0, 1, . . . .

For an interval J ⊆ [0, 1)s+t of the form (4), we deduce as in the proof of

Theorem 1 that A(J ;N) =
∑M

k=1 Sk, where now

Sk = #
{

0 ≤ n ≤ N − 1 : n ≡ rk (mod mk) and zn ∈
t∏

j=1

[w
(1)
j , w

(2)
j )
}

with suitable moduli m1, . . . ,mM and 0 ≤ rk < mk for 1 ≤ k ≤M .
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For N ≥ mk, we derive in analogy with (15) that

Sk =
N

mk

t∏
j=1

(w
(2)
j − w

(1)
j ) +O

(⌊
N − rk − 1 +mk

mk

⌋
D

(k)
b(N−rk−1+mk)/mkc

)
,

whereD
(k)
L denotes the discrepancy of the L points zlmk+rk , l= 0, 1, . . . , L−1.

Note that gcd(mk, T ) = 1. It was shown in the proof of [13, Theorem 3] that

LD
(k)
L = Ot(q

1/2(log q)t log T ) for 1 ≤ L ≤ T.

The proof of the theorem is completed in the same way as that of Theo-
rem 3.

Remark 5. The paper [13] studied also the “mixing” of Halton se-
quences with sequences of so-called digital explicit inversive pseudorandom
numbers of period q. The method of the present paper can be applied also
to this case, but it yields only a tiny improvement on the earlier discrepancy
bound in [13, Theorem 2].

6. Mixing Halton sequences and recursive inversive sequences.
We consider the recursive inversive sequences introduced in [12]. Let p ≥ 3
be a prime. As in Section 4, we identify Fp with the set {0, 1, . . . , p−1} ⊆ Z.
Fix a, b ∈ F∗p and define the sequence h0, h1, . . . of rational functions over Fp
by h0(X) = X and hn(X) = hn−1(aX

−1 + b) for n = 1, 2, . . . . The sequence
h0, h1, . . . is purely periodic with least period T ≤ p+ 1. For 1 ≤ n ≤ T − 1,
each hn has a unique pole en ∈ Fp. Now choose c0 ∈ Fp with c20 6= bc0 + a.
Then for 1 ≤ n ≤ T − 1 we put cn = hn(c0) if c0 6= en and cn = b − en if
c0 = en. By extending with period T , we get a sequence c0, c1, . . . of elements
of Fp which is called an inversive generator and has least period T according
to [12, Lemma 2]. A simple sufficient condition for obtaining the maximum
period T = p+ 1 is given in [12, Theorem 1], and for any p there are always
choices of a, b ∈ F∗p such that this maximum period is attained (see [12, p.
255]).

For a dimension s ≥ 1, we choose pairwise coprime integers b1, . . . , bs ≥ 2.
Then we define the hybrid sequence

(20) xn = (φb1(n), . . . , φbs(n), cn/p) ∈ [0, 1)s+1, n = 0, 1, . . . .

The following discrepancy bound is a substantial improvement on [9, The-
orem 5].

Theorem 6. Let b1, . . . , bs ≥ 2 be pairwise coprime integers. Let p ≥ 3
be a prime, let c0, c1, . . . ∈ Fp be an inversive generator, and let T be the
least period of this sequence. Then for 1 ≤ N ≤ T the discrepancy DN of
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the first N terms of the sequence (20) satisfies

DN = Ob1,...,bs

(
p1/4 log p

N1/2

(
Log

N1/2

p1/4 log p

)s)
.

Proof. For a fixed integer N with 1 ≤ N ≤ T , we introduce the positive
integers

fi =

⌈
1

log bi
Log

N1/2

p1/4 log p

⌉
for 1 ≤ i ≤ s.

Let A(J ;N) be the counting function in (1), but relative to the points
x0,x1, . . . ,xN−1 in (20). For an interval J ⊆ [0, 1)s+1 of the form (4) with

t = 1, we deduce as in the proof of Theorem 1 that A(J ;N) =
∑M

k=1 Sk,
where now

Sk = #{0 ≤ n ≤ N − 1 : n ≡ rk (mod mk) and cn/p ∈ [w
(1)
1 , w

(2)
1 )}

with suitable moduli m1, . . . ,mM and 0 ≤ rk < mk for 1 ≤ k ≤M .
For N ≥ mk, we derive in analogy with (15) that

Sk =
N

mk
(w

(2)
1 − w

(1)
1 ) +O

(⌊
N − rk − 1 +mk

mk

⌋
D

(k)
b(N−rk−1+mk)/mkc

)
,

where D
(k)
L is the discrepancy of the L points clmk+rk p

−1, l = 0, 1, . . . , L−1.
With L = b(N − rk − 1 +mk)/mkc we have

mk(L− 1) + rk ≤ N − rk − 1 +mk −mk + rk = N − 1 < T,

and so we deduce as in the proof of [9, Theorem 5] that

LD
(k)
L = O(L1/2p1/4 log p).

Since L < 2N , this yields

(21) Sk =
N

mk
(w

(2)
1 − w

(1)
1 ) +O(N1/2p1/4 log p).

This is trivial for N < mk since then Sk = 0 or 1, and so (21) holds in all
cases. The proof of the theorem is completed in the same way as the proof
of Theorem 3.
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