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1. Introduction. The problem of finding arithmetic progressions in a
partition of integers, or in a dense subset of the first N integers, is among
the oldest and most investigated questions of combinatorial number theory.
We focus on the analogous problem for the first N squares.

Let Q(N) denote the maximal cardinality of sets A ⊂ {12, 22, . . . , N2}
which do not contain any nontrivial three-term arithmetic progression. The
most fundamental question about this quantity, which we are unable to
answer, is definitely the following.

Problem. Is Q(N) = o(N)?

We do not even have a convincing heuristic argument for one answer
or the other. The only reason why we may be inclined to expect a positive
answer is that so far we failed to construct such a set with positive density.

We are going to show that Q(N)/N cannot tend to 0 too fast, which
probably means that if it does so at all, this will be difficult to confirm.

Theorem. For every sufficiently large N there is a set A⊂{1, . . . , N}
such that the equation

x2 + y2 = 2z2

has no solution with x, y, z ∈ A other than the trivial solutions x = y = z,
and

|A| > cN/
√

log logN

with a positive constant c.

We are slightly more confident about the partition version.
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Conjecture. If we split the set of positive integers into finitely many
parts, then the equation x2 + y2 = 2z2 has a nontrivial solution with x, y, z
being in the same part.

2. Proof. We call a solution of our favourite equation

(2.1) x2 + y2 = 2z2

primitive if x, y, z are coprime. Clearly every nonzero solution can be written
as x = dx′, y = dy′, z = dz′, where d = gcd(x, y, z) and x′, y′, z′ is a
primitive solution. We will call this primitive solution (x′, y′, z′) the stem of
the solution (x, y, z).

Lemma 1. If x, y, z form a primitive solution of (2.1), then x, y consist
exclusively of primes p ≡ ±1 (mod 8), and z consists exclusively of primes
p ≡ 1 (mod 4).

This reformulates the well-known property of the quadratic character of
2 and −1.

For an integer j, 1 ≤ j ≤ 7, let νj(n) denote the number of prime
divisors p of n satisfying p ≡ j (mod 8), counted with multiplicity. These
are completely additive functions.

Lemma 2. Let x, y, z be a solution of (2.1). Write x = dx′, y = dy′,
z = dz′, where d = gcd(x, y, z) and (x′, y′, z′) is its stem. We have

ν5(x)− ν5(z) = −ν5(z′),(2.2)

ν7(x)− ν7(z) = ν7(x
′).(2.3)

Proof. Indeed, ν5(x) = ν5(d) + ν5(x
′) = ν5(d) by the previous lemma

and ν5(z) = ν5(d) + ν5(z
′); by subtracting we get (2.2). Similarly ν7(x) =

ν7(d) + ν7(x
′) and ν7(z) = ν7(d) + ν7(z

′) = ν7(d); by subtracting we get
(2.3).

Now we introduce the completely additive function

ρ(n) = ν5(n)− ν7(n).

Lemma 3. Let A be a set of integers with the property that ρ(n) = k for
all n ∈ A. Let (x, y, z) ∈ A3 be a solution of (2.1) with stem (x′, y′, z′). The
three integers x′, y′, z′ consist exclusively of primes p ≡ 1 (mod 8).

Proof. By subtracting (2.2) from (2.3) we obtain

ρ(z)− ρ(x) = ν7(x
′) + ν5(z

′).

By the symmetric role of x and y we also have

ρ(z)− ρ(y) = ν7(y
′) + ν5(z

′).

On the left hand side of each equation we have 0 and on the right hand side
a sum of nonnegative numbers, hence the numbers on the right hand side all
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vanish. Since Lemma 1 already excludes the classes 3 and 5 (mod 8) for x′

and y′, as well as the classes 3 and 7 (mod 8) for z′, only the class 1 (mod 8)
remains.

By the Turán–Kubilius inequality we know that for most n ≤ N the
values of ρ(n) fall into an interval of length O(

√
log logN), so if we could

exclude primitive solutions arising from primes in the congruence class
1 (mod 8) without much loss, we would be done. In what follows we achieve
this.

Lemma 4. Let (x, y, z) be a primitive solution of (2.1) with x > z > y.
There are coprime positive integers u, v of opposite parity such that

x = u2 − v2 + 2uv, y = |u2 − v2 − 2uv|, z = u2 + v2.

Proof. By looking at the residues modulo 4 we see that x, y, z must all
be odd. We can now rewrite equation (2.1) as(

x+ y

2

)2

+

(
x− y

2

)2

= z2

and apply the familiar parametric representation of Pythagorean triples.

Let W ⊂ N2 be the set of pairs (u, v) which generate a triplet (x, y, z) in
the representation described in Lemma 4 such that x, y, z consist exclusively
of primes p ≡ 1 (mod 8).

Lemma 5.

|W ∩ [1, N ]2| = O(N2(logN)−3/2).

Proof. For a fixed value of u write

Wu = {v : 1 ≤ v ≤ N, (u, v) ∈W}.
First we estimate |Wu|.

Let p be an odd prime, p 6≡ 1, 3 (mod 8). We show that certain residue
classes modulo p are missing from Wu.

If p |u, then the class of 0 is missing by coprimality and we cannot claim
anything more.

Assume now p - u, p ≡ 5 (mod 8). Let i be the solution of the congruence

i2 ≡ −1 (mod p).

The assumption that p - z = u2 + v2 can be rewritten as

v 6≡ ±iu (mod p),

which yields two excluded residue classes.

Assume next p - u, p ≡ 7 (mod 8). Let i be the solution of the congruence

i2 ≡ 2 (mod p).
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The assumption that

p - x = u2 − v2 + 2uv = 2u2 − (u− v)2

can be rewritten as

v 6≡ (±i+ 1)u (mod p),

which yields two excluded residue classes.

The assumption that

p - ±y = u2 − v2 − 2uv = 2u2 − (u+ v)2

can be rewritten as

v 6≡ (±i− 1)u (mod p),

and it yields another two excluded residue classes. It is easily seen that these
four classes are distinct, so altogether we have four excluded classes.

By a familiar sieve estimate (e.g. Theorem 2.2 in Halberstam and Ri-
chert’s book [2]) we obtain

|Wu| < c1N
∏
p|u

(
1− 1

p

) ∏
p-u, p≡5 (mod 8), p<

√
N

(
1− 2

p

)

×
∏

p-u, p≡7 (mod 8), p<
√
N

(
1− 4

p

)

≤ c1Nf(u)
∏

p≡5 (mod 8), p<
√
N

(
1− 2

p

) ∏
p≡7 (mod 8), p<

√
N

(
1− 4

p

)
,

where

f(u) =
∏

p|u, p≡5 (mod 8)

p− 1

p− 2

∏
p|u, p≡7 (mod 8)

p− 1

p− 4
.

By using Dirichlet’s classical estimate∑
p≤x, p≡j (mod 8)

1

p
=

1

4
log log x+O(1)

for j = 5 and 7 we get

|Wu| < c2f(u)N(logN)−3/2.

Our function f(u) is unbounded, but it is bounded in mean:∑
u≤N

f(u) < c3N.

Estimates for sums of multiplicative functions that include the above one
can be found in many places, for instance Corollary 5.1 in Tenenbaum’s
book [6]. This implies the claim of the lemma.
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Lemma 6. ∑
(u,v)∈W

1

u2 + v2
<∞.

Proof. This follows from the previous lemma by partial summation.

Lemma 7. Let V be a set of positive integers and let B be the set of
those positive integers that are not divisible by any element of V . The set B
has an asymptotic density and it is at least∏

v∈V

(
1− 1

v

)
.

This is the Heilbronn–Rohrbach inequality (see e.g. [3]).

Proof of the Theorem. Let B be the set of integers which are not divisible
by any number of the form u2 + v2, (u, v) ∈W . By the previous lemma this
set has a positive asymptotic density, say c3. Now put

Ak = {n ∈ B : n ≤ N, ρ(n) = k}

with a suitable k. We claim that

(i) equation (2.1) has no nontrivial solution in any Ak,
(ii) for a suitable k (depending on N) we have

|Ak| > cN/
√

log logN.

These claims together clearly imply the Theorem.

For claim (i), suppose on the contrary that there is a solution x, y, z with
stem x′, y′, z′. By Lemma 3 these latter three integers consist only of primes
≡ 1 (mod 8). Hence they are generated by some (u, v) ∈ W and we would
have

u2 + v2 = z′ | z ∈ Ak ⊂ B,

a contradiction with the definition of B.

To show claim (ii), recall that the Turán–Kubilius inequality tells us

N∑
n=1

(ρ(n)−m)2 < c4N
∑
pk≤N

p−kρ(pk)2 < c5N log logN,

where

m =
∑
p≤N

ρ(p)/p.

In particular, with a well-chosen c6 there are < (c3/2)N integers up to N
such that

|ρ(n)−m| ≥ c6
√

log logN.
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Omit these from B; the rest still has > (c3/2)N elements up to N , and for
some of the at most 2c6

√
log logN possible values of ρ(n) at least one will

appear cN/
√

log logN times.

3. Concluding remarks. Besides three-term progressions, character-
ized by the equation x + y = 2z, one can consider the more general arith-
metic-mean equation

x1 + · · ·+ xk = ky.

Let Qk(N) denote the maximal cardinality of sets A ⊂ {12, 22, . . . , N2}
which do not contain any nontrivial solution of this equation (so that Q(N)
= Q2(N)). It is not difficult (though not quite obvious) to show Qk(N) =
o(N) for k ≥ 6. Ben Green outlined to the authors a method that would
prove this claim for k = 4, with the possibility of giving an effective estimate.
This seems to be a limit to analytic methods.

It is not easy to estimate this quantity from below either. Let Rk(N)
denote the maximal cardinality of sets A ⊂ [1, N ] which do not contain
any nontrivial solution of this equation. By a general theorem of Komlós,
Sulyok and Szemerédi [4] (see also [5]) we know that Qk(n) & Rk(n). The
best known lower estimate of Rk(N) is

Rk(N) & N exp(−ck
√

logN),

Behrend’s bound [1] with obvious changes. Can one do any better?

Problem. Is
Q3(N) & N(logN)−c

with some constant c?

While it is unlikely that the asymptotic behaviour of these quantities
will be known in the near future, still it may be possible to compare them.

Problem. Given an integer k ≥ 2, is there another integer l such that

Ql(N) . Rk(N)?
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