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1. Introduction. The Han/Nekrasov–Okounkov hooklength formula,
below, was discovered independently and by significantly different means,
first by Nekrasov and Okounkov ([7]) and shortly thereafter by Guo-Niu
Han ([5]). The formula states that for any complex number b,

(1)
∞∏
k=1

(1− qk)b−1 =
∑
λ∈P

q|λ|
∏
hij∈λ

(
1− b

h2ij

)
.

The formula relates powers of the partition generating function∏∞
k=1

1
1−qk or, inversely, the eta function q1/24

∏∞
k=1(1 − qk), to a sum of

products over the hooklengths of all partitions. The hooklengths hij are a
multiset of n whole number values associated to any given partition of n; a
detailed definition is delayed until a relevant question is proposed in the con-
cluding section. For any given n, the coefficient on qn is clearly a polynomial
in the variable b.

Congruences for the numerical values of particular powers of the partition
function have been studied (see [1]–[4], among others; the first is a survey
of related literature). The object of this paper is to study the values of the
coefficients of qn as polynomials in b. After normalizing by 1/n! to make
these coefficients integer polynomials, we find many pleasing results on the
distribution and arrangement of the coefficients of these polynomials.

The most classical congruences for powers of the partition function are
Ramanujan’s congruences for the partition function itself, i.e. the case b = 0.
Of particular interest to us is the first of these, that

p(5k + 4) ≡ 0 mod 5
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for any integer k. We show an analogue of this result for the hooklength
formula, namely,

Theorem 1.1. For n = 5k + 4, the integer polynomial pn(b) in the
complex indeterminate b, defined by

∞∏
k=1

(1− qk)b−1 =

∞∑
n=0

qn

n!
pn(b),

has coefficients for which the following symmetries hold:

• The nonzero residues equally populate the residue classes 1, 2, 3, and
4 mod 5.
• These residues appear in groups of four as a rotation of the list

(2, 4, 3, 1).
• The coefficients of terms of degree at most k are all 0 mod 5. (There

may be others.)

Remarks. Concerning integrality, while it may not be immediately ob-
vious that the polynomials are integral, this is easily shown by deriving a
recurrence for the polynomials with the q ∂∂q log technique of Herb Wilf’s

generatingfunctionology ([8]), or referring to Corollary 2.3 of [6] (1).

Equidistribution is only one of many beautiful symmetries exhibited by
these coefficients. Noting from the second clause of the theorem that the
4jth coefficient identifies coefficients through 4j + 3, we can display every
4th coefficient starting from the k + 1 position (the first k being 0). If we
do this, leaving a space for zeroes for visual effect, we obtain the striking
triangle on the page opposite. This is exactly Pascal’s triangle, multiplied
by 2 with alternating signs, reduced mod 5.

The structure of this paper is as follows. In the next section we prove
Theorem 1.1. In Section 3 we show additional symmetries, which are corol-
laries of the proof of Theorem 1 and well-known facts on binomial coef-
ficients. We then consider other prime and prime power arithmetic pro-
gressions. In Section 4 we discuss a few open questions on the combina-
torics of these polynomials, which will hopefully motivate future work in
this study.

(1) Because this recurrence is useful for calculating the polynomials discussed in this
paper, we state it here for the benefit of readers. With p0(b) = 1, and σ1 the divisor
function, for n ≥ 1 we have

pn(b) = (n− 1)!(b− 1)

n∑
m=1

−σ1(m)pn−m(b)

(n−m)!
.

A little more work can derive an expression for the coefficients individually, giving the
coefficient of bk in pn as an (n− k)× (n− k) determinant.
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n=4: {2}
n=9: {2,3}
n=14: {2,1,2}
n=19: {2,4,1,3}
n=24: {2,2,2,2,2}
n=29: {2, , , , ,3}
n=34: {2,3, , , ,3,2}
n=39: {2,1,2, , ,3,4,3}
n=44: {2,4,1,3, ,3,1,4,2}
n=49: {2,2,2,2,2,3,3,3,3,3}
n=54: {2, , , , ,1, , , , ,2}
n=59: {2,3, , , ,1,4, , , ,2,3}
n=64: {2,1,2, , ,1,3,1, , ,2,1,2}
n=69: {2,4,1,3, ,1,2,3,4, ,2,4,1,3}
n=74: {2,2,2,2,2,1,1,1,1,1,2,2,2,2,2}
n=79: {2, , , , ,4, , , , ,1, , , , ,3}
n=84: {2,3, , , ,4,1, , , ,1,4, , , ,3,2}
n=89: {2,1,2, , ,4,2,4, , ,1,3,1, , ,3,4,3}
n=94: {2,4,1,3, ,4,3,2,1, ,1,2,3,4, ,3,1,4,2}
n=99: {2,2,2,2,2,4,4,4,4,4,1,1,1,1,1,3,3,3,3,3}
n=104: {2, , , , ,2, , , , ,2, , , , ,2, , , , ,2}
n=109: {2,3, , , ,2,3, , , ,2,3, , , ,2,3, , , ,2,3}
n=114: {2,1,2, , ,2,1,2, , ,2,1,2, , ,2,1,2, , ,2,1,2}
n=119: {2,4,1,3, ,2,4,1,3, ,2,4,1,3, ,2,4,1,3, ,2,4,1,3}
n=124: {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
n=129: {2, , , , , , , , , , , , , , , , , , , , , , , , ,3}
n=134: {2,3, , , , , , , , , , , , , , , , , , , , , , , ,3,2}

2. Proof of the main theorem. We begin by expanding the product
out using the generalized binomial theorem. Recall that for any value x,
including the indeterminate in C[x], we can define the generalized binomial
coefficient with a whole number k as(

x

k

)
=
x(x− 1)(x− 2) . . . (x− k + 1)

k!
.

We use the notation e ` n to mean that e is a partition of n, and write
partitions in the frequency notation e = 1e12e23e3 . . . to denote the partition
in which 1 occurs e1 times, 2 occurs e2 times, etc. It is understood that the
ei are nonnegative integers and that only finitely many of the ei are nonzero.
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Expanding with the generalized binomial theorem, we first obtain
∞∏
j=1

(1− qj)b−1 =
∞∏
j=1

1

(1− qj)1−b

=
∞∏
j=1

∞∑
k=0

(
1− b+ k − 1

k

)
(qj)

k
=
∞∏
j=1

∞∑
k=0

(
k − b
k

)
(qj)

k

=
∞∏
j=1

∞∑
k=0

(k − b)(k − b− 1) . . . (k − b− k + 1)

k!
(qj)

k

=

∞∏
j=1

∞∑
k=0

(1− b)(2− b) . . . (k − b)
k!

(qj)
k

=

∞∑
n=0

qn
∑
e`n

e=1e12e2 ...

∞∏
j=1

(1− b)(2− b) . . . (ej − b)
ej !

=
∞∑
n=0

qn

n!

∑
e`n

e=1e12e2 ...

n!

e1!e2! . . .

∞∏
j=1

(1− b)(2− b) . . . (ej − b).

Note that n!
e1!e2!...

is not a multinomial coefficient since e1 + e2 + · · · 6= n
except in the trivial case e1 = n. The k = 0 term in the sums, an empty
product, is 1.

Considering the various powers of b in the final polynomials, one poly-
nomial for each ei, we see that the above expression is equal to

∞∑
n=0

qn

n!

∑
e`n

e=1e12e2 ...

n!

e1!e2! . . .

∞∏
j=1

ej∑
t=0

(−b)t
∑

S={s1,...,sej−t}
S⊆{1,...,ej}

s1 . . . sej−t.

The products on the far right are every possible selection of ej − t distinct
elements from the set {1, . . . , ej} =: [ej ]. When we bring the factor of 1/ej !
back into this product, we exchange this for a sum over their complements,
all possible denominators consisting of products of t distinct elements from
{1, . . . , ej}.

Multiplying these together, we get

∞∏
k=1

(1− qk)b−1 =

∞∑
n=0

qn

n!

∑
e`n

e=1e12e2 ...

n!

[ n∑
t=0

(−b)t
(∑ 1

s1 . . . st

)]

where the last sum runs over sets of t distinct elements chosen from the
multiset Me = {1, 2, . . . , e1, 1, 2, . . . , e2, . . . }.
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Thus, the coefficient of bt in pn(b) is

(−1)tn!
∑
e`n

e=1e12e2 ...

( ∑
S⊆Me

S={s1,...,st}

1

s1 . . . st

)
.

Our task is now to determine the residue class of this integer mod 5 when
n = 5k + 4.

In any given term, if the power of 5 that divides n! is not fully canceled by
elements of the product s1 . . . st, that term will contribute 0 to the residue
class of the sum mod 5. It is possible for this to occur if e1 ≥ 5k, and
among the si are 5, 10, 15, . . . , 5k chosen from the first part of the multiset,
{1, 2, . . . , e1, (. . . )}. If e1 < 5k, since all other parts are of size at least 2, it
is clear that the deficit in available entries can never be fully made up by
elements chosen from {1, . . . , ej} with j > 1. For example, if e2 ≥ 5, then
e1 < 5k − 5, etc.

Hence the only partitions e that can possibly contribute to the sum
mod 5 are: 15k+4, 15k+221, 15k+131, 15k41, 15k22.

Among the contributions from these partitions, only those terms in which
k of the elements are assigned to 5, 10, . . . , 5k can possibly contribute to the
residue of the sum.

Thus, if t < k, no terms contribute a nonzero value. If t = k, then exactly

the one term (5k+4)!
5·10·...·5k , from S = {5, 10, . . . , 5k}, contributes. This happens

once in each of the five possible partitions, so the total is 0 mod 5. This
proves the last clause of Theorem 1.

Suppose now that t = k + m, m > 0, and that k of the elements of
{s1, . . . , st} are 5, 10, . . . , 5k. There remain the contributions constructed
from choosing m values from the remaining places in the five possible parti-
tions. Since we are only concerned with the residue of the result mod 5, we
need only classify the multiset of available choices in each partition by their
residues mod 5.

If we reduce the elements of the multiset Me mod 5 for each of the five
possible e, we obtain the following five multisets:

• 15k+041: {
k repetitions︷ ︸︸ ︷
1, 2, 3, 4, , . . . , 1},

• 15k+022: {
k repetitions︷ ︸︸ ︷
1, 2, 3, 4, , . . . , 1, 2},

• 15k+131: {
k repetitions︷ ︸︸ ︷
1, 2, 3, 4, , . . . , 1, 1},

• 15k+221: {
k repetitions︷ ︸︸ ︷
1, 2, 3, 4, , . . . , 1, 2, 1},

• 15k+4: {
k repetitions︷ ︸︸ ︷
1, 2, 3, 4, , . . . , 1, 2, 3, 4}.
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Let the part of each possible Me consisting of k repetitions of {1, 2, 3, 4}
be C. Since C is common to all five partitions, if S ⊆ C ⊂ Me for some e
then the same choice may be made in any of the other four partitions. The
summand

(5k + 4)!

5 · 10 · . . . · 5k
1

sk+1 . . . st

thus appears five times in the coefficient on bt. The sum of these five terms
is then 0 mod 5, and we may consider the remaining possibilities for S. Our
strategy is now to form more collections of terms which vanish mod 5, and
determine the remaining total.

Each Me has a 1 immediately following C. If we choose m− 1 elements
of S from C and the first following 1, our choice of S can be found in each
Me, and the terms

(5k + 4)!

5 · 10 · . . . · 5k
1

sk+1 . . . st−1

1

1

can be grouped to vanish mod 5.
We again group all those terms where m − 1 elements of S are the

same choices made in C, and the additional 2 is chosen—there are three of
these—or the second 1 of the partition 15k+131 is chosen. These give us

3 · (5k + 4)!

5 · 10 · . . . · 5k
1

sk+1 . . . st−1

1

2
+

(5k + 4)!

5 · 10 · . . . · 5k
1

sk+1 . . . st−1

1

1

≡ (5k + 4)!

5 · 10 · . . . · 5k
1

sk+1 . . . st−1
(5 · 2−1) mod 5.

These thus contribute 0 residue mod 5.
We again group all those terms where m − 1 of the elements of S are

in C, and the second 1 of 15k+221 is chosen, or the 4 of 15k+4. We obtain

(5k + 4)!

5 · 10 · . . . · 5k
1

sk+1 . . . st−1

1

1
+

(5k + 4)!

5 · 10 · . . . · 5k
1

sk+1 . . . st−1

1

−1

≡ (5k + 4)!

5 · 10 · . . . · 5k
1

sk+1 . . . st−1
(0) mod 5.

Thus, among those terms in which m− 1 of the elements of S are in C,
we are left with those in which the 3 of the 15k+4 is chosen, multiplying the
contribution of these elements by 3−1 ≡ 2 mod 5.

What is the actual value of that contribution? If n = 5k + 4, then there
are k 1s, k 2s, etc. All possible S with m− 1 choices in C thus yield

(−1)t(5k + 4)!

5 · 10 · . . . · 5k
∑

r1+r2+r3+r4=m−1

(
k

r1

)(
k

r2

)(
k

r3

)(
k

r4

)
1

1

r1 1

2

r2 1

3

r3 1

4

r4

where the ri index those choices of S in which ri elements of S are among
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the residues i in C. This value will then be multiplied by 3−1 mod 5 in the
final total.

Now suppose m−2 elements of S are in C. We shall be briefer, since the
argument is similar.

We can form the following large group that contributes 0 mod 5: any
choice of 1 and 2 from the same set (there are 3 of these), or the 2 and
the second 1 of 15k+221, the pairs of 1s from 15k+131 and 15k+221, and from
15k+4 the 1 and 3, the 1 and 4, the 2 and 4, and the 3 and 4. Ignoring the
prior factor, the sum of the inverses is

3 · 1−12−1 + 2−11−1 + 2 · 1−11−1 + 1−13−1 + 1−14−1 + 2−14−1 + 3−14−1

≡ 9 + 3 + 2 + 2− 1− 3− 2 = 10 ≡ 0 mod 5.

Among those terms in which m−2 of the choices are made in the first k
sets of 4, we are left with those in which the 2 and 3 of the 15k+4 are chosen,
multiplying the contribution of these elements by 1 mod 5.

If m− 3 choices are made in the first k sets of 4, then we have 3 choices
to make from the remaining elements. The 4 possible choices from 15k+4—
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, and {2, 3, 4}—group to add 0 mod 5. We are left
with the choice of 1, 2, and 1 from 15k+221, mutliplying the contribution of
these choices by 3.

If m − 4 choices are made in the first k sets of 4, the only remaining
possibility is all of 1, 2, 3, and 4 from 15k+4, multiplying these contributions
by 4.

For any given t = k + m, the sum is thus a linear combination of the
residues mod 5 of the various ways to choose m− 1 through m− 4 elements
of S from C. We have therefore reduced the question of determining the
residue class of the coefficient of bt in pn(b) to calculating the residue class
mod 5 of the following sum:

(−1)t(5k + 4)!

5 · 10 · . . . · 5k

( ∑
r1+r2+r3+r4=m−1

1

3

(
k

r1

)(
k

r2

)(
k

r3

)(
k

r4

)
1

1

r1 1

2

r2 1

3

r3 1

4

r4

+
∑

r1+r2+r3+r4=m−2

1

6

(
k

r1

)(
k

r2

)(
k

r3

)(
k

r4

)
1

1

r1 1

2

r2 1

3

r3 1

4

r4

+
∑

r1+r2+r3+r4=m−3

1

2

(
k

r1

)(
k

r2

)(
k

r3

)(
k

r4

)
1

1

r1 1

2

r2 1

3

r3 1

4

r4

+
∑

r1+r2+r3+r4=m−4

1

24

(
k

r1

)(
k

r2

)(
k

r3

)(
k

r4

)
1

1

r1 1

2

r2 1

3

r3 1

4

r4
)
.

Taking inverses mod 5, the coefficient of bt in pn(b), where t = k + m and
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n = 5k + 4, becomes

(−1)m+1

( ∑
r1+r2+r3+r4=m−c

c=1,2,3,4

ac

(
k

r1

)(
k

r2

)(
k

r3

)(
k

r4

)
1r13r22r34r4

)

where a1 = 2, a2 = 1, a3 = 3, and a4 = 4.

We now wish to evaluate this sum, whose symmetries over the range of
m yield the behaviors of Theorem 1.1 and the additional symmetries visible
in the triangle. It will be useful to evaluate the sum for a general prime p,
as follows:

Lemma 2.1. For p a prime,∑
r1+···+rp−1=(p−1)s+c

(
k

r1

)
. . .

(
k

rp−1

)
1r12r2 . . . (p− 1)rp−1

≡
{

(−1)s
(
k
s

)
mod p for c = 0,

0 mod p otherwise.

Proof. (Note that we assign bases to exponents of their own index, for
convenience. The sum is symmetric under this exchange.)

The left-hand side is the coefficient of q(p−1)s+c in the product

(1+q)k . . . (1+(p−1)q)k =
(

1+
( p−1∑
i=1

i
)
q+
( p−1∑
i,j=1
i<j

ij
)
q2+ · · ·+(p−1)!qp−1

)k
≡ (1− qp−1)k mod p.

The middle terms in the sum vanish (observe the effect of permutation by
a nontrivial multiplication in Zp), and since (p− 1)! ≡ −1 mod p, we obtain
the last line. The coefficient of q(p−1)s in the latter expression is exactly
(−1)s

(
k
s

)
, and all other coefficients are 0.

We now complete the proof of the first two clauses of Theorem 1.1. The
coefficients of bt are sums of multiples of four consecutive terms of the type
evaluated in Lemma 2.1, only one of which may be nonzero mod 5. The
corresponding coefficients of degree k + 4s + 1, k + 4s + 2, k + 4s + 3 and
k+4s+4 are this value times 2, 1, 3, and 4, respectively, and an alternating
power of −1 with starting parity determined by s.

Thus the rotation is the underlying value multiplied by either (2,−1, 3,−4)
= (2, 4, 3, 1), or by (−2, 1,−3, 4) = (3, 1, 2, 4). Both are rotations of the
list (2, 4, 3, 1). If an underlying nonzero value is j mod 5, then the list
(2j, 4j, 3j, 1j) is a rotation of (2, 4, 3, 1), as claimed. Finally, when the un-
derlying sum is zero mod 5, all four terms are 0 mod 5.
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This means that those coefficients on bt which are nonzero rotate through
the nonzero residue classes mod 5 in groups of 4, leading to equidistribution
of the pattern claimed in Theorem 1.1.

3. Additional symmetries. We have now evaluated the coefficient of
bk+1+4m in p5k+4(b) to be congruent to 2 · (−1)m

(
k
m

)
mod 5. This tells us

that the entries of the triangle have all the symmetries of Pascal’s triangle,
when multiplied by 2 mod 5 and an alternating sign.

For example, we know that for any prime p the power of p in the prime
factorization of the binomial coefficient

(
k
m

)
is equal to the number of carries

in the addition m+ (k −m) = k in base-p arithmetic. Thus

Corollary 3.1. The coefficient of bk+1+4m in p5k+4(b), 0 ≤ m ≤ k,
is nonzero if and only if mi ≤ ki for each digit in the 5-ary expansions
(m)5 = m0m1 . . . and (k)5 = k0k1 . . . .

Modulo any prime, Pascal’s triangle has self-similarity:

Corollary 3.2. The triangle of Section 1 is self-similar: the apex digits
of the triangles at any level are given by the entries of the triangle one level
down, and other entries are those of the fundamental triangle times the apex
digit.

Similar corollaries of any of the symmetries of Pascal’s triangle reduced
mod 5 can be used. One must take the multiple 2(−1)m into account, of
course; the coefficients of pn(b) are not fixed under reversal, for instance.

3.1. Other primes. It is not the case that equidistribution holds for
the nonzero residue classes modulo other primes, whether in the −1 arith-
metic progression or in those for which Ramanujan-like congruences hold
for the partition function. For example, p6(b) = 7920− 18144b+ 14674b2 −
5205b3 + 805b4 − 51b5 + b6. However, mod 7, these coefficients reduce to
(3, 0, 2, 3, 0, 5, 1) and likewise p5(b) ≡ (0, 6, 4, 2, 0, 6).

This occurs because the ac are not as neatly distributed for other primes
as they are for modulus 5. However, equidistribution mod p arises for a
different reason in the arithmetic progression −p−1 mod p2. This is because
the binomial coefficients described by Lemma 2.1 themselves rotate through
the nonzero residues mod p.

Theorem 3.3. For p prime, j ≥ 1, if the number of partitions of p−1 is
not congruent to 1 mod p, the coefficients of pp2−p−1(b) equinumerously pop-
ulate the nonzero residue classes mod p for all j, and if it is, the populations
are still equinumerous for pp3−p2−p−1 mod p.

Proof. In order to prove the theorem for all primes, we need to go
through the proof of Theorem 1.1 in greater generality.
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The expansion makes no reference to the value of p until we begin de-
termining the residue class of the coefficient

(−1)tn!
∑
e`n

e=1e12e2 ...

( ∑
S⊆Me

S={s1,...,st}

1

s1 . . . st

)
.

The same logic holds to show that the number e1 of 1s must be sufficient
to cancel all instances of the prime p in n!. Thus for any given prime p and
residue r, if we consider the arithmetic progression n = pk + r, only the
partitions with e1 ≥ pk contribute, and there are a finite set of these equal
in number to the partitions of r.

We can run the same grouping arguments to give a series of coefficients
ac, 0 ≤ c ≤ p−1. The coefficient of bt in pn(b), where n = p(pj+p−2)+(p−1)
and t = pj + p− 2 +m, m ≥ 0, is congruent mod p to

(−1)m+1

( ∑
r1+···+rp−1=m−c

c=0,1,...,p−1

ac

(
k

r1

)
. . .

(
k

rp−1

)
1r12r2 . . . (p− 1)rp−1

)
.

This is a linear combination of terms of the form addressed by Lemma 2.1,
so only every p − 1st term is nonzero. It was the case in the proof of The-
orem 1.1 that a0 = 0 and so there was no overlap at the ends of this in-
terval, where a term might take contributions from both a0 and a4, but
this might not be the case for other primes. Modulo p the sequence of co-
efficients of pn(b), with the initial segment of 0s of length pj + p − 2, is
given by(

0, . . . , 0,−a0
(
pj + p− 2

0

)
,

a1

(
pj + p− 2

0

)
, . . . , ap−2

(
pj + p− 2

0

)
,

−ap−1
(
pj + p− 2

0

)
+ a0

(
pj + p− 2

1

)
,

−a1
(
pj + p− 2

1

)
, . . . ,−ap−2

(
pj + p− 2

1

)
,

ap−1

(
pj + p− 2

1

)
− a0

(
pj + p− 2

2

)
,

a1

(
pj + p− 2

2

)
, . . . , (−1)pj+2p−3ap−2

(
pj + p− 2

pj + p− 2

)
,

(−1)pj+2p−2ap−1

(
pj + p− 2

pj + p− 2

)
+ (−1)pj+pa0

(
pj + p− 2

pj + p−1

))
.
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There are two types of subsequences here: those multiplied by ac for
1 ≤ c ≤ p − 2, which are of the form

{
(−1)c+1ac(−1)s

(
pj+p−2

s

)}
, 0 ≤ s ≤

pj + p − 2, and the overlapping sums for a0 and ap−1. Let us begin by
examining the former.

It is a straightforward calculation to show that

Lemma 3.4. For p a prime, 0 ≤ s ≤ pj + p− 2, s = gp+ h, 0 ≤ h < p,
we have

(−1)s
(
pj + p− 2

s

)
≡ (h+ 1)

(
(−1)g

(
j

g

))
mod p.

This shows that the sequences
{

(−1)c+1ac(−1)s
(
pj+p−2

s

)}
consist of seg-

ments of p elements that are either all 0, or are permutations of {1, . . . , p−1}
followed by a 0. (The last 0 is in the “place” s = pj+p−1.) Thus the nonzero
elements equally populate the residue classes mod p.

Using Lemma 3.4, the sequence of overlapping terms at the ends of

the intervals,
{
− a0(−1)s

(
pj+p−2

s

)
− ap−1(−1)s−1

(
pj+p−2
s−1

)}
, where 0 ≤ s ≤

pj + p− 1, s = gp+ h with 0 ≤ h < p, reduces to{
−
(
a0(h+ 1)

(
(−1)g

(
j

g

))
+ ap−1(h)

(
(−1)b(s−1)/pc

(
j

b(s− 1)/pc

)))}
≡
{

(−1)0
(
j

0

)
(−a0), (−1)0

(
j

0

)
(−2a0−1ap−1), (−1)0

(
j

0

)
(−3a0−2ap−1) . . . ,

(−1)0
(
j

0

)
(−pa0 − (p− 1)ap−1), a0

(
j

1

)
, (−1)1

(
j

1

)
(−2a0 − ap−1), . . . ,

(−1)j
(
j

j

)
(−pa0 − (p− 1)ap−1)

}
.

This is the set of values (−1)x
(
j
x

)
(−a0 + y(−a0 − ap−1)) where 0 ≤ x ≤ j

and 0 ≤ y ≤ p − 1. If a0 + ap−1 6≡ 0 mod p, this will equally populate all
nonzero residue classes mod p each time y ranges over its values.

Now we note that ap−1 is always−1 mod p, because the only contributing
partition must be 1pk+p−1 and only the terms with all of 1 through p − 1
beyond C are chosen. Further, a0 is the number of partitions of p − 1,
because this is exactly the number of possible contributing partitions. Hence
a0 + ap−1 6≡ 0 mod p whenever the number of partitions of p − 1 is not
congruent to 1 mod p.

Even when a0 + ap−1 ≡ 0 mod p, by Lemma 3.4 the sequence will still
equally populate the nonzero residue classes mod p as x ranges over its
values when j ≡ −2 mod p, giving us the arithmetic progression −p2−p−1
mod p3. The proof of Theorem 3.3 is complete.

Remarks. The first time the exceptional case happens is at p = 71. The
size of the populations in the arithmetic progression −1−p−p2−p3−p4−· · ·
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mod pq for any q can be seen, from the argument above, to be divisible by
(p− 1)q−2, or (p− 1)q−3 in the exceptional case.

4. Open questions. The polynomials studied in this paper are related
to a core object in enumerative combinatorics, so questions regarding their
symmetries should be of wide interest, and many still await investigation.

One of the most interesting questions is whether we can recover the re-
sults of the earlier work mentioned on congruences of powers of the partition
function, and perhaps extend them, by means as elementary as possible. If
we assume knowledge of the fact the the number of partitions of 5k + 4 is
itself divisible by 5, it seems likely that the theorems and lemmas in this
paper, combined with elementary properties of binomial coefficients, could
yield useful theorems, such as the fact that

∏
(1 − qj)b−1 is divisible by 0

in the arithmetic progression n = 5k + 4 as long as b 6≡ 3 mod 5. Similar
results might be obtainable for other prime power progressions. Exploration
of these ideas is intended as the immediate followup to this paper.

Are there any other prime progressions pk+(p−1) where equidistribution
occurs? If so, how can we find them efficiently? If not, how could this be
proved?

What can we say about progressions with composite moduli other than
prime powers?

Is it possible to describe an evocative combinatorial object that the coeffi-
cients themselves count? Could this description be useful in proofs regarding
their properties, or properties of related objects such as multipartitions?

Finally, consider the Han/Nekrasov–Okounkov formula which was the
original object of this investigation. If we equate that expression for the
pn(b) with the one obtained in this paper, we get∑

λ∈P

∏
hij∈λ

(
1− b

h2ij

)
=

∑
λ`n

λ=1e12e2 ...

[ n∑
t=0

(−b)t
( ∑

S⊆Mλ
S={s1,...,st}

1

s1 . . . st

)]
.

This identity definitely does not refine to the individual-partition level, yet
the Mλ are merely a subset of the hooklengths hij . We finally find it nec-
essary to define the hooklengths of a partition more rigorously—if we write
λ = (λ1, . . . , λ`), with the parts in nonincreasing order, then the hooklengths
hij are the multiset of values hij = λi − j + #{λa | a ≥ i and λa ≥ j}. The
elements of Mλ are just the hooklengths hiλi , i.e. the “top strip” of hook-
lengths.

Thus one might ask: is there any refinement of the above identity? For
instance, the contribution of the unique 1-row partition 1n is the same on
both sides. Could something be said about partitions with a given number
of rows?
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